首页 > 文章中心 > 地震勘探原理

地震勘探原理

地震勘探原理

地震勘探原理范文第1篇

关键词:多分量技术 勘探原理 实际应用前景展望

一、多分量地震勘探技术概述

40年前,地球物理学家开始对多波地震勘探进行研究,特别是在学者证实了裂隙诱导各向异性的特征和横波分裂的存在后,地震波的各向异性就成为了学术界研究的方向和热点,同国外相比我国的地震各向异性的研究起步较晚,在进入到改革开放后才逐步发展起来。具体到多分量地震勘探技术来讲,近10多年来,主要集中在以下领域的研究拓展:

1、多分量地震勘探原理

多分量地震波的勘探原理是利用地震产生的横纵波对勘测的区域进行回波信息采集。大量的多波技术研究仍然是针对转换波采集,激发采用常规纵波震源,接收采用多分量数字检波器,以获得纵(P)波和转换(P-S)波。地震波在岩层中以球面形式传播,当遇到岩层物性界面的时候就会一部分反射,一部分发生折射进入前方的介质。反射和折射回来的信号被高灵敏度的多分量数字检波器采集并传送至中央处理器,此时就可以根据地震波在不同介质中的传播特性差异来进行分析,并利用综合解释系统来反演地下地质结构。

针对煤田勘探来讲,由横波速度比纵波速度慢可看出,对于厚度较小的同一岩层,横波从某一岩层顶传播到其岩层底所需的时间比纵波长。由于煤层厚度一般不大,因此,根据横波来分辨煤层的能力要比纵波强。理论与试验表明,综合应用纵波和横波资料可获得更准确的反映构造和岩性的参数,

2、多分量的数据采集

多波多分量地震研究首先要解决的是信息采集技术,其采集的重点是对转换波测量。目前,在三分量野外数据采集设备的研究和发展方面,已经取得了突破,多道遥测数字地震仪和多分量数字检波器相继问世。为了解决陆上静态校正问题,研究出多波微测井等技术。3D/3C地震观测普遍采用的是宽带方位块状检测系统,如今已经出现了针对转换波勘探的商业用软件。此外,针对海洋地震的三维四分量海底电缆也已经得到了广泛的应用。

3、多分量的数据处理

采集完成后就需要对多分量数据进行处理,通常资料处理包括了:整个波场的处理,如对波场进行分离;P波的时间、深度域的分析处理;P-SV波的时间、深度域的分析处理。转换波处理与P波处理十分相似,但也存在着不同,因为转换波的射线路径是不对称分布的,所以不能用P波处理技术完全分析。另外,横波的静校正量要大于纵波,这就会对VP/VS和近地表方位的各向异性分析产生影响;因为波场存在耦合,所以不能对横纵波进行绝对的分离,从而影响处理的效果。

二、多分量地震勘测技术的应用实验

以某地区的多分量二维地震勘查区为例。

1、数据的采集

为了勘测该区域的地质构造及煤层赋存情况,对该区域进行了常规二维地震勘探后又在预选区域进行了多分量地震数据采集技术应用实验。区域内的地表主要为田地、林地;激发岩层性质为黄沙、黄胶泥、泥灰砂等。按照多分量地震勘探的方法和技术要求进行多条二维地震测线数据采集。

在实验开始前首先进行了施工方案的前期论证,根据实验区域的纵波资料和测井资料设计地质模型,进行多分量地震数据的正演工作,然后根据纵波、转换波产生机理差异,进行纵波和横波联合观测系统的设计。在参考目的层深度的前提下,利用理论计算形成纵横波的反射系数与排列长度的曲线关系,从而设计出相应的最大排列长度。根据不同层面上确定的最佳数据接收窗口,可以知道纵波炮检范围在0-3000m,转换波炮检的距离为400-4500m,在此基础上设计了若干观测系统和施工参数,并进行了现场试验,以此甄选出最佳的观测系统。

如图1所示,其中一条D01测线接收的三分量地震记录。从能量分析上看,Z分量所形成的能量最强,X分量次之,Y分量能量为最小。从X分量上看,标示出的T06、T1、T2、T4层转换波最为明显,资料的质量也较高。

