首页 > 文章中心 > 继电保护与电气自动化

继电保护与电气自动化

继电保护与电气自动化

继电保护与电气自动化范文第1篇

关键词:电气控制;继电保护器;整定方法

一、导言

继电保护器是基于微处理器设计,集反时限(InverseTime)和定时限(IndependentTime)继电器保护于一体的综合继电保护设备。继电保护器常常用来为电力设备提供安全保护。继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”,在电路中起着自动调节、安全保护、转换电路等作用。在科技水平的发展之下,我国电厂电气系统的自动化程度也得到了一定的提升,对于电厂电气设备而言,继电保护器有着十分重要的作用,因此,继电保护器也在电厂电气设备之中得到了广泛的使用,为了保障电厂电气设备运行的安全性与有效性,必须要做好继电保护器的整定和复校工作,下面就对电气控制系统中继电保护器的整定问题进行深入的分析。

二、继保整定工作中应注意的问题

1.做直流大电机过流时,在做直流大电机过流使用短接软线时,需要将软线距过继电器平行距离控制到1.5到2.0m,如果未达到这一标准,软线电流磁场就会对电流继电器产生影响,增加整定误差。

2.在做直流大电机过流整定时,由于空间母线电流产生的磁场对过流继电器磁场实际存在着一定的影响,故过流继电器的整定(复校)工作应尽可能在现场做,以免由此造成整定值的误差,这种误差对于保护装置也是很危险的。

3.在做过流或欠磁继电器的整定(复校)时,对于小电流可用电流表直读,以减小整定误差,对于大电流可采用分流器接表方式。

4.无论是做过流、过压还是欠磁继电器的整定或复校时,应尽可能地将保护电器所带的跳闸开关(高速开关)一并联做。

5.无论是做过流、过压还是欠磁继电器的整定或复校时,须断开原系统与保护继电器联接的旁路,否则一方面会影响整定值的准确度,另一方面会使继保整定(复校)工作无法开展(例如对过电压继电器的整定,由于采用的电路为倍压整流电路,其带负载能力较小,如有较大负载的旁路存在,将会造成继保整定电路的电压升不-上去)。

三、过流继电器的整定方式

在过流继电器进行整定时,关键的组成部分为电路开关、电流发生器、整流器、测试电流表、单相交流低压电源、毫伏表,在电路运行中,过流继电器可以充分发挥各项保护功能,比如过压保护、欠压保护、过流保护等。在过流继电器运行之前,对于三相电流的流过值应该提前设置,一旦三相电流出现故障,整个继电保护装置都会处于故障状态之下,在故障情形下,显示屏会将电流流过值显示出来,可以通过人工干预和延时设置方式对这一状态进行改变,在电流变化的情形下,继电保护器可以给予修改,对跳闸实施延时操作;如果在线路运行过程中,电压一直处于较高状态,继电保护装置就会启动过压保护功能,实施相应的保护措施,此外还会启动报警方式,比如闪灯、警告音等,如果继电保护器发生故障,在液晶显示屏上,电压值变化情况也会显示出来,此时可以通过人工干预和延时设置等方案对这一问题进行改善;在设备大的运行过程中,如果电压一直处于偏低状态,继电保护器开启的保护模式为欠压保护功能,当故障状态恢复正常后,此种保护功能可以实现实时关闭,自动退出故障状态。

在过流继电器实施整定的过程中,首先应该进行通电试验,在完全断开高速开关的情形下,实施升压试验与降压试验,对电力电压的整定情况给予密切观察,一旦电压处于稳定状态,整定工作便可以立即开展,在实际整定过程中,对于相关检验装置的变化情况应该仔细观察,比如毫伏表、电压表、电流表等,相关数据的变化情况应该给予及时记录,通过此操作,不仅能使系统的稳定性得到提升,还能营造一个安全的作业环境,让操作人员放心、有效的开展工作。

