首页 > 文章中心 > 电路设计论文

电路设计论文

电路设计论文

电路设计论文范文第1篇

①设计依据。列出工程设计任务书及批准的文号、经审核批准后的电力系统设计文件、上级机关或下达设计任务单位对工程设计的有关指示性文件等,以及与建设单位签订的设计合同。②设计规模及范围。设计规模是根据工程设计任务书的要求,说明线路的电压等级,输送电力容量及导线截面,线路起讫点、长度、回路数,中间落点及连接方式;设计范围一般包括线路的本体设计,通信保护设计,工程概算和预算,对运行维护设计考虑的附属设备等。还应该说明线路是否包括降压运行的设计,进出两端变电所临时线的设计及检修站、巡线站的建筑设计等。③建筑单位及期限。限定工程建设单位、施工单位,按设计任务要求及设计单位安排,明确施工时间及建成投产时间。④主要经济和材料耗用指标。主要包括全线总的综合造价和本体造价,每公里的综合造价和本体造价。说明每公里耗用的导线、避雷线,导线和避雷线用的绝缘子、金具、接地材料、杆塔、基础、水泥、木材等的数量。

2电力线路设计

2.1路径设计

①变电所进出线。说明两端及中间变电所(发电厂)进出线的位置和方向,还要表示出现有和拟建线路出线的关系,合理布置进出线方案。②路径方案的选择。按照已掌握的线路路径资料,对全线选出各有特点的两、三个路径方案进行比较,在大的方案中也可以选出不同的小方案参加比较。各路径方案要从路径长度、可利用的铁路、公路、水路等交通条件,沿线路地形、地势、水文、地质情况,特殊气象区,污秽地区,森林资源,矿产资源,跨越河流,各种障碍物,选用的线路拐角及线路曲折系数等情况,来说明各路径方案的优劣。除了从技术上比较各路径方案外,还要从线路安全运行、方便施工、降低造价、经济运行、障碍物的处理及大跨越情况等方面进行全面的分析比较。

2.2气象条件

①气象资料的分析及取值。对沿线气象台(站)的气象资料和送电线路、通信线路的运行经验及自然灾害资料进行分桥说明。如果送电线路较长或气象区复杂,可分段选择气象区。气象资料的取值包括:最大风速的取值、电线覆冰的取值、年平均气温的确定、最高和最低气温的取值、雷电日数的取值。②将已选取的各种气象条件,分别按最高气温、最低气温、最大风速、覆冰、安装、年乎均气温、外过电压、内过电压等情况所对应的气温、风速、覆冰的气象条件组合数值,以全国典型气象区划分的表格形式汇总列表表示。

2.3机电部分

①导线。按照工程设计任务书的要求和电力系统设计,决定导线截面和分裂根数,论证导线型式、规格、分裂方式、分裂间距等,并说明导线的主要机械和电气特性。通过污秽区时,应说明是否采用防腐导线。此外,应提出导线的防振措施,确定是否需要换位,说明两端和中间变电所(发电厂)的相序排列情况,按换位或换相情况绘出换位或换相布置图,按设计规程和有关规定确定导线对地和交叉跨越的距离。②避雷线。按照设计规程规定,经分析比较,确定避雷线的型式、规格并列出其性能情况,确定避雷线的绝缘方式,绝缘子串型式,绝缘子型式及片数,绝缘间隙距离及换位方式和防振措施等。③防雷接地及其他。按送电线路的电压等级,通过地区雷电话动情况和已有线路的运行经验来确定避雷线根数、保护角、档距中央导线和避雷线的最小距离。按照地质、地貌情况,说明采用接地装置的主要型式和要求的接地电阻值。按照送电线路设计情况,计算雷电预期跳闸率和耐雷水平,以满足过电压保护规程的要求。按导线荷载条件和防电晕性能要求,选择线路各种金具型式。如采用分裂导线,应选择间隔棒型式,并确定间隔棒在档距内的安装距离。按无线电干扰标准设计,提出防干扰措施。

