首页 > 文章中心 > 继电保护的工作原理

继电保护的工作原理

继电保护的工作原理

继电保护的工作原理范文第1篇

【关键词】县级供电企业;继电保护;管理体制

一 引言

继电保护包括继电保护技术和继电保护装置,继电保护技术是一个完整的体系,主要由电力系统故障分析、继电保护原理及实现、继电保护配置设计、继电保护运行及维护等技术构成。继电保护装置就是能反应电力系统中电气元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。

二 对继电保护装置的基本要求

1.选择性要求

当供电系统中发生故障时,继电保护装置应能有选择性地将故障部分切除。也就是它应该首先断开距离故障点最近的断路器,以保证系统中其他非故障部分能继续正常运行。系统中的继电保护装置能满足上述要求的,就称为有选择性;否则就称为没有选择性。

2.灵敏性要求

灵敏性是指继电保护装置对故障和异常工作状况的反映能力。在保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。保护装置灵敏与否,一般用灵敏系数来衡量。

3.可靠性要求

保护装置应能正确动作并随时处于准备状态。如不能满足可靠性的要求,保护装置反而成为了扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,则要求保护装置的设计原理、整定计算、安装调试要正确无误。同时,组成保护装置的各元件的质量要可靠、运行维护要得当、系统应尽可能简化有效,以提高保护的可靠性。

三 继电保护管理体制设计原则

最有效的管理才是好的管理。针对目前县级供电企业人才短缺,继电保护技术力量分散等问题,县级供电企业应突破目前已经规定的岗位设置,采取集中力量,团队作业的方法,组建高效的管理队伍。因此对继电保护管理体制工作内容分配时要遵循以下原则。

1.工作职责细化原则

电力企业应首先根据部门职责进行以下划分:(1)继电保护管理人员招聘和选拔职能由人事管理部门负责。(2)继电保护施工管理、定值管理和监督管理必须打破现有规定的分离制度,建立一个新的核心部门全面专业地负责上述三项继电保护工作,该组织可以称为继电保护班或继电保护科。

2.工作内容细化分工原则

继电保护工作面广,一般涉及10个以上变电站、3种以上厂家设备类型,工作的好坏直接影响电网的安全稳定运行,因此工作内容必须细化到人。

3.管理等级明确原则

继电保护管理总负责分管给生产经理或总工程师;继电保护班归属变电工区或检修部门,下面分设施工组、变电运行培训管理组和定值计算管理组,各组长直接受继电保护班长管理,具体工作中可及时采取矩阵制交叉安排,另设立继电保护监督工程师为副班长一职,全面负责继电保护监督工作,并主管继电保护定值管理组和继电保护培训组。

四 继电保护工作分析与岗位设置

县级供电企业继电保护管理体制包括以下内容:继电保护管理人员招聘和选拔、继电保护定值管理、继电保护监督管理、继电保护施工管理、继电保护工作培训、继电保护工作考核管理。

结合实践和以上介绍来看,县级供电企业继电保护管理工作主要由三大部分组成。一是继电保护工作中的监督管理,二是电网定值计算管理,三是继电保护定值调试管理。三者缺一不可,必须相辅相成,才能保证继电保护管理工作不出问题。新的体制把这三部分工作都安排在继电保护班,由继电保护班全面专业负责,解决了县级供电企业继电保护力量分散的问题,形成了继电保护工作的核心团队,更容易达到“帕累托最优”,使工作关系和谐。

供电企业、电力生产企业的新体制下设专职技术监督工程师和相应的技术监督小组,在总工程师领导下从事技术监督工作。继电保护技术监督工程师应具有相应的专业知识和实践经验,继电保护技术监督队伍应保持相对稳定。网调、中调、网内省调应设立调度、运行方式和继电保护科。地区调度所和一级制的调度所应根据具体情况设立调度组、运行方式组或运行方式专责人员。根据实际情况设继电保护组或继电保护专责人员。

在电力生产上,现有有关规程和文件对继电保护管理分工是明确具体的,但县级供电企业目前继电保护管理混乱局面的形成,主要是因为没有相应的继电保护人才和上用人制度混乱以及无法按工作流程建立完善的继电保护管理体制造成的。因此各县级供电企业首先必须采用优化原理方法,从人才入手,突破以上文件、规程规定,重新按新组合体制进行岗位设置,解决继电保护人才短缺这一困绕企业继电保护管理的问题。从根本上讲,为解决继电保护人才短缺情况,必须确立达到继电保护管理目的的最优方法,确定需要专业人员的数量,才能达到效率最大或人力成本最小。