四、过压继电器整定方式

过压继电器整定电路包括几个部分,即测试电压表、电路开关、倍压整流型电压发生器、单相交流低压电源与单相调压器,需要满足过压保护、电压不平衡保护、错相保护、欠压保护、静态断相保护以及动态断相保护几个内容。

其中,过压保护是在线路电压偏高时进行的保护;电压不平衡保护即对三相电压平衡问题进行的保护,其保护模式是立即动作;错相保护是在线路电源输入程序发生错误时的保护措施;欠压保护是对线路电压低于预设电压时的一种保护;静态错相保护是在非运行设备出现断相问题时开展的保护措施;动态断相保护对运行设备出现断相问题时开展的保护措施。

在整定过压继电器时,需要先进行初通电试验,在进行试验时,需要断开高速开关,针对继电保护器整定电路来开展降压试验,在试验时应该进行密切的观察,看升压与降压的情况,是否存在异常,在升压与降压恢复正常之后,即可将高速开关合上。在高速开关合上之后,再整定过压继电器,在整定过程中要观察过压继电器动作与电压表指示情况,并进行严格的记录,完成之后,再调整过压继电器。

五、结论

综上所述,在电气设备安全、稳定的运行过程中,继电保护器是重要的控制部分,在电气设备运行和生产等环节中,可以有效地实现各种保护功能,在对继电保护器实施整定工作的基础上,应该维护好控制系统功能的良好性能,促进电气系统的稳定运行。在整定过流继电器时需要进行通电试验,将高速开关完全断开,进行升压与降压试验,看继电保护器整定电力电压情况,在电压稳定滞后,即可开展整定工作,在整定的过程中需要观察好电流表、电压表与毫伏表的变化情况,记录好相关数据,这样不仅可以提升系统运行的稳定性,还能够为操作人员提供一个安全的作业环境。

参考文献

[1]段懿伦.电气控制系统中继电保护器的复效与整定[J].河南科技,2013,01:135.

继电保护与电气自动化范文第2篇

【关键词】 电气自动化 系统选型 自动化原则

随着科学技术的不断发展和计算机技术的进步,电气自动化系统在电力系统中得到广泛的应用。各地区的电网改造和建设中应用自动化新技术,取得了一定的成功。在我国电气自动化系统的实施过程中,采用了配变电站监控以微机保护为数据采集和控制的基础,将保护、控制以及测量结合在一起的方式。

1 方案设计的思想

随着计算机和通信网络技术的发展,RTU和LTU以及保护监控单元将直接上网,并且通过网络和工作站进行通信,这样可以取消前置处理环节,从而消除通信的瓶颈现象。变电站自动化系统和无人值班运行模式的实施,可以提高电气主设备的可靠性。从信息流的角度出发,保护和控制、测量的信息来自现场TA、TV二次侧输出。保护主要采集的是一次故障的信息,对于TA、TV测量范围比较宽,需要按照10倍的额定值进行考虑,但是对于测量的精度要求比较低。对于控制和测量主要采集运行状态信息,他们对于TA、TV测量的范围比较窄,通常在测量值附近波动,而且对测量的精度存在一定的要求[1]。总控单元主要接收来自远方的控制输出命令,在经过一定的审核后,需要在校核后可以直接动作直到保护操作回路,这样就简化了设备,提高了可靠性。从无人值守角度看,需要对主接线、主设备、二次回路以及设备进行简化,这就需要保护、控制和测量实现一体化,这样有利于简化设备以及日常维护的工作量。对于110kV以及以下的配电站,电量计费、功率总加等需要接量测TA、TV来满足测量的精度要求,对于其他的测量可以监视设备的运行状态。在局域网上各种信息可以实现共享、这样控制和测量不需要配置各自的数据采集硬件。对于10kV配电站来说,由于接线简单,对保护的要去相对比较低,因此可以采用RTU完成线路的保护以及母线的切换等功能,但是需要在RTU中增加保护运行判断功能。