2.4杆塔和基础

①杆塔设计。按照全线地形,交通情况,线路在电力系统的重要性,国家材料供应及施工、运行条件等因素,选择杆塔型式。设计时一般应尽量选用典型设计或经过施工运行考验的成熟杆塔型式并说明杆塔的使用条件。对新型杆塔的设计要充分研究设计理由,经科学试验后再选用。同时要说明所采用的各种杆塔型式的特点、适用地区、使用钢材量和混凝土量等技术经济指标,说明杆塔的使用条件(如设计最大风速、覆冰厚度、水平档距、垂直档距、最大使用档距、线间距离、标准杆塔高度和分段高度、杆塔允许转角度数、杆塔重量等)及杆塔设计的主要原则。②基础设计。依据基础设计应遵循的有关规定和原则,按照全线地形、地质、水文等情况,以及基础受力条件,来确定基础的型式,并说明各种基础型式的特点,适用地点、地质、水文条件,每基耗用材料量及有关技术经济指标。对一些特殊基础(如沼泽地基础、强腐蚀地区基础、大孔性土基础、特殊不良地质基础)的设计问题,应进行必要的试验,提出处理措施。

2.5大跨越设计

大跨越设计一般指线路跨越通航大河流、湖泊、海峡等的设计,其档距在800m以上或杆塔高度在80m以上,且发生事故时,严重影响航运或修复特别困难,故导线选型或杆塔设计需予以特殊考虑。对线路跨越较大的山谷,是作为大档距来设计,一般情况下只对导线及特殊的气象条件进行处理。

①跨越地点及气象条件。说明各跨越地点的杆塔位处的地形、地势、水文、地质、主河道变迁、通航、跨越档距的大小等情况,选出几个跨越方案。并选择最大风速、电线覆冰和气温等。②导线和避雷线选择。按照导线和避雷线的电气和机械性能、跨越挡距的大小、杆塔高度、导线和避雷线的间距及荷载条件,选择导线和避雷线。此外针对大跨越比一般线路振动严重的特点,说明采用的防振措施。③绝缘子串及金具。除按照对一般线路考虑的条件外,还应按线路荷载大和杆塔高,需增加绝缘子片数的情况,选择或新设计绝缘子串及金具。④跨越方案的优化。将各跨越设计方案的杆塔型式、高度和基础型式,采用单、双回路跨越和路径长度,以及采用导线和避雷线,绝缘子和金具,施工和运行条件等进行综合比较,对各跨越方案进行全面论证,推荐出大跨越的最佳方案。

3结语

送电线路的初步设计是一门较为复杂的学科,此项工作要求设计人员既懂专业知识,又必须有现场处理各种复杂局面的实践经验。特别是现场踏勘阶段,设计人员需不辞劳苦、反复踏勘,收集各种现场资料,比较各种方案以选出一种既经济又切合实际的方案。经过辛勤工作设计出的线路即使不是最好也是较为合理的。

参考文献:

[1]余国清.送电线路路径选择的影响因素[J].云南电力技术,2002,(4).

[2]陈琳.湖广永-连110kV输电工程杆塔基础的处理及设计优化[J].中国农村水利水电,2005,(6).

[3]王坚.浅谈架空输电线路设计[J].山西建筑,2004,(15).

[4]董芝春.浅谈高压输电线路的防雷保护[J].科技资讯,2007,(30).

[5]钟鸣.浅谈架空送电线路的设计与优化[J].中国高新技术企业,2007,(10).