继电保护的工作原理范文第2篇

[关键词]电力系统;继电保护;质量管理

中图分类号:TM77 文献标识码:A 文章编号:1009-914X(2016)30-0246-01

继电保护作为电力系统中一个不可或缺的重要组成部分,在保障电力系统安全稳定运行、确保供电正常可靠中发挥着举足轻重的作用。近年来,随着电网建设规模的逐年扩大和系统结构的日益复杂化,在满足广大用户电力需求的同时,也给继电保护系统带来了许多新的问题和挑战。其中不稳定和各类故障是继电保护常见事故,这给电力系统继电保护的安全运行造成了严重影响。分析其不稳定原因,对其事故采取恰当有效的方法予以解决是电力企业当前工作中的重点。

1.电力系统继电保护的重要意义

电力系统继电保护既是电力系统运行的基础,同时也是维护电力系统安全的重要系统。电力系统继电保护是通过功能性设备,将电力系统出现不正常工作的设备在尽可能短的时间内切除,达到控制电力异常的功用。电力系统有了继电保护装置后发生问题和故障的频率就能够得到控制,相应的经济效益就会有所提高,特别是电力系统具有继电保护设备后,对降低电力事故和电力损失的影响有较为明显的作用。在现代化电力系统的建设中,继电保护是重要的子系统,只有在电力系统继电保护高效、灵敏工作的基础上,智能化的电力系统才能够有功能和安全的保证。

2.电力系统继电保护不稳定所产生的原因

2.1 硬件问题

在电力系统的继电保护装置中,数据模块、绝缘装置、通信设备、断路器等都属于硬件设备。如果继电保护系统中的数据模块发生问题,将会导致数据信息的输入输出出现错误,在错误数据信息的指示下,继电保护装置或做出错误动作或拒绝动作,从而导致不稳定现象发生。如果电力系统继电保护中的二次回路绝缘器件发生老化,继电保护装置的接地和绝缘性能就会受到严重影响,导致继电保护装置的保护功能无法正常发挥,即失去了保护的作用。断路器作为电力系统中的一个核心元器件,若其发生老化或腐蚀,将会直接影响到继电保护装置运行的安全性与可靠性。若电力系统通信设备存在结构异常等问题,也将会影响继电保护系统无法正常运行。

2.2 软件问题

随着计算机技术、网络技术等在电力产业中应用得越来越充分,使得现代电力系统继电保护装置中基本上都嵌入有相应的程序设计。这些程序在继电保护系统的日常运行中发挥着重要的指导性作用,对继电保护装置具有操控权。若继电保护软件在开发阶段或投入运行过程中出现编码错误或程序设计错误,就会导致继电保护系统运行不稳定,保护功能得不到正常发挥。目前,继电保护系统软件需求分析不准确、不全面,编码错误,软件机构设计不合理,定值输入错误等一系列软件问题,是能够影响电力系统继电保护装置运行不稳定的几个因素。

2.3 人为因素影响

现场工作人员如果没有根据正确的操作流程和程序进行接线,或者是在接线中的方法不正确,造成误接,这种情况在过去的电力工作中常有发生。据相关资料统计,人为操作失误上的因素所占的故障比例达到整个故障发生的总比例的38%.

3.电力系统继电保护事故的处理方法

3.1 正确利用电力系统继电保护的故障信息提示现代电力系统有继电保护的故障信息提示系统,当电力系统继电保护出现故障时应该通过检查故障记录和故障代码来确定电力系统继电保护故障的位置、时间、类型,根据有用信息作出正确的关于事故的判断,这是提高处理电力系统继电保护事故的重要方法和途径。

3.2 正确运用电力系统继电保护的故障检查方法一是逆序检查法,从事故发生的结果出发,一级一级往前查找,直到找到根源为止。二是顺序检查法,利用检验调试的手段按外部检查、绝缘检测、定值检查、电源性能测试、保护性能检查等顺序进行。