2 设计说明

2.1 系统的选型

变配电站自动化包括继电保护、变配电站集中监控以及远方调度管理。智能化、综合化的变配电系统的使用需要依据工程的实际需求进行选择。在继电保护的选择,对于10kv变配电所是电力系统的开闭以及用户变配电站,一次接线比较简单,因此采用常规继电保护。在选用价格比较低、性能良好的智能化开关、智能化开关柜后,需要取消常规继电保护。对于35kv以上的变配电站,具有变压保护,因此应该选择微机保护。对于配电站的集中监控和远方调度,需要采用集中式和分散于的开关柜内的集散系统两种形式。变配电综合自动化系统是一种先进的系统,它安装在开关柜内,而且是变配电站内集中监测和远方调度系统。对于集中式的变配电计算机监测与远方调度系统,需要安装各种电量变送器。由开关柜引出测量、信号、控制电缆等,而且施工的工作量比较大,不适宜推广使用。在开关柜内安装变配电自动化系统的末端数据采集与控制单元,这样交流采样可以从电压互感器直接进行测量,从而省掉了电量变送器的使用,甚至可以省掉开关柜的指示仪[2]。对于变电站电气自动化系统来说,外部电缆仅有一根供电电源和通讯电缆,这样的设计的简单,因此适宜大范围的推广。对于智能化的开关和智能化的开关柜来说,需要设计通信电缆,并且引至到调度室的中央控制站计算机上,这样就可以实现集中监测和远方调度的功能。另外由于厂家的产品的通信协议不同,因此实现联网比较困难。

2.2 电气设计原则

在变配电自动化系统的设计中,需要充分的充分的考虑一次系统和二次系统。在一次系统的设计中,变配电站采用计算机监测和控制,这对一次系统接线没有影响,而一次系统的接线方式和供电方案需要依照相关的规定进行,变配电站在采用计算机监测和控制后,可以简化模拟盘,这样能够充分的发挥计算机的图形显示功能,从而可以实现无人或者少人值班。二次系统的设计原则是变配电站采用计算机监测与控制,可以取消值班室的中央信号,保留集中保护的继电保护屏。在二次系统的设计中,需要做好下列的工作:值班室继电保护屏与中央信号系统、开关柜内的继电保护、信号与控制回路设计等保持不变,需要设计出一套重复的计量、信号与控制回路计算机监测与控制系统[3]。对于开关柜的继电器保护、计量、信号与控制回路设计保持不变,把中央信号系统取消,而对于集中保护的继电保护屏进行保留,接着将计量、信号与控制回路进入计算机监测与控制系统。开继电关柜内的保护、计量、信号与控制回路设计保持不变,而值班室的中央信号系统仅仅是指电源进线和母线联络开关柜,出线开关柜不进入到中央信号系统中,而母线联络开关柜、出线开关柜的中央信号系统会全部进入计算机监测与控制系统。

2.3 电气设计

对于一次系统的设计中,对于电气的主接线方式保持不变,而在单线系统图的设备型号中,应该注明采用计算机监测与控制系统后,增加的设备型号与数量。在开关的设置中,对于需要通过计算机监测与控制系统进行远方遥控操作的开关,应该选用具有远方分配、合闸功能的开关。对于进入到计算机监测和控制系统的开关,需要具备独立的接入点,这样才能够确保计算机监测与控制系统的接入。对于二次系统继电保护设计来说,35kv以上的供电系统可以选用微机保护,并且需要考虑变配电站综合自动化单元。10kv供配电系统通常以常规继电器继电保护为主,设计含有监控功能的变配电综合自动化单元。而对于220kv和380kv的低压配电系统,需要以自动开关和熔断器为保护。在测量回路的设计中,对于测量参数的确定,需要在计算机监测与控制系统中依据用户的需求和相关的规定进行确定。

3 结语

随着电网的建设,电气自动化系统的应用逐渐的广泛,可以实现高效、经济的变配电站的建设。智能化电网的建设需要从设计阶段进行优化,做好电气自动化系统的设计,能够促进电网运行的安全性和可靠性。

参考文献:

[1]王仓继.变电站电气自动化研究分析[J].科技资讯,2012(4):76-79.