图1:D01测线三分量地震原始记录

2、多分量地震勘探生成的资料的处理和解释思路

对多分量地震资料的处理和解释的基本流程:1)制作合成的地震波资料记录,因为纵波在垂直方向射入不能产生转换波,所以主要根据横波测井资料制作不同的炮检距的记录,然后进行动态校对处理,最后利用叠加得到转换波的合成资料。处理情况如图2。

图2:转换波地震记录

2)波形识别与层位的对比,在合成地震记录的标定基础上,确定纵波和转换波所控制的层位。和常规的纵波地震资料相比,多分量地震资料首先应当对波形进行识别然后再对多波层位进行标定。主要采用的技术措施就是利用多波的极化特征、速度传播规律、频谱特性、振幅差异、炮检距离等相关特性对采集到的波形进行识别和分析。层位对比是纵横波资料联合解释及对岩层性质参数提取的关键问题。

3)对时间进行压缩,根据控制层位置将转换波压缩到与纵波相一致的时间尺度,通过压缩时间的对比,可以获得相应的纵波和横波之间明显的对应关系。

4)对所属的剖面属性进行计算,即对纵波、横波振幅比剖面或者泊松比等属性剖面进行计算。从图3中可以看出D01测线部分多分量时深剖面图。

图3:经时间压缩后的D01测线多分量剖面

从剖面上看,转换波剖面与纵波剖面相比,所反映的地下地质结构变化不大,但转换波剖面对目的层中的岩溶管道裂隙及一些微小构造异常等反应的较清楚。根据纵波速度与岩层构造中的孔隙度、孔隙中的流体性质有关,纵波在含气、流体层中传播,速度有所降低,导致成像不好,能量减弱,而横波在通过含气、流体层时,速度基本不受影响,因而转换波能量基本保持不变。通过纵横波剖面相互对比,并参考已知地层资料揭示的内容,证实在该段目的层中存在着裂隙发育和微小断层。

三、与单一纵波地震勘探相比多分量地震勘探应用中的优势和难点

多分量地震数据的采集和分析都是为了更好的对数据进行利用,以此达到准确勘测的目的,在解译和利用方面除了常规的层位解译外,主要的资料应用优势还包括以下几点:1)转换波对成像的质量起到了优化作用,转换波在穿过储气层、盐丘等介质时,成像有特有的优势效果。横波基本不会受到充气沉积岩的散射和衰减的干扰;2)用纵横波的振幅差异分析岩层的类型和含油气情况;3)流体描述,因为横波不受孔隙中流体性质的影响,可以识别孔隙中是否含有流体;4)采用横波分裂进行裂缝和各向异性的分析,当横波通过各向异性介质的时候,会出现分裂,形成快横波和慢横波,其偏振性、时差以及振幅差异等有益于对裂隙进行定性和定量的分析和评估; 5)横波联合对地震数据资料进行反演,以此消除单一波形对地震反演的欠缺,即利用横波信息在一定的程度上缓解只用纵波推演的多解性。

除了上述的应用优势以外,目前来说,多波地震勘探也存在着不少难题:(1)相位对比比较困难;(2)层位追踪对比存在误差;(3)“同分辨率滤波”法很难将纵、横波剖面中的相位完全对应。此外,多波地震勘探本身还存在着许多技术难点,如横波剖面的信噪比较低,处理时存在横波的静校正、共转换点的确定、VVO以及纵、横波分离等尚待研究解决的问题。

四、结论和应用前景展望

多波地震勘探解决了很多常规单一纵波勘探难于解决的地质问题,在小断层识别、储气下地层解释、纵横波剖面联合解释油气层方面和某些薄煤层地区有着自己独特的优势,而且在实际应用中,对比证明其对泥岩、砾岩、砂岩等都有较好的辨识能力,完全可以为勘探结论提供必要的参考。

特别是近10年来,随着多分量地震勘探技术在理论和仪器上的发展,多波勘探方法正在成为一种新兴的、具有广阔应用前景的勘探技术。在煤田勘探中引入多波地震勘探,将会实现从找构造为主,发展为地层地震和岩性地震,达到构造精细勘探和岩性预测,解决煤矿综合机械化开采所要求查明的地质问题,开辟地震勘探在煤层气、勘探、煤炭地下气化和矿井岩溶水防治等应用的新领域。

参考文献:

[1]胡朝勇,朱明,修中标.多波多分量地震勘探的现状与发展趋势[J].科技信息, 2009,(26) .

[2]季玉新,魏修成,陈天胜.关于多波多分量地震资料极性问题的讨论[J].石油物探, 2010,(01) .