[6]黄国辉.高压输电线路杆塔各种基础比选[J].中国高新

电路设计论文范文第2篇

1.1电路振荡原理介绍弛豫振荡器电路如图1所示。假设节点Vswitch和Clock_out输出是低电平,那么N4处于关闭状态,由P4和N5组成的反相器给电容C1充电,使节点Vramp电压升高。同时,N1的源极电位也成比例升高,也就是节点VR1电位升高,并产生了一个流过电阻R1的电流IR1,该电流同样流过N1。随着电流IR1的升高,由于恒流源P1的电流是一定值,造成流过N3的电流减少。N3将栅极和漏极短接,将流过的电流转换成电压。将N3设置工作在亚阈值区,则N3漏极电流与栅极及漏极电压的关系可以由亚阈值区电流公式决定[8]。随着电流的减少,N3的栅极和漏极电位降低,导致N2管关闭,电流源P2对节点Vswitch充电,并使其升至高电平。此时,电路达到另一个输出状态,缓冲器输出Clock_out变成高电平,N4管导通,将节点VR1瞬间下拉,UR1为0。由于此时N5,N6不能将节点Vramp的电荷立即全部泄放,所以N1的栅极电位还很高,N1的VGS达到最大值,由P1产生的恒定电流全部流过N1,N4支路。N5,N6以恒定速度对电容C1放电,Vramp线性下降,电路处于稳定状态。随着N1的VGS的下降,流过其电流减小,流过N3的电流增加,使N3的栅极和漏极电位升高。当Vcompare升高到打开N2时,Vswitch降低到0V电位,电路达到另一个输出状态,Clock_out跳变成低电位,完成循环。

1.2影响振荡器输出频率的因素标签工作的环境温度具有较大的变化范围,可能从负几十摄氏度到近一百摄氏度。根据第2.1节的推导,振荡器输出周期由电容和电阻决定。由于电容和电阻易受温度影响,尤其是CMOS工艺的电阻温度系数一般较大,因此,在设计电路时需考虑电容和电阻随温度的变化。参考文献[9,10]中所提及的温度补偿方法可以在理论上完全消除温度变化对输出的影响,达到由电阻和电容随温度偏移造成的频率温漂为0。但是,通常情况下,MOS管的工作特性会随温度变化,所以,在电路设计时,电阻的选择需综合考虑。标签芯片在向阅读器发送数据进行反向散射调制时,会在一段时间内接收不到电磁能量,时长从1μs到37.5μs。不同的无能量时段长度对芯片造成的影响不同,小到几个微秒的断电不会使电源管理模块提供给振荡器的电压源VDD发生波动。但是,最大37.5μs的断电时长则会造成振荡器工作电压VDD的下降,当标签再次获得能量时,振荡器工作电压恢复正常,造成电源电压抖动。同时,振荡器所用偏置电流也会发生波动。根据ISO/IEC18000-6C协议,通信过程中标签解码以及反向散射编码对时钟精度要求较严格,而RFID系统的基带数字部分可通过采用相对比值解码和区间分段分频控制方法对反向编码的通信速率进行控制,解决对基带时钟精度要求严格的问题。如前文所述,控制好温度等因素对电容值和电阻值的影响,即可解决振荡器输出频率不准的问题。换言之,输出频率可以偏离理想值,且在变化范围较小情况下,数字基带仍然可以正常工作。但是在设计模拟前端时,应当尽量减小振荡器的输出偏差。

2仿真结果及说明

采用SMIC0.18μmCMOS工艺模型,使用Cadence工具对电路进行设计,并采用Spectre仿真器模拟电路性能。仿真中,在理想电压源为1V,理想偏置电流为100nA,室温为25℃时,电源上电时间为5μs,瞬态仿真时长为300μs。振荡器频率为1.925MHz,功耗为0.9μW。图2所示为理想条件下的仿真输出波形和对其进行freq函数处理后的频率曲线,输出是稳定的周期方波,频率为1.925MHz。

2.1输出频率随温度的变化标签芯片需在宽范围环境温度下工作。图3所示为在理想电源电压和电流基准下电路输出频率随温度的变化曲线。

2.2频率随电源电压的变化由于工艺角的影响,电源管理模块输出给振荡器工作的电压源VDD可能会产生一些偏差,不是理想的1V。当标签芯片距离阅读器较远时,芯片获得能量较少,也可能出现VDD偏低的情况。图4给出了在室温下,偏置电流无偏移时,振荡器输出频率随电源电压变化的曲线。可以看出,VDD低于0.95V时,输出频率随VDD降低快速升高,VDD=0.75V时,输出频率为1.978MHz;VDD=0.95V时,输出频率出现最小值,为1.923MHz;VDD超过0.95V时,输出频率呈上升趋势,当VDD到达1.3V时,输出频率达到1.941MHz。该条件下,振荡器在0.75~1.3V电源电压下偏离理想频率小于3%。