3.3 人为因素故障处理方法

在继电保护装置的故障原因中,人为操作是较为主要和常见的一个导致故障发生的原因。因此,针对人为因素采取有效的故障处理方法非常重要。一般情况下,利用计算机系统可以排除大部分简单的继电保护装置故障。虽然计算机系统在这一环节中发挥着主要作用,但其工作离不开具备丰富工作经验和娴熟专业技能人员的参与。从实际继电保护系统故障发生情况来看,很多时候继电保护装置发生了事故,但断路跳闸装置却没有给出任何提示或信号提示无法确定故障原因,使得事故种类难以得到及时准确的判断。面对此种情形,工作人员应运用正确的检查方法对继电保护系统及其运行状态进行全面的检查与评估。如果确定为人为操作失误所致,要及时采取相应的处理措施。将实时在线监测系统与工作人员相互配合、协同工作,由监测系统向工作人员提供全面的故障记录信息,并与对应的信号提示等相配合,从而做出正确的故障判断和事故处理方法。

4 提高电力系统继电保护可靠性的措施

4.1 严把继电保护装置的质量关

提高继电保护装置质量管理,在制造和选购过程中要严格进行质量管理,把好质量关,提高装置中各元器件的质量。尽量选用故障率低、寿命长的元器件, 不让不合格的劣质元件混进其中。

4.2 提高继电保护的抗干扰能力

设置隔离变压器、加设接地电容、输入输出回路采取屏蔽电缆、装置中增设各种闭锁电路等。也可采用晶体管保护巡回监测装置进行监视。在设计中应考虑安装在与高压室隔离的房内,免遭高压大电流、断路故障以及切合闸操作电弧的影响。

5.结语

随着科学技术的不断发展,电子技术、通讯技术、计算机技术大量地运用到电力系统的运行和维护当中, 随着继电保护又逐步向智能化的方向延伸和发展, 这为继电保护不稳定情况的解决和事故故障的减少发生提供了有效的技术化支持。越来越多的新理论、新技术被应用到了继电的保护和电力系统运行的领域当中,因此,从事电力行业的工作者更需要扎实掌握更多的理论知识,加强实践的操作训练,不断进取,不断探索, 为维护电力系统继电保护的稳定性贡献自身的知识和经验,从而保障电力系统和电力工作的安全稳定进行。

参考文献

[1] 张宇驰.继电保护不稳定所产生的原因及事故处理方法分析及措施[J].通讯世界,2014,(01):144-145.

继电保护的工作原理范文第3篇

摘 要:文章系统分析了“工频变化量”技术的理论基础和在各种保护装置中的实际应用,并 总结 了这些保护装置的独特优势。

关键词:工频变化量;原理;微机保护

abstract: the paper systematically analyzed theory basis of dpfc technology and its application in all kinds of protection devices, and then summed up the unique advantages of these devices.

key words: deviation of power frequency component; principle; microcomputer protection

在我国电力系统继电保护领域,南瑞继保公司无疑是占尽技术优势和市场优势的领头羊。之所以能够取得这样辉煌的成就,是与南瑞继保公司董事长、 中国 工程院院士沈国荣先生和他创立的“工频变化量”理论紧密联系在一起的。基于这种原理的保护装置在安全性、快速性、灵敏性和选择性等各方面都有很大的提高,但是在传统的教科书中并没有具体的理论讲述,厂家的说明书也很不详细。下面将从原理和实际应用方面进行具体地分析。

1 工频变化量deviation of power frequency component (dpfc)原理分析

工频变化量的理论基础为叠加原理,即电力系统发生故障时,经过渡电阻短路,可认为是过渡电阻下面的一点金属性短路,即该点对系统中性点电压为零,可认为该点与中性点之间串联2个大小相等、相位相反的电压源,依然保持该点与中性点间电压为零,见图1。

“叠加”有2个含义:①短路后任一点的电压,如保护安装处m母线的电压(即m点到中性点电压,是我们关心的,箭头向上表示电位为升,m母线为正,中性点为负,),等于2个图中相应点的电压之和(二种状态)。②短路后某个支路的电流,如流过保护的电流,等于2图中相应支路的电流之和。从重叠原理本身来说,对uf没有要求,可以任意取值,但在保护装置里uf取短路点短路以前的电压,es、er为电源电势,在短路前后不变,因此,图1称为正常负荷状态,图2称短路附加状态,目的就是凑出这二种状态。

与常规的稳态量保护装置不同,基于工频变化量原理的保护装置只是“考虑”短路附加状态的各种电气量,而不考虑正常负荷状态的各种电气量。在附加状态中,只有短路点有一个电压源,电气量全部为变化量用符号表示。微机保护中正在采样的u、i减去“ 历史 ”上采样出来的u、i,即为加在继电器上的u、i。zs为保护背后电源的等值阻抗,zr为保护正方向的所有阻抗,s为保护背后中性点,由下图4、图5可得出2个基本关系式:

 

2 变压器的工频变化量比率差动保护

变压器有70%左右的故障是匝间短路,为了提高小匝间短路时差动保护的灵敏度,常规的比率制动特性差动保护中的起动电流往往整定得较小,例如整定成0.3~0.5倍的额定电流,而且初始部份没有制动特性,见下图6。

 

但运行实践证明这样的差动保护往往在区外短路或短路切除的恢复过程中由于各侧电流互感器暂态或稳态特性不一致或者2次回路时间常数的差异或者电流互感器饱和造成保护误动。南瑞继保公司rcs978系列保护装置在传统的差动保护基础上另外又增加了工频变化量差动继电器,提高了变压器小匝数的匝间短路时的灵敏度,由于制动系数取得较高,在发生区外各种故障、功率倒方向、区外故障中出现ta饱和与ta暂态特性不一致等状态下也不会误动作。使得保护的安全性与灵敏度同时得到了兼顾。

工频变化量比率差动保护的动作方程为: 

 

理论上,工频变化量比率差动制动系数可取较高的数值,这样有利于防止区外故障时电流互感器饱和等因素所造成的差动保护误动。

变压器工频变化量比率差动继电器的动作特性见图7所示,阴影部分为动作区。  

工频变化量比率差动继电器的特点:

(1)负荷电流对它没有影响。对于稳态量的比率差动继电器,负荷电流是一个制动量,会影响内部短路的灵敏度。随着内部故障严重程度的增大,其灵敏度会下降。

(2)受过渡电阻影响小。

(3)由于上述原因工频变化量比率差动继电器比较灵敏。提高了小匝数的匝间短路时的灵敏度。由于制动系数取得较高,在发生区外各种故障、功率倒方向、区外故障中出现ta饱和与ta暂态特性不一致等状态下也不会误动作。使得保护的安全性与灵敏度同时得到了兼顾。

图8为变压器发生小匝间短路时的实际波形图,可以看出,当变压器c相发生1.5%的匝间短路故障时,常规差动保护(图中直线2)不会动作,而工频变化量差动保护(图中曲线1)要灵敏得多,会正确动作。

 

(4)不必输入定值。从工频变化量的比率差动保护的动作方程式中可以看出,工频变化量比率差动保护中不必输入定值,其固定门槛与浮动门槛由其他公式得出,是公司的专利技术,在此不作讨论。

3 超高压输电线路保护中的工频变化量差动继电器和阻抗继电器

3.1 输电线路电流纵差保护的主要问题

当重负荷情况下线路内部经高电阻接地短路时,常规保护的灵敏度可能不够。由于负荷电流是穿越性的电流,它只产生制动电流而不产生动作电流,而此时经高电阻短路,短路电流小而制动电流大,因此保护装置的灵敏度会下降。采用工频变化量比率差动继电器可以有效地解决输电线路的这个老大难问题。

工频变化量分相差动继电器的构成:

工频变化量分相差动继电器的动作特性见下图9。

 

工频变化量差动继电器的特点:①不受负荷电流的影响。因此负荷电流不会产生制动电流;②受过渡电阻的影响也较小;③在单侧电源线路上发生短路,只要短路前有负荷电流,短路后无电源侧的工频变化量电流也会形成动作电流;

由于上述原因该继电器很灵敏。提高了重负荷线路上发生经高电阻短路时的灵敏度。

3.2 工频变化量阻抗继电器的构成:

用于构成快速的距离ⅰ段

其动作方程为:

工频变化量阻抗继电器的特点:①保护过渡电阻的能力很强,该能力有很强的自适应能力。②由于?驻?砖∑与?驻?砖相位相同,所以过渡电阻附加阻抗是纯阻性的。因此区外短路不会超越。③正向出口短路没有死区。④正向出口短路动作速度很快。保护背后运行方式越大,本线路越长,动作速度越快。⑤系统振荡时不会误动,不必经振荡闭锁控制。⑥适用于串补线路。

南瑞继保公司的rcs931系列保护装置中采用工频变化量距离继电器自适应能力的浮动门槛,对系统不平衡和干扰具有极强的预防能力,因而测量元件能在保证安全性的基础上达到特高速,起动元件有很高的灵敏度而不会频繁起动。由于工频变化量距离继电器动作速度非常快,现场曾有3ms动作出口的记录,因而工频变化量距离i段与纵联电流差保护一起构成线路的主保护。

4 结论

工频变化量保护原理先进、构成简单,便于在微机保护中实现,而且不受负荷电流、非全相运行等方式影响,抗干扰性能非常突出、自适应能力极强,最突出的特点是动作灵敏可靠而速度非常快,在继电保护领域具有很强的竞争优势,是我国继电保护工作者智慧的结晶,体现了我国继电保护的独特风格和先进的技术水平。

参考 文献 :

[1]戴学安.继电保护原理的重大突破综论工频变化量继电器.新技术新产品,1995

[2]沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983,7(1).

