首页 > 文章中心 > 正文

地震勘探论文:地震勘查技术运用研究

地震勘探论文:地震勘查技术运用研究

本文作者:付兆辉秦伟军作者单位:中国石化石油勘探开发研究院

高精度地震勘探技术

1地震采集技术

1)散射成像数值模拟技术

地震成像技术一直是基于有效波的反射能量,即反射波法地震勘探。在断层十分发育、地层破碎、高陡直立界面等复杂地质现象情况下,地表接收不到有效的地震反射,对地下复杂地震体无法成像,在这种情况下反射波法是不适应的[6]。因此需要利用新的成像方法———散射波成像[7-11]。在没能接收到反射波的情况下,仍有波的能量传回到地面,依然观测到波动的存在,这种波动是由入射波与非均匀介质相互作用而产生的散射波,它含有地下介质不均匀性的信息。不同尺度和不同组成的非均匀性会引起不同形式的地震波散射,可以从这些散射现象来反推这些非均匀性的分布和性质,即基于散射波来成像。在地层破碎、高陡、岩脉等复杂地质条件下,可利用散射波场的波动方程正演模拟技术进行三观测系统的论证和设计。在泌阳凹陷南部陡坡带高精度三维中,在波动方程正演基础上进行基于散射成像理论的数值模拟(反演)来描述边界断裂带的波场传播规律,进行道间距、炮检距、覆盖次数等采集参数的论证,实现了用散射波成像技术解决复杂的地质问题(图2)。

2)高精度激发技术

复杂地表区的地震激发主要任务是减少干扰波能量、增大有效波能量,形成具有反映地下地质体能力的有效波波场(如:较宽的频带、较高的主频和信噪比)。泌阳凹陷表层有基岩出露区、河流和农田,勘探难度较大,采用了岩石出露区钻井技术和河滩河床区钻井技术。(1)岩石出露区钻井技术岩石出露区或者薄层风化覆盖区,若使用高能炸药在一定深度下使震源药柱处在风化层之下的高速岩石中激发,能够获得较好的激发效果,但是在有风化层覆盖的激发点,使用的几种钻机往往是能打坚硬岩石的打不了风化层,能打风化层的又打不了坚硬岩石,给打井造成困难。通过对QPY-30型钻机的技术改进,使其打穿风化层后,再打入坚硬岩石2m以上,解决了这一困难,保证了好的激发效果。(2)河滩河床区钻井技术河流区表层为疏松的粗砂夹杂砾石层,在高速层顶界面以下激发,能量强、能有效增加下传能量、减弱激发产生的各类干扰。但河滩区钻机到位及钻井成孔困难,激发药柱很难下到高速层顶界面以下,若采用浅井组合激发效果差。我们开展了钻井成孔工艺研究,通过对固沙剂与泥浆粉进行不同配方的试验,最终选用混合型固沙剂作为钻井泥浆,提高了固井性能。并采用新型材料的专用钻头进行钻探,保证了激发药柱下到了高速层顶界面以下3~5m;在砾石的区域使用配备套筒的冲击钻机,通过“冲击套筒—取出套筒中砾石—下药”等环节,使激发药柱下到了高速层顶界面以下3~5m。钻井新技术的应用,使单炮记录品质有了保证。

2地震资料处理技术

通过攻关形成了高陡构造地区三维地震叠前深度偏移处理技术的方法,取得了较好的效果。

1)静校正方法深化研究

泌阳南部陡坡带近地表突出的特点在于,山不高(高差不到200m),但南北速度横向变化大,高达2000m/s之多,这给替换速度的选取带来很大的困难;断陷区断层与水平层接触关系混乱,该部位资料信噪比很低;断层发育,倾角达45°,断面波发育,成像混乱,此处的剩余静校正有很大的时变性;工区北部沉积环境相对平稳,用常规的折射静校正即能达到勘探的要求,关键是与山地的对接形成了很大的差别[12]。针对这些特点,首先采用初至波层析反演方法反演近地表速度,精确地描绘近地表速度的纵、横向变化规律;然后依据初至波层析反演结果,用波动方程延拓基准面校正消除由于近地表高速造成的非地表一致性静校正误差;最后进行多次剩余静校正迭代消除剩余静校正的时变误差,实现复杂地表条件下准确的静校正处理。波场延拓处理方法是按地震波在近地表的真实传播路径使波场准确归位,该方法充分考虑了波在近地表非垂直传播的实际情况,既可实现曲射线的变时差校正,提高剖面质量,又可使校正后的波场满足所在位置的波动特征,为叠前波动方程偏移奠定良好的基础(图3)。波动方程延拓的步骤包括了数据由地表下延至中间基准面,然后再上延至最终基准面的过程。然而,这个过程并不仅限于两个基准面,可以包括更多的基准面,这取决于近地表的复杂程度。当然,基准面过多会增加计算成本和时间,但可以提高计算精度。图4为L30线采用不同静校正方法的L30线叠加剖面,比较而言采用波动方程延拓基准面静校正方法效果较好,南部大断层附近信噪比明显得到提高。