2.3频率随输入偏置电流的变化与电压产生偏移的原因一样,偏置电流也会产生一定的偏移而影响振荡器的输出频率。图5给出了输出频率随偏置电流变化的曲线。仿真结果显示,偏置电流减少到90nA时,输出频偏小于目标3%以上;偏置电流增大到110nA时,输出频偏接近3%。

2.4电源电压与偏置电流纹波对输出频率的影响反向调制造成标签芯片接收不到能量的最大时间长度为37.5μs,这会使电源管理模块提供给振荡器的电压源和电流源产生相同频率的纹波,而输出频率的波动对数字基带的影响要大于稳定的频率偏差所带来的影响。当电压源降低100mV,偏置电流降低10nA时,得到了如图6所示的振荡器输出频率波动波形。图6中,输出频率的波谷是在电源电压和偏置电流都降低10%时产生的,最小值是1.864MHz;波形的最大值是1.926MHz,是电源电压和输入电流正常时的输出频率。此时,输出频率的相对误差为1.64%。

2.5仿真结果说明采用温度补偿方法只是将电阻和电容的温度特性考虑在内,但并没有综合考虑受温度影响的MOS管的工作特性。图3中显示曲线的频率随温度变化很小,满足标签芯片在不同温度下工作的要求。振荡器采用弛豫结构的目的之一是尽量避免电源电压值对振荡频率的影响,图4中的结果显示,该振荡器允许VDD从0.75V到1.3V变化。VDD小于0.75V时,频率明显增加,主要是P2产生的电流对节点Vswitch充电时Vswitch的电压变化幅度减小,导致充电过程缩短、电路循环周期变短、频率增加。为了满足低功耗要求,电路中各条支路的电流都设置得较小,因此,在偏置电流变化时,由P1,P2,P3产生的电流对各个节点的充电过程会明显变化。电流变大时,充电过程加快;电流变小时,充电过程变长。在低功耗时,偏置电流的影响大于工作电压。工作电压和偏置电流的波动和它们发生稳定偏移对输出频率的影响是不同的。由于此系统中数字基带可以处理时钟频率小偏移所产生的问题,但是不能处理时钟波动引发的误差,所以,振荡器对输出频率的波动要求很严格。在本文3.4小节所提到的条件下,该弛豫振荡器输出频率的相对波动很小,小于系统要求的2.5%。

电路设计论文范文第3篇

关键词:三端离线PWM开关;正激变换器;高频变压器设计

引言

TOPSwitch是美国功率集成公司(PI)于20世纪90年代中期推出的新型高频开关电源芯片,是三端离线PWM开关(ThreeterminalofflinePWMSwitch)的缩写。它将开关电源中最重要的两个部分——PWM控制集成电路和功率开关管MOSFET集成在一块芯片上,构成PWM/MOSFET合二为一集成芯片,使外部电路简化,其工作频率高达100kHz,交流输入电压85~265V,AC/DC转换效率高达90%。对200W以下的开关电源,采用TOPSwitch作为主功率器件与其他电路相比,体积小、重量轻,自我保护功能齐全,从而降低了开关电源设计的复杂性,是一种简捷的SMPS(SwitchModePowerSupply)设计方案。

TOPSwitch系列可在降压型,升压型,正激式和反激式等变换电路中使用。但是,在现有的参考文献以及PI公司提供的设计手册中,所介绍的都是用TOPSwitch制作单端反激式开关电源的设计方法。反激式变换器一般有两种工作方式:完全能量转换(电感电流不连续)和不完全能量转换(电感电流连续)。这两种工作方式的小信号传递函数是截然不同的,动态分析时要做不同的处理。实际上当变换器输入电压在一个较大范围发生变化,和(或者)负载电流在较大范围内变化时,必然跨越两种工作方式,因此,常要求反激式变换器在完全能量和不完全能量转换方式下都能稳定工作。但是,要求同一个电路能实现从一种工作方式转变为另一种工作方式,在设计上是较为困难的。而且,作为单片开关电源的核心部件高频变压器的设计,由于反激式变换器中的变压器兼有储能、限流、隔离的作用,在设计上要比正激式变换器中的高频变压器困难,对于初学者来说很难掌握。笔者采用TOP225Y设计了一种单端正激式开关电源电路,实验证明该电路是切实可行的。下面介绍其工作原理与设计方法,以供探讨。