继电保护与电气自动化范文第3篇

关键词:智能电网;继电器保护原理;广域保护

继电器保护装置是智能电网的“防护卫士”,可以在智能电网故障发生短时间内快速切断故障的区域,将电网故障区域与整个电网隔离开,便于降低电网故障的危害程度,避免出现大规模停电现象。可见,继电器保护技术在智能电网中扮演着重要角色,应结合智能电网可靠运行需要,做好继电器保护工作。

1 智能电网继电器保护原理

在智能电网中,继电器保护装置通过应用传感器对发电、输电、配电、供电等主要电气设备运行状况进行实时动态监控,然后利用网络系统进行监控数据采集与整合,并进行数据分析以得到智能电网运行状态的准确信息,了解真实的电网运行状态,实现对智能电网运行状态的有效监控,并及时进行修正继电保护定值。

继电器保护装置除了能保护需要保护对象之外,还可以监控电网内相关联设备的运行信息。为此,智能电网中的继电器保护装置发生动作时,不一定只跳开保护对象,有可能只发出连跳指令,跳开其他关联点,不跳开本保护对象。

2 智能电网继电器保护技术分析及应用

2.1 技术分析

2.1.1 广域保护技术

智能电网采用广域保护技术可以明显提升故障处理效率,降低故障扩大的影响程度。广域保护技术主要有两种方式,一是自动控制,二是继电保护。所谓的自动控制,就是控制智能电网安全运行各种条件下,实现运行安全自动化控制,从而有效规避电网故障;继电保护,在智能电网发生故障时可以快速切开电网鹊墓收锨域,并给出科学合理的故障处理策略,降低智能电网故障处理复杂程度。通过以上两个方面保护手段使广域保护技术得以保障智能电网可靠安全运行。

2.1.2 新设备应用技术

新设备在智能电网中的应用对继电器保护功能实现有着极大作用,是智能电网继电器保护装置可靠运行并发挥作用的关键。现阶段智能电网中常用的新设备智能传感器,它是继电器保护应用中最典型的新设备,主要负责监控继电器保护装置内的各个元器件,收集智能电网运行信息,并精准无误的全面评估智能电网运行状态,掌握智能电网运行的真实情况。智能传感器应用于智能电网继电器保护系统,利于及时获取智能电网运行状态信息并做出准确判断,提升整个继电保护系统功能,更好适应智能电网。同时,智能传感器可以帮助智能电网在故障发生时尽快的切断故障区域。

2.1.3 系统重构技术

系统重构技术对智能电网有着很强的适应性,能充分适应智能电网重构时的继电保护要求,是智能电网继电器保护的主要技术之一。传统式电网由于运行方式等方面的限制,无法使用系统重构技术,也不能自主处理故障信息,而智能电网恰好可以。为此,智能电网可以通过系统重构技术来保护继电器,实现可靠的继电保护。

智能电网继电器保护系统重构原则:(1)快速性原则。一次系统不能脱离继电保护,要求继电保护系统自身重构快速,在最短时间内完成重构工作。在有多套保护需要重构时,应该保持在最低功能的条件下可以选择分步实施或同时实施的方式;(2)完整性原则。为满足系统最低安全指标,系统重构时必须保持功能完整性,重构后的继电保护系统超过原系统功能,允许紧急情况下对某些功能适当进行降阶或解除,到达系统安全指标要求。(3)可靠性原则。重构时要对设备重新选择组合,新构建的系统必须满足其系统可靠性指标要求;(4)经济性原则。重新划分设备资源,在保证可靠性前提下尽量减少资源浪费。