2)叠前偏移成像处理技术

针对凹陷南部陡坡带边界大断裂的存在,基岩速度较高,而凹陷内部断裂下降盘的沉积岩速度相对较低,存在速度的横向变化的特点,采用了在取得较好的叠前时间偏移成像及较准确的均方根速度的基础上,进行层速度模型构建及克希霍夫叠前深度偏移处理方法,收到较好的效果。(1)Kirchhoff叠前深度偏移Kirchhoff叠前深度偏移被认为是一种高效实用的叠前深度偏移方法,积分法具有高偏移角度、无频散、占用资源少和实现效率高的特点。它能适应变化的观测系统和起伏的地表,优化的射线追踪法和改进的有限差分法能够在速度场变化的情况下快速准确地计算绕射波旅行时,从而使积分法能够适应复杂的构造现象。近年来,解决真振幅偏移问题就是偏移地震数据得到真正的振幅和相位信息,从而为岩性解释服务。由于积分法具有许多优点,因此研究克希霍夫型保幅叠前深度偏移具有很高的理论价值和实用价值。(2)速度-深度模型建立方法克希霍夫积分法叠前深度偏移的关键是速度模型的建立。在泌阳凹陷南部陡坡带叠前深度偏移处理中,应用了速度-深度模型建立方法。为了获取高精度的速度-深度模型,采取了以下处理步骤:①借助叠前时间偏移的准确均方根速度建立深度域初始速度模型,得到长波长速度场;②利用叠前深度偏移的速度对模型细化。③利用网格层析成像技术进一步微调短波长速度场,得到高精度速度模型。传统深度域速度模型的建立,一般基于沿层速度分析,即首先在时间偏移数据体上解释层位,然后通过各种不同的方法求取目标层的层速度,最终得到大套层的速度模型。利用垂向速度分析得到时间速度对,通过样条插值和反演,产生速度模型。这种建立模型的方法充分考虑了构造信息,如构造倾角和方位角;最终得到的模型是有限差分网格化模型,是一个连续介质模型而不是大套地层模型[13-16]。经过以上的速度分析后,可能还有一些局部速度误差需要微调。利用网格层析成像技术,即根据剩余速度,全局修正速度模型。层析成像修正速度后,一些短波长的速度误差得以调整。(3)陡坡带高精度三维处理效果高精度三维处理后的剖面(图5)边界主控断裂面反射清晰,归位准确,信噪比、分辨率整体上有明显提高,尤其是深层系资料有了明显改观,波组特征明显,为南部陡坡带的深层勘探提供了可靠的地震资料。

3地震解释技术

1)三维可视化解释技术

三维地震数据可视化就是将每个数据样点转换成一个体元,即带有近似的面元空间和采样间隔的三维像素。每一个体元都有一个与三维数据体相对应的值,这样每一个地震道都被转换成一个体元柱状体。每个数据体都可通过调整颜色和透明度等参数,突出显示目标地质体,并在同一窗口一次完成锁定层位、体元追踪等可视化解释工作。三维可视化地震解释技术通过对地震数据应用不同透明度在三维空间地下的地震反射率做直接评估,立体可视化假定地下界面的反射率是地下界面的三维模型,实际上,它是三维空间中的构造、地层及振幅综合特性的反映,无论做三维的区域分析,还是特定目标体评价,都可以通过调整“透明度”来实现。因此对三维地震资料沿层振幅可视化,可以确定断层的空间展布及断层的组合形式,使断层的解释更合理(图6)。

2)利用地震属性预测储层

三维地震资料包含了丰富的地震信息,这些地震信息在不同程度上反映了地质储层的各种物性特征[17]。利用地震数据通过不同的计算手段提取各种不同地震信息,并通过单项地震信息或多项地震信息的综合分析,从不同角度对地震资料进行细致的解释和推断,以揭示有利储层的空间展布、地层岩性变化以及含油气性,同时据此还可推断由断层或裂缝引起的原始地震剖面上不易被发现的地质异常现象及油气分布情况[18-22]。根据泌阳凹陷南部陡坡带扇三角洲储层沉积特点,结合地震相反射特征和沟扇对应地质理论,应用三维可视化解释技术确定储层在三维空间的展布范围、地震属性参数判识砂砾岩体的发育规模[23]。

勘探效果

在泌阳凹陷陡坡带中段栗园地区,通过三维地震资料高精度采集,CDP面元20m×20m,利用地震测井和VSP测井资料开展高精度三维资料处理与解释,资料质量得到明显改善,落实了边界断裂带构造特征,为精细落实构造、岩性圈闭奠定了基础。利用叠前深度偏移剖面(图7)和时间切片(图8)解释,认为栗园地区构造背景为由NE-SW向的边界断裂向深凹陷倾没的鼻状构造,构造长约3km,宽约3km,面积约9km2。构造发育史分析发现:该构造是由南部边界断裂在廖庄组末期发生反转而形成的,构造形成时间较晚,且仅在浅层发育。由于边界断裂长期的断陷活动对深层油气藏的破坏,造成深层油气沿断层向上运移,在浅层圈闭中形成一定规模的浅层次生油气藏。储层预测及沉积体系研究表明,该区发育一中小型砂砾岩体,呈NW向下倾展布。砂体中浅层系呈舌状体展布,深层系呈扇型体展布。综合分析认为该区砂体与构造具有良好配置,是油气聚集的有利场所,2008年在该鼻状构造钻探B304、B315等井,相继钻遇大套油层,新增探明石油地质储量800多万吨,取得了良好的勘探效果。

结论

(1)东部第三系断陷盆地边界大断裂控制了盆地的形成与展布,但地震速度横向变化大,造成时间域偏移不能实现准确的空间归位,直接影响边界断层的成像精度,增加了勘探难度。(2)从散射波的波动方程正演着手,分析大断面地震波散射场的物理机制和特点,结合基于叠前偏移处理的需要,进行观测系统论证,能够解决陡坡带边界断层的成像精度问题,明显提高地震资料品质和储层预测精度。(3)陡坡带高精度地震勘探技术包括:采集上运用模型约束正演技术优选采集参数、高覆盖宽方位角排列观测、解决山前激发能量的技术方法;处理上应用基于精细速度建模的叠前深度偏移成像处理方法;解释上通过可视化构造成图,结合地震相分析、层拉平水平切片分析、属性分析等方法,预测新的砂砾岩体分布区和层位。