1TOPSwitch系列应用于单端正激变换器中存在的问题

TOPSwitch的交流输入电压范围为85~265V,最大电压应力≤700V,这个耐压值对于输入最大直流电压Vmax=265×1.4=371V是足够的,但应用在一般的单端正激变换器中却存在问题。

图1是典型的单端正激变换器电路,设计时通常取NS=NP,Dmax<0.5(一般取0.4),按正激变换器工作过程,TOPSwitch关断期间,变压器初级的励磁能量通过NS,D1,E续流(泄放)。此时,TOPSwitch承受的最大电压为

VDSmax≥2E=2Vmax=742V(1)

大于TOPSwitch所能承受的最大电压应力700V,所以,TOPSwitch不能在一般通用的正激变换器中使用。

2TOPSwitch在单端正激变换器中的应用

由式(1)可知,TOPSwitch不能在典型单端正激变换器中应用的关键问题,是其在关断期间所承受的电压应力超过了允许值,如果能降低关断期间的电压应力,使它小于700V,则TOPSwitch仍可在单端正激变换器中应用。

2.1电路结构及工作原理

本文提出的TOPSwitch的单端正激变换器拓扑结构如图1所示。它与典型的单端正激变换器电路结构完全相同,只是变压器的去磁绕组的匝数为初级绕组匝数的2倍,即NS=2NP。

TOPSwitch关断时的等效电路如图2所示。

若NS与NP是紧耦合,则,即

VNP=1/2VNS=1/2E(2)

VDSmax=VNP+E=E=1.5×371

=556.5V<700V(3)

2.2最大工作占空比分析

按NP绕组每个开关周期正负V·s平衡原理,有

VNPon(Dmax/T)=VNPoff[(1-Dmax)/T](4)

式中:VNPon为TOPSwitch开通时变压器初级电压,VNPon=E;

VNPoff为TOPSwitch关断时变压器初级电压,VNPoff=(1/2)E。

解式(4)得

Dmax=1/3(5)

为保险,取Dmax≤30%

2.3去磁绕组电流分析

改变了去磁绕组与初级绕组的匝比后,变压器初级绕组仍应该满足A·s平衡,初级绕组最大励磁电流为

im(t)|t=DmaxT=Ism=DmaxT=(E/Lm)DmaxT(6)

式中:Lm为初级绕组励磁电感。

当im(t)=Ism时,B=Bmax,H=Hmax,则去磁电流最大值为

Ism==(Hmaxlc/Ns)=1/2Ipm(7)

式中:lc为磁路长度;

Ipm为初级电流的峰值。

根据图2(b)去磁电流的波形可以得到去磁电流的平均值和去磁电流的有效值Is分别为

下面讨论当NP=NS,Dmax=0.5与NP=NS,Dmax=0.3时的去磁电流的平均值和有效值。设上述两种情况下的Hmax或Bmax相等,即两种情况下励磁绕组的安匝数相等,则有

Im1NP1=Im2NP2(10)

式中:NP1为Dmax=0.5时的励磁绕组匝数;

NP2为Dmax=0.3时的励磁绕组匝数;

设Lm1及Lm2分别为Dmax=0.5和Dmax=0.3时的初级绕组励磁电感,则有

Im1=E/Lm1×0.5T为Dmax=0.5时的初级励磁电流;

Im2=E/Lm2×0.3T为Dmax=0.3时的初级励磁电流。

由式(10)及Lm1,Lm2分别与NP12,NP22成正比,可得两种情况下的励磁绕组匝数之比为

(NP1)/(NP2)=0.5/0.3

及(Im1)/(Im2)=(Np2)/(Np1)=0.3/0.5(12)

当NS1=NP1时和NS2=2NP2时去磁电流最大值分别为

Ism1=Im1=Im(13)

Ism2=Im2=(0.5/0.6)Im(14)

将式(10)~(14)有关参数代入式(8)~(9)可得到,当Dmax=0.5时和Dmax=0.3时的去磁电流平均值及与有效值Is1及Is2分别为

Is1=1/4ImImIs1=0.408Im(Dmax=0.5)

Is2≈0.29ImIs2=0.483Im(Dmax=0.3)