2.1.4 继电器保护装置数字化技术

智能电网的技术含量较高,数字化程度高,为适应这样的特性,可以采用数字化电气设备,如数字化传感器,可以提升强化继电器保护装置的整体性能。此外,近年来神经网络、模糊逻辑及遗传算法等技术快速发展,提升了智能电网建设水平。随着智能电网信息化程度越来越高,借助人工智能技术可以处理电网中一些比较复杂的非线性问题,进一步提升智能电网继电器保护技术水平,适应新时期智能电网建设与运行要求。

2.1.5 自适应控制技术

自适应控制技术应用于智能电网继电器保护后,通过调整保护的特性、定值与性能等使继电保护在最短时间内适应电力系统运转方式的改变或电气故障状态,进而提升继电器保护装置的可靠性。从整体上看,这一技术最大优势就是继电器保护装置在电力系统发生变化的短时间内做出最快反应,显著提升继电器保护装置的经济效益。

2.1.6 差动保护技术

在智能电网中,差动保护是用于电气主设备保护的重要技术,其具有较高的选择性与灵敏度。其在智能电网继电保护系统中的应用,不仅可以不受电网运行方式改变的影响,还能接入多侧电流,由装置决策参与线路差动保护计算的电流通道,适应智能电网运行方式。

2.2 技术应用

面对智能电网的继电器保护技术,为了更详尽的解读智能电网继电器保护技术,下面对差动保护技术在智能电网中的应用进行了分析。如图1是某智能电网的构成示意图。该图中的L1,L2,L3,L4使用光纤差动保护技术,保护定值设置将变得比较简单。光纤差动判断中,需要根据线路L1,L2,L3,L4的运行对各节点N是否接入运行,以及各节点N侧光纤差动采用的对端采用哪侧线路的电流进行具体的判断,根据各节点开关位置确定各个节点运行工况。

本线路在决定采用光纤差动保护基础上,还要合理设置智能电网继电器保护系统,其构成如图2所示,先通过监控系统对保护对象及相关节点的运行状况进行监控与分析,根据监控结果实时调整继电保护装置的保护定值、功能等,使保护系统能灵活自如的适应线路各种运行工况,切实起到继电保护作用。此外,保护功能决定参与故障判断的电气量信息和保护动作策略,结合保护功能设计保护动作策略。

3 结束语

综上所述,智能电网是我国现在与未来一段时间电网建设的主要方向,如何实现继电器保护功能的有效实现是广大电力工作者共同面临的问题,必须积极开展相关探讨工作,加强继电器保护技术创新研究,实现技术革新,进一步提高继电器保护技术水平,适应智能电网可靠运行需要。

参考文献

继电保护与电气自动化范文第4篇

【关键词】10KV供电系统; 继电保护; 原理特性;

在我国过去这几年10 kV配电系统的使用过程中,经统计发现,其技术故障多为谐波、短路。配电系统一旦发生故障,很有可能会造成电力设备及电气线路的严重损坏,进而严重影响电力系统的正常运行和使用。国内的10 kV配电系统通常都安装有继电保护装置,但因受到管理模式、运行规范及有关技术等多方面因素的制约,其保护作用往往不能得到充分发挥。因此,在10 kV配电系统的建设和管理过程中,相关技术人员及管理部门要注重继电保护技术的应用和研发,全面提高配电系统的可控性,进而提高系统的安全性及稳定性。