继电保护的工作原理范文第4篇

摘 要:文章系统分析了“工频变化量”技术的理论基础和在各种保护装置中的实际应用,并 总结 了这些保护装置的独特优势。

关键词:工频变化量;原理;微机保护

abstract: the paper systematically analyzed theory basis of dpfc technology and its application in all kinds of protection devices, and then summed up the unique advantages of these devices.

key words: deviation of power frequency component; principle; microcomputer protection

在我国电力系统继电保护领域,南瑞继保公司无疑是占尽技术优势和市场优势的领头羊。之所以能够取得这样辉煌的成就,是与南瑞继保公司董事长、 中国 工程院院士沈国荣先生和他创立的“工频变化量”理论紧密联系在一起的。基于这种原理的保护装置在安全性、快速性、灵敏性和选择性等各方面都有很大的提高,但是在传统的教科书中并没有具体的理论讲述,厂家的说明书也很不详细。下面将从原理和实际应用方面进行具体地分析。

1 工频变化量deviation of power frequency component (dpfc)原理分析

工频变化量的理论基础为叠加原理,即电力系统发生故障时,经过渡电阻短路,可认为是过渡电阻下面的一点金属性短路,即该点对系统中性点电压为零,可认为该点与中性点之间串联2个大小相等、相位相反的电压源,依然保持该点与中性点间电压为零,见图1。

“叠加”有2个含义:①短路后任一点的电压,如保护安装处m母线的电压(即m点到中性点电压,是我们关心的,箭头向上表示电位为升,m母线为正,中性点为负,),等于2个图中相应点的电压之和(二种状态)。②短路后某个支路的电流,如流过保护的电流,等于2图中相应支路的电流之和。从重叠原理本身来说,对uf没有要求,可以任意取值,但在保护装置里uf取短路点短路以前的电压,es、er为电源电势,在短路前后不变,因此,图1称为正常负荷状态,图2称短路附加状态,目的就是凑出这二种状态。

与常规的稳态量保护装置不同,基于工频变化量原理的保护装置只是“考虑”短路附加状态的各种电气量,而不考虑正常负荷状态的各种电气量。在附加状态中,只有短路点有一个电压源,电气量全部为变化量用符号表示。微机保护中正在采样的u、i减去“ 历史 ”上采样出来的u、i,即为加在继电器上的u、i。zs为保护背后电源的等值阻抗,zr为保护正方向的所有阻抗,s为保护背后中性点,由下图4、图5可得出2个基本关系式:

2 变压器的工频变化量比率差动保护

变压器有70%左右的故障是匝间短路,为了提高小匝间短路时差动保护的灵敏度,常规的比率制动特性差动保护中的起动电流往往整定得较小,例如整定成0.3~0.5倍的额定电流,而且初始部份没有制动特性,见下图6。

但运行实践证明这样的差动保护往往在区外短路或短路切除的恢复过程中由于各侧电流互感器暂态或稳态特性不一致或者2次回路时间常数的差异或者电流互感器饱和造成保护误动。南瑞继保公司rcs978系列保护装置在传统的差动保护基础上另外又增加了工频变化量差动继电器,提高了变压器小匝数的匝间短路时的灵敏度,由于制动系数取得较高,在发生区外各种故障、功率倒方向、区外故障中出现ta饱和与ta暂态特性不一致等状态下也不会误动作。使得保护的安全性与灵敏度同时得到了兼顾。

工频变化量比率差动保护的动作方程为:

理论上,工频变化量比率差动制动系数可取较高的数值,这样有利于防止区外故障时电流互感器饱和等因素所造成的差动保护误动。

变压器工频变化量比率差动继电器的动作特性见图7所示,阴影部分为动作区。

工频变化量比率差动继电器的特点:

(1)负荷电流对它没有影响。对于稳态量的比率差动继电器,负荷电流是一个制动量,会影响内部短路的灵敏度。随着内部故障严重程度的增大,其灵敏度会下降。

(2)受过渡电阻影响小。

(3)由于上述原因工频变化量比率差动继电器比较灵敏。提高了小匝数的匝间短路时的灵敏度。由于制动系数取得较高,在发生区外各种故障、功率倒方向、区外故障中出现ta饱和与ta暂态特性不一致等状态下也不会误动作。使得保护的安全性与灵敏度同时得到了兼顾。

图8为变压器发生小匝间短路时的实际波形图,可以看出,当变压器c相发生1.5%的匝间短路故障时,常规差动保护(图中直线2)不会动作,而工频变化量差动保护(图中曲线1)要灵敏得多,会正确动作。

(4)不必输入定值。从工频变化量的比率差动保护的动作方程式中可以看出,工频变化量比率差动保护中不必输入定值,其固定门槛与浮动门槛由其他公式得出,是公司的专利技术,在此不作讨论。

3 超高压输电线路保护中的工频变化量差动继电器和阻抗继电器

3.1 输电线路电流纵差保护的主要问题

当重负荷情况下线路内部经高电阻接地短路时,常规保护的灵敏度可能不够。由于负荷电流是穿越性的电流,它只产生制动电流而不产生动作电流,而此时经高电阻短路,短路电流小而制动电流大,因此保护装置的灵敏度会下降。采用工频变化量比率差动继电器可以有效地解决输电线路的这个老大难问题。

工频变化量分相差动继电器的构成:

工频变化量分相差动继电器的动作特性见下图9。

工频变化量差动继电器的特点:①不受负荷电流的影响。因此负荷电流不会产生制动电流;②受过渡电阻的影响也较小;③在单侧电源线路上发生短路,只要短路前有负荷电流,短路后无电源侧的工频变化量电流也会形成动作电流;

由于上述原因该继电器很灵敏。提高了重负荷线路上发生经高电阻短路时的灵敏度。

3.2 工频变化量阻抗继电器的构成:

用于构成快速的距离ⅰ段

其动作方程为:

工频变化量阻抗继电器的特点:①保护过渡电阻的能力很强,该能力有很强的自适应能力。②由于?驻?砖∑与?驻?砖相位相同,所以过渡电阻附加阻抗是纯阻性的。因此区外短路不会超越。③正向出口短路没有死区。④正向出口短路动作速度很快。保护背后运行方式越大,本线路越长,动作速度越快。⑤系统振荡时不会误动,不必经振荡闭锁控制。⑥适用于串补线路。

南瑞继保公司的rcs931系列保护装置中采用工频变化量距离继电器自适应能力的浮动门槛,对系统不平衡和干扰具有极强的预防能力,因而测量元件能在保证安全性的基础上达到特高速,起动元件有很高的灵敏度而不会频繁起动。由于工频变化量距离继电器动作速度非常快,现场曾有3ms动作出口的记录,因而工频变化量距离i段与纵联电流差保护一起构成线路的主保护。

4 结论

工频变化量保护原理先进、构成简单,便于在微机保护中实现,而且不受负荷电流、非全相运行等方式影响,抗干扰性能非常突出、自适应能力极强,最突出的特点是动作灵敏可靠而速度非常快,在继电保护领域具有很强的竞争优势,是我国继电保护工作者智慧的结晶,体现了我国继电保护的独特风格和先进的技术水平。

参考 文献 :

[1]戴学安.继电保护原理的重大突破综论工频变化量继电器.新技术新产品,1995

[2]沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983,7(1).

继电保护的工作原理范文第5篇

关键词:特高压;输电线路;继电保护;问题;策略

中图分类号:TM77 文献标识码:A 文章编号:1671-2064(2017)11-0151-02

因为人们的生活和生活质量在不断地提高,所以人们对于精神层面和物质层面的追求也发生了变化,这点在人们对于特高压输电线路继电保护问题由不了解到很重视的态度变化中可以明显体现。尽管特高压输电线路继电保护问题已经受到了研究人员和管理人员的重视,相关技术人员也在特高压输电线路继电保护设计和制造中进行研究,但是我国相关领域发展缓慢和基础较差的劣势还是给现阶段特高压输电线路继电保护问题的解决增加了难度。我国的特高压输电线路继电保护还与不同地方的环境,用电状况,建筑设施和经济负担等有重要联系,在建立模型进行特高压输电线路继电保护问题解决时要结合实际情况进行深入研究,才能利用特高压输电线路继电保护的原理进行相关措施的落实,为特高压输电线路的发展和继电保护策略的创新打下良好的基础。