从计算结果可知,采用NS=2NP设计的去磁绕组的电流平均值或有效值要大于NS=NP设计的去磁绕组的电流值。因此,在选择去磁绕组的线径时要注意。

3高频变压器设计

由于电路元件少,该电源设计的关键是高频变压器,下面给出其设计方法。

3.1磁芯的选择

按照输出Vo=15V,Io=1.5A的要求,以及高频变压器考虑6%的余量,则输出功率Po=1.06×15×1.5=23.85W。根据输出功率选择磁芯,实际选取能输出25W功率的磁芯,根据有关设计手册选用EI25,查表可得该磁芯的有效截面积Ae=0.42cm2。

3.2工作磁感应强度ΔB的选择

ΔB=0.5BS,BS为磁芯的饱和磁感应强度,由于铁氧体的BS为0.2~0.3T,取ΔB=0.15T。

3.3初级绕组匝数NP的选取

选开关频率f=100kHz(T=10μs),按交流输入电压为最低值85V,Emin≈1.4×85V,Dmax=0.3计算则

取NP=53匝。

3.4去磁绕组匝数NS的选取

取NS=2NP=106匝。

3.5次级匝数NT的选取

输出电压要考虑整流二极管及绕组的压降,设输出电流为2A时的线路压降为7%,则空载输出电压VO0≈16V。

取NT=24匝。

3.6偏置绕组匝数NB的选取

取偏置电压为9V,根据变压器次级伏匝数相等的原则,由16/24=9/NB,得NB=13.5,取NB=14匝。

3.7TOPSwitch电流额定值ICN的选取

平均输入功率Pi==28.12W(假定η=0.8),在Dmax时的输入功率应为平均输入功率,因此Pi=DmaxEminIC=0.3×85×1.4×IC=28.12,则IC=0.85A,为了可靠并考虑调整电感量时电流不可避免的失控,实际选择的TOPSwitch电流额定值至少是两倍于此值,即ICN>1.7A。所以,我们选择ILIMIT=2A的TOP225Y。

4实验指标及主要波形

输入AC220V,频率50Hz,输出DCVo=15(1±1%)V,IO=1.5A,工作频率100kHz,图3及图4是实验中的主要波形。

图3中的1是开关管漏源电压VDS波形,2是输入直流电压E波形,由图可知VDS=1.5E;图4中的1是开关管漏源电压VDS波形,2是去磁绕组电流is波形,实验结果与理论分析是完全吻合的。

电路设计论文范文第4篇

根据文献资料可知,在经典CHUA电路及JERK系统基础上,利用非线性函数扩展系统的指标2的鞍焦平衡点便可构成多方向分布的多涡卷混沌系统.现以双涡卷JERK系统为基础,通过设计能扩展系统指标2的鞍焦平衡点的非线性函数(如阶跃函数序列),来对其构造的多涡卷混沌电路进行相应的混沌特性分析.

2多涡卷混沌电路设计及仿真结果

由上述对JERK系统的分析可知,当系统参数α的取值合适时,利用非线性函数可以扩展JERK系统的指标2的鞍焦平衡点,从而使系统产生多涡卷混沌吸引子.而常用的非线性函数产生电路从研究报道来看,大多基于运算放大器这种电压模式电子元器件,使其在高频高速环境中的应用领域受到了限制.电流传输器作为一种既具有良好高频特性,又有良好的通用性和灵活性的电流模式电子元器件,在电子电路设计领域受到了广大国内外学者的关注.现以电流传输器为基本电路单元构造阶跃函数序列,并用模块化设计的方法实现多涡卷混沌信号产生电路的设计.根据混沌系统的状态方程及模块化设计方法可知,混沌信号产生电路主要由以下几部分电路单元构成:比例运算电路单元、积分器、反向运算单元及非线性函数电路单元.

3电路实验仿真结果

根据阶跃函数序列表达式的不同,选取合适的系统参数及元器件值,对电路及单方向或二方向多涡卷混沌电路进行相应的PSPICE仿真.