1、概述

整个电力系统的组成环节分别为发电、变电、高压输电、配电及用电。电力元件包括发电机、变压器、输电线路、母线、电动机等。在整个系统中,各种类型电气设备由电气线路相互联结组成一个庞大的网络,具有覆盖地域广阔、构成庞大、运行环境复杂等特点,在各种人力因素及自然因素的影响下,如:各种自然天气、设备绝缘老化、鸟兽危害、设计安装失误、检修质量、误操作等,常会不可避免的发生各种不可预计的电气故障。再加上整个系统的相互统一性,当任何一处发生电力事故时,将有可能影响整个电力系统的正常运行,甚至对系统的安全性能构成威胁。短路是电力系统中最危险也最为常见的故障,包括相与地及相与相之间的短接。10KV供电系统是整个供电系统的重要组成部分,其运行的可靠性、安全性及稳定性不仅会直接影响企业的正常用电,而且关系到整个电力系统的运行稳定性。10KV供电系统又分为一次系统、二次系统,其中,一次系统的构成相对比较直观、也较简单,在继电保护装置的设计及设置上也比较容易,方便在日后对系统的保护和控制;二次系统的构成比较复杂,包含了大量的二次回路、自动装置和继电保护装置。因此,在供电系统中的继电保护装置主要对一次系统起着测量、监视、保护和控制作用。

2、基本原理

当电力系统中的电力元件(如发电机、线路等)或电力系统本身发生了故障危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令以终止这些事件发展的一种自动化措施和设备,一般通称为继电保护装置。

继电保护装置通常是利用系统中的电力元件发生异常情况或短路时所产生的电压、电流、频率、功率等电气量的变化成构成了继电保护装置的保护动作原理;另外也有利用其它物理量的继电保护装置,如变压器油箱发生故障时,可通过利用产生的油流速度变化、油压变化或瓦斯浓度的变化来构成继电保护装置瓦斯保护的动作原理。通常情况下,无论对哪种物理量进行监测,继电保护装置的构成部分都包括监测、定值调整、逻辑运行及动作执行。

当电力系统中的某一装有继电保护装置的元件产生故障时,该继电保护装置应在第一时间向元件与系统之间的且与元件线路距离较近的断路器产生跳闸指令,及时的使故障元件与电力系统相脱离,从而最大程度上降低故障元件本身及电力系统的损坏,避免对整个电力系统的安全、稳定供电产生影响,同时满足系统指定的特殊要求。

继电保护装置还可对电气设备的异常工作情况作出反映,并根据不同的电气设备的运行维护条件及异常工作状态发出信号,由保护装置自动进行调整或通知技术工作人员进行操作处理,必要时可将那些继续工作可能引发事故的故障设备切除。反应异常工作状态的继电保护装置可以设置合理的动作延时。

3、10 kV 配电系统继电保护的改进措施

近些年,随着我国国民经济的快速发展,国内城乡电网配变线路电压的配制等级主要为10kV,但在实际配电系统的使用过程中,10kV配变线路普遍存在一定的弊端,主要为其结构设置的一致性效差。目前,10 kV配电系统采用的继电保护装置的构成部分主要为三相一次重合闸、过流、电流速断等,通常系统在使用过程中出现一般故障时,继电保护能够快速做出反应,然而系统在突发事件的应对方面的稳定性与灵敏度较其它发达国家还有很大差距,因此,为提高我国电力系统的安全性及稳定性,这一技术问题必须首先得到及时解决。

3.1提高电流速断保护装置的技术水平。当前,我国10kV配电系统所采用的继电保护装置短路故障的脱离时间通常为5~10s,实际因保护装置有较短的动作延时,因此短路故障的脱离时间通常会有3~5s的延迟,而仅仅这几秒钟将很大程度上增加故障持续时间,从而使事故影响范围扩大,系统的安全性能大大降低。所以,在今后研发、设计10kV配电系统的继电保护装置时,应提高电流速断保护装置的技术水平,可以略带时限及瞬时的电流速断保护技术为基础进行开发,在,从而开发出一种新型的技术上实现上述两种保护装置互补的继电保护装置,并实现保护范围广、动作电流值大等技术特点。

3.2加强继电保护的网络化和智能化建设。在今后的10kV配电系统的运行过程中,继电保护技术必将越来越趋向于网络化和智能化。智能化的继电保护系统一方面可有效减少配电系统管理上的人力及物力资源浪费,另一方面也为配电系统应用其他各项技术提供了广阔的技术平台。近些年,随着计算机技术如模糊逻辑、进化规划、遗传算法、神经网络等在各个领域的大力推广与应用,也逐渐开始渗透到电力系统继电保护领域。