[3]刘军迎,雍学善,高建虎,杨午阳.多波多分量地震波场数值模拟及分析[J].石油物探, 2007,(05) .

地震勘探原理范文第2篇

关键词:煤田勘探;高分辨地震技术;应用

一、煤田地区构造概述

本文所研究的煤田从整体的走势上为西北方向,煤田的倾斜度为15°左右。煤田的断裂带主要为正断裂层,断裂层的走向为西北走向,煤田的总面积为40平方千米,断层的长度在10米以上。

二、我国煤田勘探工作常用的勘探方法

当煤田周围存在水系、老窑、火烧区、含水带时,通常采用健地面电磁法进行勘探。在进行巷道顶板含水层的探测时则采用全方位电磁法。这三种勘测技术是在煤田的勘探中最常使用的,但随着煤田开采的规模不断扩大,这三种勘探方式已经无法满足实际的煤矿开采,高分辨地震技术有效的弥补了以上这三种勘探方式的缺陷和不足,在功能的全面性上有了进一步的提升,在煤矿的勘探中有更好的效率和质量,成为了煤矿勘探中使用最为广泛的技术之一。

三、煤矿勘探工作现状分析

我国的煤田勘探技术从无到有只经历了十几年的发展历程,从二维的勘探方式到三维的勘探方式,在数据的收集、处理和分析技术上已经有了明显的提升,尤其是三维勘探技术的应用,对煤田开采的安全性有了显著的提升,因此受到了许多煤矿开采企业的重视。但是,当前的煤田勘测中仍然存在一些缺陷,例如工作面的布置不合理,巷道、矿井安全性能差等,这些问题都对勘探结果的精度造成了一定的影响,采取新的勘探技术保障勘探精度已经迫在眉睫。

当前,我国的煤田勘探存在一些明显的问题。首先,在观测系统的设置上,没有充分的数据支持。许多煤矿企业套用固定的观系统,在进行野外勘测时没有对相关的设备和技术进行调整,导致许多勘探设备无法真正发挥作用。其次,测量资料的准确性没有保障,在设备放置完成后时常受到随意的移动,资料的收集完成后没有进行及时的分析和处理。在激发点的布置上也缺乏合理性,许多勘测点设置在人口密集的地区,给当地人民的正常生活造成了不便。在纵横分辨率上存在很多断层和缺陷,偏移成像中反射点偏射现象严重。

四、高分辨地震技术在煤田勘探中的应用分析

(一)地震勘探数据频率决定地震采集观测技术的应用。煤田勘探技术的应用原理是根据煤田地震勘探过程中获得的数据进行地震纵横波的确定。观测区域的直径决定了地震勘测带的分辨率,而地质的厚度则决定了勘探的纵向分辨率。因此可以说煤田勘探数据对地震纵横向的分辨率起到了直接的决定作用。根据调查结果显示,煤田地震勘探数据的频率越高,地震纵横带的分辨率也越高。此外,煤田地震勘探的频率还会对数据采集系统的工作效率产生较大的影响。

(二)准确认识煤田中各种形态的采空区。与传统的勘探技术相比,高分辨率的勘探技术能够更好的区分煤田中各种形态的采空区。在煤田的勘探过程中利用高分辨地震技术能够快速的识别煤田中的断层和中间层,还能对长度大于20米的陷落带也进行有效的识别。通过对收集到的图像和信息进行辨认,可以对采空区的形态有更好的掌握。

(三)大量的接收地震波场的有效信号。高分辨率的地震技术能够结合单个频率的电磁波,接收大量的地震波信息,并通过电磁波的形式将这种信息再传递出去,再次获取煤田中的原始信息。通过这样的过程,可以确保数据的客观性和有效性。高分辨率的地震技术在煤田的勘探过程中可以对地质状态的相关信息进行充分的掌握。

(四)查明煤层中的小断层。煤田地震勘探技术的主要作用是对煤田的地质状况进行勘探。高分辨的地震勘探技术能够有效的扩大观测的范围,真实的反映出煤田的地质结构,并显示出煤田地质的三维特征。利用高分辨地震技术可以对煤田上细小的断层和走向变化进行分析,提高了地质分析的精度。在较浅的煤田或平原地区的煤田中,应用高分辨地震勘探可以使勘探的精度达到95%以上,在山区或地质较为复杂的地区,勘探的精度也可以达到70%以上。