4结束语

利用第二代电流控制电流传输器构造了阶跃函数序列电路,并利用此非线性函数依据模块化设计方法设计了单方向、二方向分布及三方向分布的多涡卷混沌吸引子电路.分析该混沌电路的动力学特性,包括其随系统参数变化时的分岔图及最大Lya-punov指数,同时也通过PSPICE软件对构造的硬件电路进行了仿真验证,证实了这一方案的可行性.基于CCCII构造的混沌电路与基于运算放大器构造的混沌电路相比,它具有如下优点:

①因电流传输器的带宽与增益无直接的联系,其具有很好的高频特性,因而能够得到更高频率的混沌吸引子;

②电路结构简单且使用的元器件少,同时可以通过调节电路参数方便控制混沌过程;

电路设计论文范文第5篇

关键词:导线;布线;灯具;开关;插座

一、导线的选择

导线的选择应根据住户用电负荷的大小而定,应满足供电能力和供电质量的要求,并满足防火的要求。用电设备的负荷电流不能超过导线额定安全载流量。

一般按每户住宅的用电量在4~10KW的水平,每户进户线宜采用截面积为10mm2的铜芯绝缘线,分支回路导线截面不应小于2.5mm2铜芯绝缘导线。对特殊用户则应特别配线。为使所有的用电装置都能够可靠接地,应将接地线引入每户居民住宅,接地线采用不小于2.5mm2的铜芯绝缘线。在房屋装修中,所有线路都应采用铜芯绝缘线穿管暗敷设方式。

特别需要注意的一点是,许多住户在装修时将室内的线路、开关等都更换一新并加大容量,往往忽略了进户线,这将影响居室的供电能力并带来不安全的因素。

二、室内布线

室内布线不仅要安全可靠的输送电能,而且要布置整齐、安装合理、固定牢靠,符合相关技术规范的要求。内线工程的开展应以不能降低建筑物的强度和影响建筑物的美观为前提。室内布线的施工设计要对给排水管道、热力管道、风管道以及通讯线路布线等位置关系给予充分考虑。

室内配线技术要求:①室内布线根据绝缘皮的颜色分清火线、中性线和地线。②选用的绝缘导线其额定电压应大于线路工作电压,导线的绝缘应符合线路的安装方式和敷设的环境条件。③配线时应尽量避免导线有接头。因为往往接头由于工艺不良等原因而使接触电阻太大,发热量较大而引起事故。必须有接头时,可采用压接和焊接,务必使其接触良好,不应松动,接头处不应受到机械力的作用。④当导线互相交叉时,为避免碰线,在每根导线上应套上塑料管或绝缘管,并需将套管固定。⑤若导线所穿的管为钢管时,钢管应接地。当几个回路的导线穿同一根管时,管内的绝缘导线数不得多于8根。穿管敷设的绝缘导线的绝缘电压等级不应小于500V,穿管导线的总截面积(包括外护套)应不大于管内净面积的40%。

三、灯具的设计安装

灯具的高度:室内灯具悬挂要适当,如果悬挂过高,不利于维修,而且降低了照度;如果悬挂过低,会产生眩光,降低人的视力,而且容易与人碰撞,不安全。灯具悬挂的高度应考虑:便于维护管理;保证电气安全;限制直接眩光;与建筑尺寸配合;提高经济性。

灯具布置前,应先了解建筑的高度及是否做吊顶等问题,灯具的基本功能是提供照明。在设计中应注意荧光灯比白炽灯光照度高,直接照明比间接照明灯具效率高,吸顶安装比嵌入安装灯具效率高。灯具遮光材料的透射率及老化问题也应在设计考虑范围之内,选择光效高、寿命长、功率因数高的光源,高效率的灯具和合理的安装使用方法,可以保证照度并节约用电。

灯具现一般推荐采用节能电灯,如稀土荧光灯、三基色高效细荧光灯、紧凑型荧光灯(双D型H型)、小容量卤、钨灯等。灯具的选择视具体房间功能而定,如起居室、卧室可用升降灯,起居室、客厅设置一般照明、灯饰台灯、壁灯、落地灯等。厨房的灯具应选用玻璃或陶瓷制品灯罩配以防潮灯口,并且宜与餐厅用的照明光显色一致。浴室灯应选用防潮灯口的防爆灯。卫生间、浴室的灯具应采用防潮防水型面板开关。