4、结语

10kV配电系统作为电力系统的重要组成部分之一,其安全性、稳定性及可靠性不仅直接关系到各个用电企业的顺利运作,并且还会影响整个电力系统的安全性和稳定性。当电力系统中的某一装有继电保护装置的元件产生故障时,继电保护装置可及时的使故障元件与电力系统相脱离,从而最大程度上降低故障元件本身及电力系统的损坏。然而系统在突发事件的应对方面的稳定性与灵敏度较其它发达国家还有很大差距,因此,应提高我国电流速断保护装置的技术水平,加快继电保护的网络化和智能化建设,以确保我国10kV供电系统的稳定、安全运行。

参考文献:

[1]李秀红. 10KV供电系统的继电保护[J]. 内蒙古煤炭经济. 2011(01)

[2]苑世光. 浅谈10KV供电系统的定时限过电流保护[J]. 黑龙江科技信息. 2008(21)

继电保护与电气自动化范文第5篇

关键词:继电器;电气工程;自动低压电器;应用

中图分类号:TM585

前 言

在电气工程中,继电器是不可或缺的设备之一,它的应用能够进一步降低自动化低压电器设备故障的发生几率。而想要使继电器充分发挥出自身的保护作用,应当进行合理选型,并确保继电器的运行可靠性。只有这样,才能使继电器在电气工程中的作用获得最大程度地发挥。

1 继电器的基本原理与作用

1.1 继电器的基本原理

现如今,随着科学技术水平的不断提高,电气系统的自动化程度也越来越高,继电器作为电气系统中较为重要的组成部分之一,其应用也越来越广泛。就继电器而言,其常常被用于

保护电气设备的运行安全性,如变压器、马达、发电机以及输电线路短路保护等等。当电力系统出现异常故障时,继电器可以向值守人员发出告警信号,而想要确保继电器能够发挥出应用的作用,其应当具备以下功能特性:其一,安全性和可靠性,这是一个合格的继电器必须具备的特性,只有这样才能避免继电器本身出现故障;其二,快速反应能力。能够以最短时间消除可以消除的所有故障;其三,选择性。继电器应当能够确保电力系统始终向无故障区域进行供电;其四,灵敏性。电力系统运行过程中的参数在正常运行和发生故障情况下的区别是非常明显的,继电器就是通过这些参数的具体变化情况,在反映和检测的基础之上对电力系统的故障性质和故障影响范围进行判断,并作出相应的反应和处理。

继电器的基本工作原理如下:由取样单元负责将被保护设备运行过程中的物理量经过电气隔离并将之转换为继电保护装置中比较鉴别单元能够接收到的信号,然后根据该单元的要求进行相应处理,再按照比较环节输出量的性质、大小以及组合方式出现顺序的先后确定出继电保护装置是否需要动作。

1.2 继电器的作用

继电器本身具有以下优点:标准化程度高、通用性好、能够使电路简化等,正是因为继电器的这些优点使其被广泛应用于工业自动化控制以及家电产品等领域当中。但是有些专家认为,在电子元器件当中,继电器是最不可靠的一种装置,并且在整机的可靠性设计当中,往往将继电器、可调电感器以及电位器等装置列为不用或是少用的元件。然而,因为继电器在控制电路中有着十分独特的电气和物理特性,其断路状态下的高绝缘电阻以及通路状态下的低导通电阻是其它任何电子器件都无法比拟的。为此,确保继电器的运行可靠性成为业界研究的重点课题之一。电子元器件的可靠性应当包括以下两个方面的内容,即固有可靠性和使用可靠性。其中前者是元器件可靠的基础,一般都是通过设计和制造厂商来进行控制,以确保制造出来的元器件能够达到要求的可靠性等级,而后者则是整机可靠性的基础,必须阐明的是,使用高可靠质量等级的元器件却并一定能够制造出高可靠性的整机,这是因为里面涉及到使用可靠性的问题。使用可靠性具体是指按照各种元器件的特性通过可靠性设计方法,最大限度地发挥出元器件固有可靠性的作用,进而达到整机的可靠性要求。与其它电子元器件相比,继电器是由机械传动和电磁两个部分构成的,这种结构更加复杂,因而继电器的可靠性就显得相对较差,若是实际使用过程中采取一定的防范措施,则能够使其达到理想中的效果。此外,继电器可靠性不高除了自身质量原因外,使用方法不当也是一个原因。因此,想要使继电器能够充分发挥出自身的作用,不但应当进一步完善自身的质量,而且还必须合理使用。