1 特高压输电线路继电保护问题的概况

虽然当前阶段研究人员和管理人员对特高压输电线路继电保护问题非常重视,许多合理可靠的措施也被应用到了工程施工中去,但是受到传统观念和管理模式的限制,特高压输电线路继电保护问题还将在未来发展中遇到很多阻碍。特高压输电线路继电保护问题一般在我国西北地区比较严重,加之高海拔和恶劣天气的消极影响就使得该问题的解决难上加难,所以需要研究人员在克服我国缺乏特高压输电线路继电保护的设计,制造和运行经验的前提下采取有效措施来保证继电保护的可靠性与输电线路运行的安全稳定。因此,除了要借鉴国外特高压输电线路继电保护设计经验来达到少走弯路和加快设计速度的目的,还要对特高压输电线路继电保护的基本理论和特殊问题进行研究。

1.1 特高压输电线路继电保护的现状

随着时代的发展和社会的进步,经济状况好转使得人们对生活质量的要求变高,电力系统的运行承担了很多任务和更多压力,其中电网的电压等级提高使得输电的经济性能很难满足大容量和远距离输电的要求,所以建立大容量,长距离和低损耗的输电系统就成为了各国电网发展的必然趋势。但是许多国家建成的特高压输电线路只能以低电压等级运行,而我国早期研究在取得了可观成果的同时也遇到了很多阻碍,在此过程中总结出了分布电容产生了较大电容电压,短路过程中的高频分量频率距离工频很近,短路时非周期分量衰减常数较大,故障分量较小等特性,需要研究人员利用保护原理和可靠的性能对相关策略加以论证和改进,才能实现特高压输电线路继电保护的现实意义。

1.2 特高压输电线路继电保护的原理

关于特高压输电线路继电保护的原理,可以分为电流纵联差动保护原理和差动保护新原理两方面进行分析和研究。一方面,特高压输电线路继电保护电流纵联差动保护原理涉及到电容电流补偿方法,基本思路是在线路两端电流中减去相应电容电流,得到电流后利用基尔霍夫电流定律,才能实现特高压输电线路电流纵联差动保护;迄今为止提出的补偿算法有相量补偿算法和时域补偿算法,在理论上都是成立的。另一方面,因为上述方法不能很好地解决特高压输电线路继电保护问题,所以在现阶段出现了耐受甚至不受电容电流影响的差动保护新原理,比如建立在输电线电磁波传播过程之上的贝瑞隆模型,具有求解速度快和精度高的优点。除此之外,特高压输电线路其他保护原理还有成为后备保护的距离保护,利用光电互感器和光纤通道使得成本下降行波保护等,都需要在实践中通过可靠检验才能进一步推广。

2 特高压输电线路继电保护中出现的问题

基于对特高压输电线路继电保护问题概况的了解,可以发现我国相关研究并不成熟和完善,与发达国家相比还有很大的差距,所以需要在现阶段特高压输电线路继电保护运行过程中找出差距和发现问题,才能在未来对这些问题采取针对性策略加以处理和解决。根据特高压输电线路继电保护的工作原理,结合其电压等级高和线路自然功率大的特点,就能知道特高压输电线路继电保护问题主要表现在过电压水平过高和电容电流大小得不到保证这两个方面。尽管特高压输电线路在运行过程中为社会建设带来了电力供应安全可靠的好处,但是也使得继电保护装置出现了拒动和灵敏度下降等问题,使得特高压输电线路继电保护问题越来越严重甚至威胁到了用电客户的人身安全,所以针对这些特殊问题进行深入分析就成为了解决特高压输电线路继电保护问题的必要工作。

2.1 降低绝缘费用和过电压水平

当前阶段特高压输电线路继电保护问题产生的一个重要原因就是电压等级升高,绝缘费的比例也在大幅度增高,所以在特高压输电线路继电保护过程中降低过电压水平就成为了当前工作的一大重点。正是因为在进行特高压输电线路继电保护时必然会产生过电压,所以保证绝缘子不受破坏的提高绝缘水平,配置合理的避雷器,增设并联电抗器,设置合理的保护动作顺序等就成为了解决该问题时值得尝试的措施。