安装灯具时,安装高度低于2.4m时,金属灯具应作接零或接地保护,开关距门框0.15~0.2m,灯头距离易燃物不得小于0.3m;在潮湿有腐蚀性气体的场所,应采用防潮、防爆、防雨的灯头和开关;灯具安装时应牢固可靠,质量超过1kg时,要加装金属吊链或预埋吊钩;灯架和管内的导线不应有接头;灯具配件应齐全,灯具的各种金属配件应进行防腐处理。

四、开关的设计安装

安装开关时,应注意开关的额定电压与供电电压是否相符;开关的额定电流应大于所控制灯具的额定电流;开关结构应适应安装场所的环境;明装时可选用拉线开关,拉线开关距地2.8m,拉线可采用绝缘绳,长度不应小于1.5m;成排安装开关时,高度应一致;开关位置与灯位相对应,同一室内开关的开、闭方向应一致;开关应串联在通往灯头的相线上;安装开关时,无论明装还是暗装,均应安装成往下扳动接通电源,往上扳动切断电源。

五、插座的设计安装

安装插座时,应注意插座的额定电压必须与受电电压相符,额定电流大于所控电器是额定电流;插座的型号应根据所控电器的防触电类别来选用;双孔插座应水平并列安装,不可以垂直安装,三孔或四孔插座的接地孔应置于顶部,不许倒装或横装;一般居室、学校,明装不应低于1.8m,车间和实验室距地距离不应低于0.3m。

插座宜固定安装,切忌吊挂使用。插座吊挂会使电线受摆动,造成压线螺丝松动,并使插头与插座接触不良。对于单相双线或三线的插座,接线时必须按照左中性线、右相(火)线,上接地线的方法进行,与所有家用电器的三线插头配合。

布置插座要充分考虑家庭现有的和未来5~10年可能要添置的家用电器,尽可能多安排一些插座,避免因后期发现插座不够用而重新改造电气线路,将电气事故隐患的概率降到最低。同时住宅内的插座应全部设置为安全型插座,在厨房、卫生间灯比较潮湿的地方应加上防潮盖。

客厅、卧室、厨房、餐厅,卫生间插座的安装高度及容量选择:

客厅:客厅插座底边距地1.0m较为合适。既使用方便,也能与墙裙装修协调,即使有的住户不搞墙裙装修,又能保持统一。另外,小于20m2的客厅,空调机一般采用壁挂式,那么这个空调机插座底边距地为1.8m。如客厅大于20m2,采用柜机插座高度为1.0m,客厅插座容量选择是:壁挂式空调机选用10A三孔插座,柜式空调机选用16A三孔插座,其余选用10A的多用插座。

卧室:住户在卧室装修中,用装饰板搞墙裙的比较少,故建议空调电源插座底边距地为1.8m,其余强、弱电插座底边距地0.3m。空调机电源选用10A三孔插座,其余选用10A二、三孔多用插座。

厨房:厨房是人们制作饭菜的地方,家用电器比较多。主要有冰箱、电饭煲、排气扇、消毒柜、电烤箱、微波炉、洗碗机、壁挂式电话机等。根据给排水设计图及建筑厨房布置大样图,确定污水池、炉台及切菜台的位置。在炉台侧面布置一组多用插座,供排气扇用,在切菜台上方及其它位置均匀布置6组三孔插座,容量均为10A。厨房门边布置电话插座一个,以上插座底边距地均为1.4m。

餐厅:餐厅是人们吃饭的地方,家用电器很少,冬天有电火锅,夏天有落地风扇等,沿墙均匀布置2组(二、三孔)多用插座即可,安装高度底边距地0.3m,容量为10A。装一个电话插座,安装高度底边距地1.4m。

卫生间:卫生间是人们洗澡、方便的地方。家用电器有排气扇、电热水器、电话机等。一个10A多用插座供排气扇用,1个16A三孔插座供电热水器用,底边距地均为1.8m,尽量远离淋浴器,必须采用防溅型插座。电话机插座底边距地1.4m。装电话机的原因是人们在洗澡或方便时,仍然能与外界保持联系,使用方便。

参考文献