(五)圈定陷落柱及采空区的范围。陷落柱是由于非构造变动而产生的一种地表形态。在陷落柱内存在较多破碎的石块和泥浆。当地震波穿过陷落柱时,反射波的传播速度会明显的降低,从而发生时间上的延迟。可以通过时间上的延迟来判断陷落柱的形态和范围。当前,地震波对于陷落柱的勘探还有一定的大小限制,通常只有当陷落柱的长轴大于25米时才能通过地震波检测出来。

五、高分辨地震技术对煤矿建设与生产的作用

高分辨地震技术扩大了对煤田的勘探范围,为煤田的开采提供了有效的数据保障,能够更好的指导煤矿开采工作的进行,对于煤田开采的优化有着极大的作用,还能提高煤田开采的效率和质量。通过应用高分辨地震技术,还可以对矿井开采过程中的数据进行更好的分析,从煤田的地质构造,深度等方面进行分析,确定断层、陷落柱、采空区等的位置,从而对工作面的设置进行适当的调整,是综采面的设计更加的科学,提高煤矿开采的产量。

六、煤田高分辨地震技术的发展前景

当前,煤炭仍是我国使用最为广泛的资源,在未来的30年时间里,我国的能源结构不会发生明显的变化,这意味着煤矿仍将作为我国的主要能源,这也给我国的煤矿采矿行业带来更多的挑战和机遇。煤田勘探的高分辨地震技术主要应用于浅层的煤矿勘测,能够为煤田的开采提供更全面的地质信息。未来,高分辨地震技术将获进一步的发展和完善。首先从设备方面,高分辨地震技术将逐渐实现仪器设备的数字化。与之相配套的数字化程序软件也将得到设计和使用。未来还将重点对山区构造勘探的精度和煤层的分辨率进行完善,将勘探的误差控制在15米以内,勘探的精度提高到90%以上,并且对老窑采空区、古河床、岩浆层等地质构造也进行有效的勘探。高分辨地震技术还将应用于岩性的分析中,将岩性进一步划分为发育带、富水带等。

结语:高分辨地震技术是一种以地面电磁勘探为基础的矿井全方位勘探技术,能够对媒体中的断层、陷落柱、采空区等进行有效的勘探,符合当前煤矿产业对煤田勘探的要求,能够有效的提高煤矿开采的效率和质量,并确保煤矿开采的安全,是煤矿企业在未来发展过程中应当进一步发展和重视的勘探技术。

参考文献:

地震勘探原理范文第3篇

1、选择勘探施工方案的依据

根据以往工作成果资料分析认为,井田内断裂构造格架尚不清楚,勘探区内及附近各有一个钻孔可供利用,首采区的选择依据不充分,虽然三维地震勘探要比二维地震勘探获得高数十倍的数据量,但单位面积上的勘探成本较高,所以,目前三维地震工作多是在经钻探证实确有开发价值而二维地震勘探又难以查清地下地质情况的煤田采区使用。若在盲目进行三维地震勘探,可能造成费用的浪费或达不到预期的勘探目的。以常规的二维地震勘探方法要完成本勘探任务,需要设计物理点约3000个;而以3线1炮制线束状规则观测系统的伪三维地震勘探方法只需要物理点约700个就能达到勘探的目的。

2、数据采集方法

根据本勘探区的地质条件及仪器设备等特点,施工前开展了广泛的试验工作和低速带调查工作,较全面的了解了区内的地震地质条件和有效波、干扰波的发育情况、表浅层低速带的纵横向变化情况,最终确定以3线1炮制线束状观测系统进行施工,观测方法采用中间放炮法。观测系统的主要参数筱盖次数12次,CDP网格,5m×100m,接收道数3×96=288,接收线距200m,接收道距10m,炮点距40m,仪器采用SN388多道遥测地震仪288道全频带接收,采样间隔为1.0ms,记录长度为1.0s,检波器采用SJ60HZ检波器,组合形式:3个检波器串联。地展波的激发采用高爆速成抗水环保型震源药柱,药量一般为3Kg。激发孔均为单孔浅井,深度一般为8~15m。雷管采用地震勘探专用瞬发雷管。由于工区内断裂构造以北东东向和北东向为主,二维地展勘探

图1伪三维地震观测系统示意图

线束沿东西方向布设,共布置伪三维勘探线束10束,二维勘探测线30条,联井剖面1条,完成物理点658个。从获得的野外原始单炮记录可见,初至波组清晰,勘探目的层波组出现在400~500ms左右,有3~4组波组,其波组频率较高,波形较稳定,连续性较好,能量强。干扰波主要有声波和面波,主测线的声波和面波较发育,对有效波组造成了影响,但对目的层波组面貌并未形成较强干涉,旁测线的声波和面波出现在600ms以后,对目的层波组没有造成丝毫影响。经初步处理后,目的层波组齐全、能量强,信噪比较高,总体而言单炮记录质量良好。为以后的资料处理和解释工作提供了良好的第一手资料,同时也说明施工中采用的工作方法是可行的。

3、资料处理与解释

在数据处理过程中采用的具体流程为:①预处理,主要是空间属性的建立和道编缉;②原始资料分析,确定原始资料的有效频带约为20~150HZ,目的层有效频带50~90HZ;③静校正处理,本勘探区地形平坦,覆盖层较厚,低速带速度变化相对较大,利用初至折射静校正软件进行处理,剩余静校正通过地表一致性剩余静校正计算;④干扰波去除,对各种规则或随机噪音的去除采用两种手段,即剔道和去除规则噪音;⑤反褶积测试,采用了地表一致性反褶积法,提高了资料的信噪比和分辨率;⑥精细速度分析,得到较准确的速度场;⑦叠后偏移成像,采用一步法偏移软件OUTMIG进行,由于全区地质构造复杂,地层起伏幅度大,仅有两个钻孔,进行全区叠后偏移处理难度较大,出现局部波组复杂化,故未进行全区偏移处理;⑧修饰性处理,叠加模块获得的地震时间剖面尚残存一些水平多次波等规则干扰波和随机干扰波,利用去噪模块(FXYNAT)进行去噪,其效果良好。

4、勘探成果及勘探前后资料对比

4.1勘探成果

①查明了主可采煤层的展布特征,顶底板埋深及其起伏形态,总体表现为斜穿勘探区的向斜构造,轴向NE,两翼基本对称,此平面展布特征在各剖面图中表现亦十分明显。如LJ联井剖面该剖面由东西向测线和南北向联络线组成,穿越了康1和85~26两钻孔,其煤层的垂向分布特征清晰可见,地震地质剖面的成果与钻孔成果吻合较好,与勘探区内煤层平面展布特征相一致。

②共解释断层7条,断层展布特征以NE向为主,NW向次之,近SN向断层1条。其展布特征与区域构造基本吻合,其中落差最大的两条断层DF2、DF7。DF2。断层位于勘探区南部,最大落差达265m,断层产状:1350~1670∠750~840,区内延伸长度1700m,向南、向西延出勘探区。DF7断层位于勘探区北部,最大落差达476m,断层产状:2900~3400∠770~850,区内延伸长度3300m,向东、西延出勘探区。另外,DF1、DF3、DF4、DF5、DF6断层的最大落差分别为20m、22m、40m、30m、115m。按断层的性质分类:正断层4个,逆断层3个。按控制程度分类:可靠断层3条,较可靠断层2条,不能评价断层2条。图2为DF6断层在时间剖面上的反映,时间剖面上显示清晰,同相轴错断明显。

③主可采煤层剥蚀无煤区1处。

4.2勘探前后构造对比

勘探前,3#煤层展布形态为NE向展布,背斜构造,等高线变化均匀,两翼对称,勘探后3#煤层展布形态为NE向展布向斜构造,等高线变化扭曲相对剧烈,两翼对称。由此看来不仅勘探前后构造特征相差较大,而且局部构造亦相差甚远,说明经伪三维地震勘探后局部地质构造表现的更为清晰、直观、详细。

勘探前后断层对比,勘探后DF2与勘探前二岗

图2 DF6定断层在时间剖面上的显示

山南正断层基本吻合,勘探前确定断层落差210m,勘探后断层落差226~265m,仅在该断层的西部展布位置略有差异。勘探后DF7与勘探前正断层对应,勘探前断层落差250m,勘探后断层落差为201~463m,勘探前后DF7平面分布特征整体向东南方向偏移约300m左右,断层展布形态也略有差异。另外,在勘探后新解释断层5条,断点3处。3#煤层剥蚀无煤区1处。从以上分析可以看出,地震勘探前后3#煤层的展布特征和断裂构造发生了巨大变化,局部的细微构造特征信息更为丰富,说明伪三维地震勘探的地质效果良好。

5、结语

地震勘探原理范文第4篇

1.1钻探工程

煤田普查与勘探工作中,钻探工程是极其重要的勘探技术手段在勘探阶段应用尤其普遍。钻探普查在老矿区的深部和表土覆盖很厚的平原地区是勘探中最重要的技术手段。地球物理勘探确定的和经过地质预测推定的含煤区都必须依靠钻探去圈定,揭露和验证。

1.2坑探工程

坑探工程包括探井、探槽、窑、巷的调查清理。坑探工程研究表土覆盖的含煤地层,进行煤质研究与煤层取样,了解煤层的产状要素以及地质构造等,在半暴露区及暴露区都是不可缺少的。少数资源缺乏而水文地质条件、地质构造及煤层变化又特别复杂的地区,为了保证建井及生产,将施工分为勘探井、生产巷道,边探测边开采。坑探工程一般都在地质填图前施工,便于进行地表地质研究与观察提高地质图的研究程度和测绘精度。

1.3遥感地质调查

遥感地质是研究地质科学的一种新兴手段,应用在遥感技术在地质中。遥感地质调查有以下几个特点:

①遥感技术在地质调查过程中的具体应用就是像片的判读。图像摆脱了过去那种繁琐劳动实现了编录的现代化资料传导、处理、解释、成图均自动化进行。实践证明可见光和多光谱卫星象片的判读航空像片在找矿标志、动态分析、地质构造、地质填图的研究是一种有效的技术手段;

②较少受交通和自然条件的限制,具有成本低、速度快、效果好、效率高等优点能快速完成地质调查和火山、地震区、高山和海洋的调查;

③获得无记录和感知的地质信息;

④比较全面的取得地质资料,扩展地质观察的连续性,点、线间的观察也很详细,克服地面视域阻隔和其它干扰;

⑤地下和地表一定深度的地质矿产情况能客观、准确、形象地得到了解。国际常用的遥感技术有:红外遥感、电视遥感、雷达遥感、多光谱遥感、全息摄影遥感、激光遥感、摄影遥感等。

1.4高分辨率数字地震勘探技术

经过计算机的数字处理技术利用数字方式记录质量的地震信号,获得高分辨率的地震勘探效果。高分辨率数字地震勘探技术1985年至今在地震补充勘探实践中和地质综合勘探中得到不断发展和完善。在国家“六五”科技攻关重点项目“数字地震勘探技术的研究与应用”的基础上逐步创新形成的高分辨率三维数字地震勘探技术实现了从模拟地震勘探到数字地震勘探的变革,数字处理获得高分辨率震勘探效果并以数字方式记录高质量的地震信号,包括在数据采集上采用准确点位(检波点、炮点)、合适的井深、两高(高频低截滤波、高频检波器)及四小(小组合基距、小采样间隔、小药量和小道距);数据处理上强调精确的偏移和叠加、子波长度压缩及噪声衰减,最终获得宽带的高频信号、高信噪比,使得小型煤田构造异常凸显。高大容量高速计算机的发展使三维地震勘探技术得到了迅速发展。随着人们处理地震勘探数据的增多在待开发井田的业主和煤矿中三维地震勘探技术逐渐在煤田地质勘探中广泛应用,地震补充勘探可以查出规模较小的褶皱、异常体及断层,使设计部门能够及时调整井筒位置和生产能力、改变开拓方案,优化并修改设计,修改采区设计,调整矿井边界,修改巷道位置等,如摄氏度、工作位置及走向。这些成果避免了地质资料带来的直接经济损失并且保证了高效高产矿井的高质量高速建成。一场全国性的采区地震和地震补充勘探已经兴起,目前,该项技术被许多地方煤矿业和亏损煤矿及煤矿企业承认和采用,得到广泛承认。近年来,三维地震勘探技术的提出和发展很大程度上的提高了探测小构造的程度。都是因为大容量高速计算机的发展和用户要求的逐渐提高,人们对海量的地震勘探数据可以进行处理。二维转向三维的趋势已经不容置疑,一些待开发井田的业主或煤矿开始要求进行三维地震勘探工作,那些条件较好却较旱的矿区也大受益处。三维地震勘探技术通过增大卞频波来探测更小的断居、提高分辨率解释地震勘探成果、研究总结勘探方法、完善山区地震勘探方法、进一步拓宽和发展三维勘探技术,为煤炭生产用户服务。三维地震勘探由于技术成熟度低、成本高、工作量大等因素,通过推广约束反演的使用、模型技术的广泛使用、山区三维地震问题的解决、深度或代替时间域、体积解释技术、现场实时处理的应用、多道三维地震勘探技术的开发、横纵波联合勘探的推进等一系列方法得以逐步发展完善,进一步提高精度、降低成本、提高工作效率、最大限度满足用户需求。

1.5丰富煤田地质勘探技术的多样化

选用综合勘探技术是河南省煤矿勘探的发展方向,因为在平缓平原和低山丘陵区等地区,为了提供实效又经济的综合勘探方法,首先需要了解勘探区的基本形态和构造进行地面物探,再选择合理的钻探深度进行布孔。综合勘探技术使地质勘探技术多样化的目的在于提供详细的、实用的构造图和应力场资料来提高河南省煤田地质勘探技术,为煤田地质设计、施工和开采提供最佳的开采方法和施工方向。信息技术的快速发展和煤田地质勘探技术的信息化,是由于建设信息技术神经网络、多媒体、人工智能、大容量存储和并行分布式处理方式的高新技术,现已在煤田地质勘探中推广应用。将此推广人机对话方式分析、处理、解释用和显示大量的地质勘探数据到煤田地质勘探数据处理过程中,选择相关参数作预处理并提高勘探精度。

2结语

地震勘探原理范文第5篇

三维勘探技术涉及到学科种类众多,如物理学、计算机学等,三维勘探技术是在二维勘探技术的基础上发展起来的,主要利用三维技术分析研究地震波信息,从而确定地质条件。三维勘探技术比二维勘探技术的优点更多,它所获得的空间数据比较大,信息点的密度比较高。二维勘探技术所采集的数据密度不够高,在实际工作中,无法准确对数据地点进行定位和甄别,影响了数据采集的质量。

2煤田三维地震勘探技术应用的环节

2.1野外地震数据的采集

所谓野外地震数据采集就是指利用先进的地震勘探数据采集设备,对煤田以及周边进行地震数据收集。数据采集人员在进行地震勘探数据收集时要能保证数据的准确性,因为只有保证采集到的数据的准确性,才能为以后的数据分析和处理提供可靠的数据信息,从而确保数据分析和准确的准确性,这是环环相扣的。在野外地震数据的采集过程中,要对勘探区域的钻孔地点进行弹药的预处理。处理过程如下,首先把弹药放在特定的位置,随后准确记录爆炸的位置和进行收集接收的位置。其次,还要记录在爆炸中产生的地震波折射数据。最后,要分析研究地震波折射数据,并据此得出煤田地质结构的相关信息,完成煤田勘探工作。

2.2数据勘探作业的处理

煤田的三维地震勘探工程的复杂性和综合性比较强,涉及到多个学科。地震勘探的各个环节都是紧密联系在一起的,但同时每个环节都有其独立性,是在相对独立的方式下进行的。传统的地震勘探技术有着局限性,已经无法满足现代勘探发展的需求。三维地震卡特技术相比于传统二维地震勘探技术而言,具有无可替代的优势,三维地震勘探技术能收集到数据空间和数据密度都比传统地震勘探技术获取的空间和密度都要大。数据勘探作业的处理在三维地震勘探技术中起到了重要的作用,能对收集到的地震波折射数据进行科学合理的分析和处理。第一,就是要对收集的数据进行准确度检验,以此来确保数据的可靠性和准确性;第二,就是要在完成各个环节的工作后,根据波点的变动绘制出波点分布图。

2.3地震资料的解释

解释就是利用地震运动学和动力学知识解释地震数据信息,这种技术是对地震、测井以及地质信息的综合运用。三维地震勘探技术收集到的数据包含了大量的地质信息,但主要是运动学信息和动力学信息。三维地震勘探技术收集的地震资料主要包括两个方面,分别是地质结构和矿物资源。一方面,要分析和处理采集到的地震数据信息,并对比其他图表,找出数据信息的特点,再依照分析研究后的数据情况得出地质结构特点,提高勘探结构的效率。另一方面,利用采集到的资料,对煤田中的各类矿物资源进行分析和判断,并根据记载资料进行科学的分类,同时做好相关的记录报告工作。

2.4勘探资料的处理

在煤田勘探的应用过程中,需要利用三维地震勘探技术处理大量的图片和资源。现在的处理方式主要有两种,一种是利用室内影像对资料底图的设计方式进行深加工,另一种是展现高程资料图片。在三维地震勘探的过程中,对地质图及叠加,常常采用资料底图的设计方式。该方式存在一定的优点,也存在一定的缺点。优点是这种方式能全面表现出煤田所在区域地形的高度差,缺点就是这种方式会存在底图形不好、准确度不高的问题。正是如此,所以要用室内影像对底图形进行进一步的加工处理。在地质结构比较复杂的煤炭底层和断层进行勘探作业时往往使用高程资料图片,这种处理方式可以将煤田较为复杂的地表图像转化为较为清晰的数字表达形式。这种表达方式可以更加准确的表现出煤田地质结构特征,提高资料处理的效率和便捷。

3煤田三维地震勘探技术作业方法的应用

3.1合理控制煤田层小断面及起伏形态

在三维地震勘探时,根据三维地震勘探区域的地质特点,要将起伏形态中目的层的深度误差需要控制在1%以内,幅度范围尽量控制在5m以外的小曲面内。这样才能确保煤田起伏状态勘探的精确度达到相关要求的标准,在85%以上,有效控制控制煤田层小断面及起伏形态。我国近年来在煤田勘探技术方面取得了巨大的进步,通过勘探人员不断的实践和创新,现如今已经良好掌握了反射点的实际归位,但就现阶段的勘探精度而言,煤田勘探的精确度水平仍有待提高。根据相关调查显示,在3m到5m的小范围煤田层断面进行勘探,精准度的平均值在50%左右,如果在地质情况更为复杂的地区进行勘探,那么煤田层的断面勘探精确度更低,在20%以下。

3.2地震勘探相关煤层的厚度变化的研究

低速薄层是煤田油层的标准,在一定的范围内,地震波振幅谱和煤田反射振幅谱的一阶比值与煤层的厚度成正比。利用地震勘探技术获取煤层的厚度,只要保证钻孔的数量以及典型的比例系数,这样的方法更加简单和便捷。在进行煤层厚度勘探时,一般使用的方法有三种,分别为分析统计法、普矩法和反演直接法。其中,最常使用的是普矩法,这种方法的主要作用就是用在继发性的削弱非均匀盖层上,并在特定条件下会对煤田层的横向变化产生影响。

3.3对采集陷落柱的范围

采集陷落柱属于煤田的表面构造,附属于非变动构造堆积的破碎岩块。采集陷落柱出现的原因是,高速层在向低速层进行转变的过程中发生了时间延迟。对于采集陷落柱坍陷深度以及几何变形,可以利用三维勘探技术的地震构件图的时间剖面进行适当的推算,以此来实现提高勘探数据精度的目标,使其性能提高80%以上。在地质雷达、煤田勘探等方面,我国煤田三维地震勘探技术采用透坑方式。三维地震勘探技术已经在我国煤田勘探中取得了广泛的应用,正在发挥出越来越重要的作用。

4煤田三维地震勘探数据的处理措施

使用三维地震勘探技术进行煤田勘探后的数据处理会受到较多因素的影响,如信噪比,一旦勘探时的背景噪音较大,就会影响三维地震勘探激发的层位的稳定性,从而影响单炮声波与面波,致使被测层面数据不够准确。特别是在干扰因素较为强烈的时候,勘探数据会存在很大的偏差,这种情况一般要重新进行数据采集。在进行三维地震勘探数据处理时,需要注意下述几个方面。第一,要进行静校正。这主要因为在勘探地势起伏变化较大的地区时,低速带速度变化会变得剧烈,需要校正的量就会增多。而静校正是其中较为关键的环节,结合传统的自动统计剩余静校正技术,运用修正软件将地表高差和低速带的影响降到最小;第二,是去除干扰波。干扰波有两种类型,分别为面波和声波。去除干扰波一般都是先压制低频,同时采用高频随机干扰。压制低频干扰一般都会选用内切滤波法,这样做可以有效地压制低频面波,提高资料的信噪比,减少对信号的损害;第三,进行地表一致性处理。

5总结