2.2 在电容电流下实现继电保护

特高压输电线路继电保护的另一问题是电容电流过高,在长距离和电压等级高的特高压输电线路继电保护中比较常见,需要另辟蹊径进行差动保护。尽管我国500kV输电线路运行质量高而且切断故障及时,但是在长距离特高压输电线路继电保护性却会出现问题。

3 特高压输电线路继电保护策略的具体分析

根据特高压输电线路继电保护问题的表现,可以得知如果想要特高压输电线路正常运行和继电保护安全有效得以实现,就需要针对出现问题的两方面进行试验后做出调整,才能利用已有的有利条件促进特高压输电线路继电保护问题得到妥善处理。除此之外,基于Marti模型的特高压输电线路继电保护利用电流差动保护原理得到了有效的研究成果,在现阶段的研究和尝试中势头良好,所以可以进一步在实际工程中进行针对试验和经总结,才能在未来发展中借助该模型促进特高压输电线路继电保护朝着健康高效的方向发展。笔者结合自身的经验和已有的研究,选取其中典型有效的策略进行分析,从而可以为同行业人员的研究提供科学合理的借鉴。

3.1 过电压现象以及相关保护措施

特高压输电线路继电保护中过电压现象发生的原因一般是由不当的操作问题产生的,对于经常会发生故障的线路运行会有正常操作和故障后分断操作,这两个操作是特高压输电线路继电保护的重点考虑方面。举例来说,单相接地故障发生后不能按照规定进行重合闸的操作,就会使得特高压输电线路继电保护失去作用。所以,由于断路器动作特性差异而使得两端保护动作不同,两端不能同时断开来保护线路,从而导致过电压现象的产生。如果想要通过特高压输电线路继电保护来避免过电压现象的出现,就要提前进行保护动作顺序的设定,才能通过降低过电压水平来保证系统运行的安全性。

3.2 特高压输电线路分布电容电流及分析

因为特高压输电线路继电保护问题有着自然功率大,波抗阻小,单位长度电容大和易计算得到的特点,所以在运行过程就容易造成电容电流超过额定电流的现象,这就给特高压输电线路的差动保护带来很大的困难。结合单相接地故障的例子来说,传统的分相电流差动保护应用于特高压输电线路继电保护是非常困难的,所以需要采取相应的补偿措施来解决这个问题;但是如果想要从根本上解决特高压输电线路继电保护问题,还需要寻找合理方式来有效控制电容电流的大小,使得特高压输电线路继电保护能够通过纵联差动来实现,才能最终逐渐解决好特高压输电线路继电保护问题。

3.3 基于Marti模型的特高压输电线路继电保护

基于Marti模型的特高压输电线路继电保护主要利用分相形式的保护装置,主要反映了输电线路稳态运行时线路两侧电压电流之间关系,所以如果特高压输电线路中没有故障时线路两侧电流计算值和实测值应当是相等的;而出现故障时Marti模型被故障,两侧的值差距较大,保护装置就会产生保护动作,体现出较高的灵敏度。除此之外,如果电路装设了并联电抗器则要启用新的判断依据再进行处理,才能在每种电路运行过程中都能利用适合的继电保护装置保证系统运行的安全稳定。最后,在实际线路运用基于Marti模型的特高压输电线路继电保护装置之前还要进行仿真和模拟试验对有关参数进行调整,确认无误后方能进行广泛应用。

4 总结

总而言之,研究特高压输电线路继电保护问题是切实有效的,既能在了解特高压输电线路继电保护现状和工作原理时发现其中的潜在问题,又能利用有效策略对过电压和电容电流问题的解决奠定良好的基础,从而完成社会建设中电力行业和供电企业发展的目标。为了迎合当前阶段城市建设中建筑工程对特高压输电线路安全和质量要求越来越高的趋势,满足人们生产生活对于特高压输电线路继电保护的要求,就需要针对特高压输电线路继电保护中出现的问题,并且结合现阶段我国特高压输电线路继电保护的发展概况和国外先进技术与经验,对特高压输电线路继电保护的创新策略进行试验和应用,从而可以为实际工作总结经验和教训,在电力行业和供电企业高压输电线路继电保护问题的解决做好铺垫。讨论特高压输电线路继电保护问题不仅促进了相关问题的解决,还为特高压输电线路继电保护未来的发展和创新提供了新思路。

参考文献

[1]马光成.特高压输电线路继电保护问题研究[J].中国科技纵横,2015,(20):148.