2 继电器在电气工程中的应用

2.1 电磁类继电器的应用

1)电磁继电器的特性。此类继电器的主要特性是输入-输出,也就是我们通常所说的继电特性,其特性曲线如图1 所示。当继电器的输入量X 由0 增至X2 之前,继电器输出量Y 为0 ;当输入量X 增至X2 时,继电器吸合,此时输出量为Y1,如果X 继续增大,Y 保持不变;当X 减小至X1 时,继电器释放,此时输出量由Y1 变为0,若是X 继续减小,Y 值均为0。图1 中的X2 是继电器的吸合值,想要使继电器完成吸合这一过程,输入量就必须≥ X2 ;X1 是继电器的释放值,想要使继电器完成释放这一过程,输入量则必须≥ X1。继电器的返回系数则可以用f K 表示, 1 2 K X / X f = ,这是继电器较为重要的一个参数,并且f K 本身是能够调节的,这样一来即便输入量的波动变化较大也不会引起继电器误动作。通常情况下,欠电压继电器对返回系数的要求相对较高, f K 值应当> 0.6。假设某一继电器的f K =0.66,吸合电压为额定电压的90%,那么当电压低于额定电压的50% 时,继电器便会释放,

进而达到欠电压保护的目的。此外,继电器的吸合与释放时间也是比较重要的参数之一。其中吸合时间主要是指从线圈接受电信号到衔铁完成吸合过程所需要的时间,而释放时间则是指从线圈失电到衔铁完全释放所需要的时间。通常情况下,继电器的吸合与释放时间为0.05-0.15,该数值的大小对继电器的操作频率会有一定的影响。

2.2 非电磁类继电器的应用

非电磁类继电器又被称为热继电器,即FR,这种类型的继电器常常被用于电力拖动系统当中电动机负载的过载保护。在实际运行过程中,电动机常常会出现过载的现象,一般时间

较短、绝缘绕组在允许温升范围内的过载是可以经常出现的,但是若过载情况比较严重、时间较长,便会引起电动机绝缘过早老化,这样会导致电动机的使用寿命缩短,如果过载情况非常严重,还有可能造成电动机烧损的后果。为此,对电动机进行过载保护就显得非常重要。FR 主要由双金属片、热元件以及触点等组成,其中热元件是由发热电阻丝制作而成,双金属片具体是由两种热膨胀系数不停的金属辗压而成,当双金属片受热时便会出现弯曲变形的情况。实际使用时,可将热元件串接到电动机的主电路上,同时将常闭触点串接在电动机的控制电路当中。当电动机处于运转的状态时,虽然热元件所产生出来的热量也会使双金属出现弯曲的情况,但是并不足以是FR的触点发生动作;而当电动机过载时,双金属片的弯曲位移便会随之不断增大,在这一过程中会推动导板是常闭触点断开,进而起到切断电动机控制电路的作用,这样便不会造成电动机因过载损坏。通常情况下,FR 动作之后不会自动复位,需要等待双金属片完全冷却后手动按下复位按钮才会恢复到原位。FR 动作电流的调节可通过旋转凸轮到不同的位置来实现。

参考文献: