首页 > 文章中心 > 重金属对水体的污染

重金属对水体的污染

重金属对水体的污染

重金属对水体的污染范文第1篇

【关键词】重金属;水污染;现状;监测进展

1前言

近年来,我国的经济得到了飞速的发展,但相应的,以环境为代价所带来的负面影响也日益突出,尤其是水体污染问题,严重威胁着人们的身体健康。众所周知,水是生命之源,是人类赖以生存的最宝贵的自然资源,但是在人口急剧增长以及现代工业的影响下,我国的水资源呈现了短缺的现象,加上日益严重的水资源污染问题,尤其是极为突出的重金属水污染,由此,加强对于水体的污染成为当前社会发展所面临的重要问题。一般来说,重金属是指原子质量在63.5D200.6,密度大于4或是5g/cm3的金属,其中硒和砷属于非金属结构,但是由于其毒性及其他性质与重金属很像,因此也被称为重金属。当前,重金属污染包括土壤污染、大气污染和水体污染,但是土地污染的区域比较明显,易于控制;虽然大气污染和水体污染都具有较强的扩散性,而大气污染的扩散范围有限,因此也方便控制;由此,水体污染作为重金属污染最严重和最难控制的区域,对环境和人体将会造成极其严重的影响。

2我国重金属水污染的现状

自上个世纪60年代起,国际上就出现了水体重金属污染的问题,并开展了相关的研究。就我国来说,水体重金属污染的研究开始于20世纪80年代,其中比较常见的重金属包括汞、镉、铅、铬以及类金属砷等具有显著毒性的重金属,也包括毒性一般的铜、锡、锌、镍等,由于重金属污染具有隐蔽性、持久性和污染严重等特点,严重破坏着生态的平衡。尤其是近几年,我国的重金属水体污染问题越来越严重,重金属水污染事故频发。就镉污染来说,在2005年,广东北江韶关段发生了严重的镉超标事件;2006年,湘江湖南株洲段的镉污染事故;以及湖南省浏阳市在2009年发生了镉污染事件。[2] 目前,重金属污染物主要是通过工业污水和生活废水未经过适当的处理就向河流中排放所导致的,并随着水体的径流、淤泥的适当以及大气的沉降得到扩散,从而在水体中累积,危害着水中植物和生物的生长。最主要的是,由于重金属不能够微生物所降解,加上巨大的毒性,严重威胁着水生态系统以及人们的饮水安全。据国家环保部门的相关数据显示,在流经我国的131条河流当中,严重污染的就有36条,还有21条被重度污染,38条处于中度污染。除此之外,在2010年,我国的突发环境事件次数为420起,其中因水体污染而引发的突发事件就高达135次,也就是说,平均每隔两三天便会发生一起水体污染事件。面对严峻的水资源短缺问题,水污染成为“世界头号杀手”,由此,加强重金属水污染的治理和监测,刻不容缓。

3当前重金属水污染的监测进展

当重金属污染物进入水生态系统之后,会影响着水中动植物的存在,而且一旦人体引用,便会发生病变,严重危害人类的身体健康。当前,重金属水污染受到了全世界政府的广泛关注,为此而出台了一些监测政策,并不断推进监测技术的发展。

3.1重金属水污染的监测政策

从环境监测的定义来说,其主要目的是为了及时、准确的获得环境监测的全面数据,通过分析环境质量的现状以及变化趋势,准确的预警各种环境问题,并跟踪污染源的变化,从而对污染事件及时做出反应。目前,为了遏制重金属水污染问题的发生,我国出台了《重金属污染综合防治“十二五”规划》(以下称为《规划》),其中表明指出了五大重金属污染重点防治行业,包括冶炼、采矿、铅蓄电池、化学原料及其制、皮革以及其制品,并决定在这5年内加大对于重金属污染防治的投资。与此同时,在《规划》中划出了14 个重金属污染综合防治的重点省区和138个重点防治区域,要求到2015年,重点区域内的重金属污染物排放量要比2007年减少15%,非重点区域内则不能够超过2007年的重金属污染物排放量。由此可见,国家对于重金属污染的防治势在必行。

3.2重金属水污染监测的技术进展

随着市场需求的不断变化,我国的重金属水污染监测技术发生了翻天覆地的变化,并且逐步朝着规范化和产业化发展,不断满足了污染治理的需求,具体表现如下:

3.2.1检测技术的不断进步

当前,面对日益复杂的水环境,在重金属的污染检测中出现了更多简便、科学的方法。比如说,激光诱导击穿光谱法具有较高的灵敏度,因此可以进行多元的检测;新型的电化学传感器通过运用阳极溶出伏安法来减少仪器的检测限,而且还具有便于携带的特点,因此广泛的应用于野外的现场监测中;此外,随着检测技术的不断发展,酶抑制法、生物传感器等诸多重金属检测方法也将在重金属水污染中得到不同的应用。

3.2.2自动化控制技术的成熟

由于重金属的监测比较复杂,而且对于样品和试剂的定量要求比较高,因而对于地表水的重金属分析十分困难。当前,为了更加精细、稳定的进行重金属污染分析,在重金属的检测中应用了自动化控制技术,通过全自动的分析以及精确的计量,不仅能够避免人类接触有毒药剂而带来的伤害,还能够提高计算的精确程度,从而使得分析结果更加的可靠。

3.2.3监测方案的针对性

一般来说,重金属的污染量是非常小的,尤其是在水体当中,容易受到其他微量元素的影响,从而导致监测的数据不准确。此外,即使是同一种重金属污染,也会因不同的水质特性而产生不同的结果,因而在监测过程中要采用有针对性的方案。比如说,为了排除钙、铁、锌、铜对铅、汞等重金属监测的影响,需要在检测过程中进行预处理或是加入相应的掩蔽剂,从而确保监测数据的真实、可靠性。[3]

4结束语

综上所述,我国的重金属水污染事故时常发生,严重影响着附近居民的身体健康,由此必须要加强对于重金属水污染的治理和监测。当前,随着科学技术的发展,我国的重金属水污染监测的技术有了很大的发展,其中检测技术有了很大程度上的进步,自动化控制技术日趋成熟,以及监测方案也更加有针对性,在不断满足重金属水污染治理需求的同时,对于改善重金属水污染方面发挥了不可替代的作用。

【参考文献】

[1]李振.浅谈重金属水污染现状及检测进展[J].可编程控制器与工厂自动化, 2012,9(7):48-50.

重金属对水体的污染范文第2篇

【关键词】铬;物理化学法;生物修复法

1引言

铬(chromium)是法国化学家 lvauquelin 于1797年首次发现的,是一种用途广泛而又对人体危害较大的重金属元素[1]。环境中稳定存在的两种价态cr(ⅲ)和cr(ⅵ)有着几乎相反的性质,适量的cr(ⅲ)可以降低人体血浆中的血糖浓度,提高人体胰岛素活性,促进糖和脂肪代谢,提高人体的应激反应能力等;而cr(ⅵ)则是一种强氧化剂,具有强致癌变、致畸变、致突变作用,对生物体伤害较大[2]。

铬污染最常见的是水体污染,如电镀铬废水、制革、制药、印染业等 应用 铬及其化合物的 工业 企业 排放的废水,主要以cr(ⅲ)和cr(ⅵ)两中价态进入环境。 据资料介绍,制革工业通常处理1t原皮,要排出含铬为410mg/l的废水50-60t。炼油厂和化工厂所用的循环冷却水中含铬量也较高。镀铬厂的废水中含铬量更高,尤其在换电镀液时,常排放出大量含铬废水。铬对水体的污染不仅在我国而且在全世界各国都已相当严重了。世界各国普遍把铬污染列为重点防治对象[3]。

2水体中铬的存在形态

天然水体中铬的质量浓度一般在1-40μg/l之间,主要以cr3+、cro2-、cro42-、cr2o27- 4种离子形态存在,水体中铬主要以三价铬和六价铬的化合物为主。铬的存在形态直接 影响 其迁移转化 规律 [4]。三价铬大多数被底泥吸附转入固相,少量溶于水,迁移能力弱。六价铬在碱性水体中较为稳定并以溶解状态存在,迁移能力强。因此,水体中若三价铬占优势,可在中性或弱碱性水体中水解,生成不溶的氢氧化铬和水解产物或被悬浮颗粒物强烈吸附后存在于沉积物中,若六价铬占优势则多溶于水中。六价铬毒性一般为三价铬毒性的100多倍,但铬可由六价还原为三价,还原作用的强弱主要决定于do、bod5、cod的值,do值越小,bod5值和cod值越高,则还原作用越强。

3水体重金属铬污染的治理 方法

3.1 物理化学方法

(1)稀释法和换水法

稀释法就是把被重金属污染的水混入未污染的水体中,从而降低重金属污染物浓度,减轻重金属污染的程度[5]。此法适于受重金属污染程度较轻的水体的治理。这种方法不能减少排入环境中的重金属污染物的总量,又因为重金属有累积作用,所以这种处理方法 目前 渐渐被否定。换水法是将被重金属污染的水体移出,换上新鲜水,而减轻水体污染的一种措施,该方法适用于鱼塘等水量较小的情况。

(2)混凝沉淀法

许多重金属在水体溶液中主要以阳离子存在,加入碱性物质,使水体ph值升高,能使大多数重金属生成氢氧化物沉淀。另外,其它众多的阴离子也可以使相应的重金属离子形成沉淀。所以,向重金属污染的水体施加石灰、naoh、na2s等物质,能使很多重金属形成沉淀去除,降低重金属对水体的危害程度。这是目前国内处理重金属污染普遍采用的方法。

(3)离子还原法和交换法

离子还原法是利用一些容易得到的还原剂将水体中的重金属还原,形成无污染或污染程度较轻的化合物,从而降低重金属在水体中的迁移性和生物可利用性,以减轻重金属对水体的污染。电镀污水中常含有六价铬离子(cr6+),它以铬酸离子(cr2o72-)的形式存在,在碱性条件下不易沉淀且毒性很高,而三价铬毒性远低于六价铬,但六价铬在酸性条件下易被还原为三价铬。因此,常采用硫酸亚铁及三氧化硫将六价铬还原为三价铬,以减轻铬污染。

离子交换法是利用重金属离子交换剂与污染水体中的重金属物质发生交换作用,从水体中把重金属交换出来,以达到治理重金属污染的目的。经离子交换处理后,废水中的重金属离子转移到离子交换树脂上,经再生后又从离子交换树脂上转移到再生废液中。

离子还原法和交换法费用较低,操作人员不直接接触重金属污染物,但适用范围有限,并且容易造成二次污染。

(4)电修复法

电修复法是20世纪90年代后期 发展 起来的水体重金属污染修复技术,其基本原理是给受重金属污染的水体两端加上直流电场,利用电场迁移力将重金属迁移出水体。ridha等[6]提出,在一个碳的毡状电极上,用电沉积法从 工业 废水中除去铜、铬和镍的技术。另外,可以用电浮选法净化含有铜、镍、铬和锌等重金属的工业污水。此外,近年来还有人把电渗析薄膜分离技术 应用 到污水重金属处理实践当中。

3.2 生物修复法

(1)微生物修复法

重金属污染水体的生物修复机理主要包括微生物对重金属的固定和形态的转化。前者是微生物通过带电荷的细胞表面吸附重金属离子,或通过摄取必要的营养元素主动吸收重金属离子,将重金属富集在细胞表面或内部;后者是通过微生物的生命活动改变重金属的形态或降低重金属的生物有效性,从而减轻重金属污染,如cr6+转变成cr3+而毒性降低,as、hg、se等还原成单质态而挥发,微生物分泌物对重金属产生钝化作用等。

(2)动物修复法

应用一些优选的鱼类以及其它水生动物品种在水体中吸收、富集重金属,然后把它们从水体中驱出,以达到水体重金属污染修复的目的。 研究 发现,一些贝类具有富集水体中重金属元素的能力,如牡蛎就有富集重金属锌和镉的能力。据报导,若以湿量 计算 ,牡蛎对镉的富集量可以达到3-4g/kg[7]。动物修复法需驯化出特定的水生动物,并且处理周期较长、费用高,再则后续处理费用较大,所以在实际应用中推广难度较大。

(3)植物修复 方法

20世纪80年代前期,chaney提出利用重金属超富集植物(hyper-accumulator)的提取作用清除土壤重金属污染这一思想后。经过人们不断地实践、 总结 和归纳才形成了植物修复的概念[8]。植物修复被定义为利用 自然 或基因工程植物来转移环境中的重金属或使环境中的重金属无害化,是 目前 生物修复技术中研究最热的一类。

对于铬超富集植物,到目前为止,在美国、澳大利亚、新西兰等国已发现能富集重金属的超富集植物500多种,其中有360多种是富集ni的植物[9]。对于铬超富集植物,得到学者们认同的有dicoma niccolifera wild和sutera fodina wild两种,铬最高含量分别为1500mg/kg、2400mg/kg[10],均高于铬超富集植物的 参考 值1000mg/kg。国内报道的湿生禾本科植物李氏禾也对铬具有较好的富集能力[11]。 因此,采用一些水生铬超富集植物用于铬污染水体修复是可行的。

4结论

由于水体铬污染也伴随着富营养的趋势,可以通过有机物将六价铬还原成三价铬,利用底泥吸附三价铬,转入固相,降低铬的迁移,减少污染的扩散,然后,利用水生铬超富集植物从底泥中将铬提取到植物上部,人工收获转移,焚烧后用于提取重金属,循环利用。因此,利用铬超富集湿生植物对铬污染水体进行修复,是一种非常有潜力的铬污染水体修复技术。

重金属对水体的污染范文第3篇

关键词:汾江河;重金属;潜在生态危害;评价

收稿日期:2011-03-31

作者简介:罗 美(1984―),女,广东兴宁人,助理环境工程师,主要从事环境污染源(废水)的监测与分析工作。

中图分类号:X701

文献标识码:A

文章编号:1674-9944(2011)06-0023-04

1 引言

汾江河是佛山市的母亲河,全长13.4km。随着佛山市经济的迅猛发展,城市人口的急剧增多,汾江河两岸的工业发展,印染、塑料、陶瓷、洗涤类和造纸等工业废水排入,严重污染了河道。水体沉积物既是重金属污染物的汇集地,又是对水质有潜在影响的次生污染源。重金属污染物进入水体后能较快地转移至沉积物和悬浮物中,结合了重金属的悬浮物在被水流搬运过程中,当其负荷量超过搬运能力时,便逐步转变为沉积物。沉积物中重金属得到积累,表现出明显的分布规律性。河流重金属Cr、Cu、Zn、Pb、As、Hg和Cd的污染存在一定的潜在生态危害,由于其可以在动、植物中积累,并通过食物链从而危害人类的食物安全。为了解汾江河河道污染的状况,以及周边环境对河道造成的影响,对汾江河底质(沉积物)重金属Cr、Cu、Zn、Pb、As、Hg和Cd的总体水平进行了监测与分析,本文根据底质中重金属的含量,运用瑞典科学家Lars Hakanson潜在生态危害指数法,对其潜在生态危害进行了分析。

2 调查方法与监测分析

汾江河又名佛山水道,西起佛山沙口,横贯市区北部,到南海平洲沙尾桥,进入东平水道。全年的平均流量是103m /s,但枯水期只有5~6m /s[1]。流经佛山市区、南海、广州3地,从东到西流经佛山境内、桂城、平洲、大沥、盐部等6个区镇。现在调查的主要是佛山城区的河段底质重金属的总体水平。通过现场的采样处理和底质样品试验分析,计算其重金属的质量比,从而了解河道的重金属污染状况。

2.1 底质样品的采集和前处理

底质指江、河、湖、库、海等水体底部表面沉积物质,它反映了河流的历史和污染现状。经过调查研究,根据汾江河河流特点和沿河两岸的厂区布局,沿岸支涌和闸门分布情况,沿河道分别在罗沙、街边和横虿忌3个采样断面,罗沙属于河道上游,河道较为宽阔,街边在中游位置,河道较直且窄,下游的横窖是典型的淤积区域,并在各采样断面分左、中、右布点,采用抓斗式采样器对汾江河河道的表层(0~20cm)沉积物进行了采样。

在现场采样时,把采集的样品分存于双层洗净聚乙烯袋中,编号、贴好标签运回室内,冷藏保存。做试验时,剔除砾石、木屑及贝壳、杂草等动植物残体,用玻璃棒将自然风干的沉积物轻轻压碎,首先用20目尼龙网筛去掉粗沙粒和大块泥土,然后用四分法四分底质样品,取其中一份研磨成粉末样,再过100(80)目尼龙网筛,称取筛后的粉末样[2]。

2.2 分析项目和分析方法

底质样品分析项目为Cr、Cu、Zn、Pb、As、Hg和Cd 7种元素,测定其含量。

2.3 底质样品的分解(全分解方法)

底质样品的测定,其主要的影响因素是样品是否消解的完全和所用的测试方法正确与否。测定Cu、Pb、Zn、Cd的消解运用的是HCl-HNO-3HF-HClO4分解法,而测定汞的是硫硝混酸-KMnO4消解法,测砷的是硝酸――盐酸――高氯酸消解法。样品的消解是测定的前期工作,关系到最后的试验结果,因而其的操作方法与步骤尤其重要,并要注意使用试剂安全。

2.4 试验方法原理与计算

经过完全消解的底质样品,加入试剂和简单的再处理方可以进行样品试验。同时,各个的测定项目都要求重新配制标准溶液,在试验中绘制标准曲线。不同的测定项目,运用其最优的测定方法,测定Cd元素,使用石墨炉原子吸收法,测定As和Hg运用原子荧光法,而测定Cr、Cu、Pb、Zn运用的是火焰原子吸收分光光度法。所有的测定项目元素都带有国家标准试样试验,保证试验的准度。

3 底质重金属污染评价

3.1 评价方法和原理

这里选用瑞典科学家Hakanson提出的潜在生态危害指数法进行评价。某一区域沉积物中第i种重金属的潜在生态危害系数Eri及沉积物中多种重金属的潜在生态危害指数RI表示方法为:潜在生态危害指数法[3]。

瑞典科学家Hakanson提出的评价沉积物中重金属的潜在生态危害指数(RI)法是一种相对快速、简便和标准的方法,通过测定沉积物中主要重金属的含量,计算污染系数及生态危害指数,考虑到影响污染的各方面,潜在生态危害指数受下列因素的控制和影响,包括表层沉积物中重金属的浓度,即RI值应随表层金属污染程度的加重而增大;重金属污染物的种类,即受多种重金属污染的RI值应高于只受少数几种重金属污染的RI值;重金属的毒性水平,即毒性高的重金属应比毒性低的对RI值有较大贡献;水体对重金属污染的敏感性,即对重金属污染敏感性大的水体应比敏感性小的水体有较高的RI值。

3.2 计算原理

(1)第i种重金属污染系数。

表1 沉积物重金属污染生态危害指数法污染程度的划分

3.3 各类参数的确定

河流底质中重金属的浓度值取本次采样的实测值。

3.3.1 背景参比值的选择

目前研究中对参比值的选择差异较大,有的以页岩平均重金属含量值作为全球统一的沉积物重金属参比值;有的以当地沉积物的重金属背景值为参比值,Hakanson提出以工业化以前全球沉积物重金属的最高背景值为参比值。

本文评价采用当地最高背景值(1992年水利部组织的全国地表水沉积物背景值调查结果)为参比值[4],相对定量性地反映沉积物重金属的污染程度,见表2。

表2 背景参比值mg/kg

3.3.2 重金属毒性系数

本研究选择的主要重金属为Hg、Cd、As、Cu、Pb、Cr和Zn。重金属的毒性表现为对人体和对水生生态系统两方面的风险,风险途径为水――底质(沉积物)――生物――鱼――人体。根据Hakanson提出的“元素丰度原则”和“元素释放度”,某一重金属元素的潜在生态毒性与其丰度成反比,与其稀少度成正比,亦即与“元素的释放度”(在水中含量与沉积物中含量的比值)有关,易于释放者其对生物的潜在毒性较大。经过对一系列基础数据的处理,上述7种重金属的毒性水平顺序为Hg>Cd>As>Pb

Cu>Cr>Zn,重金属毒性系数Tri值为Hg

表3 本次沉积物重金属污染潜在生态危害指数法的划分

Hakanson潜在生态危害指数法不仅反映了某一特定环境中的每一种受污染物的影响,而且也反映了多种污染物的综合影响,并且用定量的方法划分出潜在生态危害的程度,是目前研究沉积物重金属污染评价中应用最广的一种,在国际上具有深刻的影响。

4 实验结果与讨论

4.1 重金属污染物程度及分布

汾江河底质(沉积物)重金属以当地最高背景值为参比值计算的单项污染系数Cif和多项污染系数Cd列于表4。从表7可见,单项污染系数Cif≥6的重金属有Zn、Cd、Cu、Cr,其中Zn、Cd在各个采样点的值都超出了单项污染系数Cif“6”,且有些数值较高,将近4倍之多;而Cu也只有S8

3.46没有超出外,其他的值都大于“6”;相对来说,Cr的Cif≥6只有S7和S2。3≤Cif

评价结果表明,汾江河段重金属的污染都在“很高”。监测断面最大值出现在横虻S2点,为78.83,原因是横虼τ诜诮河的下游,其积污量更大;第2大污染系数值是罗沙断面的S7,主要原因是罗沙两岸的工业厂房的排污口的直接排放,且得不到的上游东平河的水源充足补给;总体水平来说,横颉⒔直吆吐奚3个断面各个监测点的Zn、Cd、Cu、Cr的污染系数均为“高”。沿程分布无明显下降趋势,重金属污染顺序为Cd> Zn > Cu > Cr > As > Pb > Hg。

4.2 表层沉积物重金属的潜在生态危害评价

汾江河底质(表层沉积物)重金属单项潜在生态危害系数(Eri)和潜在生态危害指数(RI)及排序结果列于表5、表6和图1。可以看出,单项潜在生态危害系数Eri≥320的重金属有Cd,主要出现在罗沙断面和S3、S6两个采样点;160≤Eri

图1 河流断面各点RI分布

评价的结果是汾江河河河道9个监测点都具有“极高”的潜在生态风险,Cd属于很“极高”的潜在生态危害,Hg、Cu属于“中等”的潜在生态危害,As、Cr、Pb、Zn属于轻微风险。

表5 汾江河底质重金属的潜在生态危害系数Eri和潜在生态危害指数RI

综合分析汾江河河段各个断面的底质(沉积物)重金属的单项污染系数Cif、多项污染系数Cd、单项潜在生态危害系数Eri和潜在生态危害指数RI,汾江河受到了较为严重的污染。污染最严重的是Cd、Cu,其次是Hg 、As、Pb,Zn与Cr相对污染较轻。

5 结语

采用Hakanson提出的潜在生态危害指数法,以当地最高背景值为参比值,对汾江河底质的重金属污染总体水平进行了评价,结果表明汾江河河段各监测断面的底质都受到重金属的极强的污染,具有很高的潜在生态危害,横颉⒙奚车暮佣沃亟鹗粑廴窘衔严重。污染最严重的重金属元素是Cd、Cu,其次是Hg、As、Pb,Zn与Cr相对污染较轻,已经对生态环境造成了严重的影响,尤其是镉。然而,其具体的来源还需探讨。污染元素Cd、Cu沿程分布无明显下降趋势,可能与沿岸的工业、厂房布局和河流水文条件、流量等相关,有待今后进一步研究。

表6 汾江河底质重金属的潜在生态危害指数排序

(1)减少外源性重金属的进入。要大力控制污水中重金属的排放,尽可能建立污水处理厂或是废水再生回用工程。

(2)对严重污染的底泥的治理。对上底泥疏浚,并填入清洁泥沙或碎石,可以有力地抑制底泥对河水的二次污染,若用具有吸附功能的粘土作为铺填物,则有望进一步改善水质,或是建造引水稀污工程,这主要是上游与东平河相连设置的水闸需要定期补充一定的水量,用以冲稀污染物。

(3)进行水体生态修复与重建。有必要栽培一些耐性较强且速生的植物,萃取水体沉积物底泥中的重金属。合理规划沿岸土地利用,整治排污源,减少重金属污染的来源。使经济建设,人口增长,污染治理与水环境保护同步进行,建设和谐、共进的社会。

参考文献:

[1] 利 锋,韦献革,余光辉,等.佛山水道底泥重金属污染调查[J].环境监测管理与技术,2006,18(4):12~14.

[2] 何燧源.环境污染物分析监测[M].北京:环境科学与工程出版中心,2001.

重金属对水体的污染范文第4篇

从改革开放至今,广东省工业得到了快速发展,但由于缺少对环境的保护,特别是河道水体的保护。工业生产产生的许多有害物质未经处理就排入各河道,导致河道中的水受到严重的污染,而养殖业离不开水,当农民用了受污染的水体养殖像鹅,鸭,鱼等时,一方面疾病危害水禽健康,降低生产性能和养殖业的经济效益;另一方面给食品安全带来严重隐患,危害人类健康。当农业使用受污染的水灌溉时,使土壤也受到了污染。

水禽养殖业是中国的传统产业,特别是鸭跟鹅,由于其养殖成本低、周期短、见效快,因此取得了突飞猛进的发展,在农业产业结构调整中,已受到世界各国的高度重视,其中鸭为全世界饲养数量最多的水禽。2009年末我国肉鸭存栏已达10.96亿只,肉鸭出栏约35.2亿只(其中樱桃谷鸭20.6亿只),肉鸭的年存栏量和屠宰量占到世界总量的67.3%和74.7%,中国号称“水禽王国”是当之无愧的。随着经济的发展和人民生活水平的提高,市场对鸭、鹅产品的需求量越来越大,因此水禽的饲养量将不断增加,据统计中国水禽总量占世界的60%以上。估计在今后相当长的时间内,水禽的养殖数量也会稳定增长。

重金属污染指由重金属或其化合物造成的环境污染,主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。随着经济的发展,人类活动导致环境中的重金属含量不断增加,许多经济发达地区早就超出正常范围,导致环境质量严重恶化。而许多水禽由于污染得病而死,或者受污染后被人身吸收进入人体内,不同于其他污染物的可降解特性,重金属污染物有着永远在环境里循环、无法降解的特点,这也就加重了其对人群的危害。由于重金属污染问题突出,2011年4月初我国首个“十二五”专项规划——《重金属污染综合防治“十二五”规划》获得国务院正式批复,防治规划力求控制5种重金属,目标是到2015年,中国将建立比较完善的重金属污染防治体系、事故应急体系和环境与健康风险评估体系,解决一批损害群众健康的突出问题。

由于鹅作为水禽在当前的养殖模式下是离不开水的,而近年来,重金属污染事件屡见不鲜,例如2005年广东省北江镉污染事件,该事件发生后不久,为了保障下游清远、佛山、广州等城市的供水安全,专家们决定,除了调水冲污外,还将实施工程技术措施,加聚合铁或聚合铝进行稀释。韶关的武水桥下,江水碧波荡漾,婀娜的水草群舞中游支流横石河,河水呈强酸性,即使稀释一万倍,水生物也难在其问存活24小时下游地区的清远石角镇,铜产业带来的污染,造成附近河底沉积物中铊含量严重超标。2008年,华南农业大学教授林初夏提供的测试数据显示,横石河水即使稀释1万倍,水生物还是不能在里面存活超过24小时;由于每吨废矿含有可产生相当200公斤浓硫酸的金属硫化物,从源头到50公里开外,,河水都可以测出酸性,直侵下游北江,还有像浏阳镉污染事件等等。

本试验在广东省内鹅的主要养殖地,需用不同养殖场内健康的2年龄成年马岗鹅种鹅为检测对象,通过测定鹅的水生环境和水生环境中的淤泥的重金属(铅Pb、镉cd、铬cr、砷As)含量,再与国家规定的标准进行对比,再通过测定鹅的四个组织(肝脏、胸肌、腿肌、胸骨)中的重金属(铅Pb、镉cd、铬cr、砷As)含量,从而-进行相关的研究,从而对鹅养殖环境中重金属污染对其的影响,为当前鹅养殖环境重金属污染的影响做出科学依据。

2、材料与方法

2.1 试验动物及场地

本试验在省内三个鹅主要养殖区各选择一家规模化鹅场,所用试验动物为健康的成年种鹅,2~3年龄。

2.2 实验设计

试验期在各养殖场的鹅群中随机选择6只鹅,分别在各个鹅上取肝脏、胸肌、胸骨等样品,保存于20℃,留待重金属指标测定。另外,从养殖地采集洗浴池的水体和水底土壤样品,保存于4℃样品,各动物样品和水体样品以及土壤样品均检测铅(Pb)、镉(cd)、铬(cr)和砷(As)等四种重金属的含量。

水样采集:在养殖鹅的水池中,分别选取三个点,使其呈等边三角形,然后分别将吸管深入离水面10厘米左右的地方,各收集300ml的水样;样品采集后,用0.22μm微孔纤维滤膜对水样进行过滤,滤液分装在洁净的聚乙烯瓶中,为避免样品在保存过程中产生感光分解和微生物降解等反应,样品避光冷冻保存到进样。

土壤采集:在在养殖鹅的水池中,分别选取三个点,使其呈等边三角形,然后用铁铲铲其泥土的表层,各取适量的土壤;将样品在无菌条件下风干后保存好。

2.3 重金属指标测定方法

全部动物组织样品的重金属含量的测定,除砷的含量采用原子荧光光谱法,其余三种重金属含量的测定方法均按国标(GB/T5009.12-2003、GB/T 5009.15-2003和GB/T 5009.123-2003中的石墨炉原子吸收光谱法)进行。

(1)水样:全Pb、Cd:石墨炉原子吸收分光光度法(GB/T11901-1989):全cr:二苯碳酸二肼分光光度法(GB/T7466-1987):全As:二乙基二硫代氨基甲酸银分光光度法(GB/T7485-1987)

(2)土壤样:全Pb、cd、Cr:火焰原子吸收分光光度法(GB/T17137-1997);全As:二乙基二硫代氨基甲酸银分光光度法(GB/T 17134-1997)

(3)组织样:全cr:原子吸收石墨炉法(GB/T 5009.123—2003)[9];全Pb:石墨炉原子吸收光谱法(GB/T 5009.12-2003);全Cd:石墨炉原子吸收光谱法(GB/T 5009.15-2003);全As:原子荧光光谱法。

2.4 试验数据处理

对不同养殖地鹅组织样品肝脏、胸肌、腿肌、胸骨中各重金属指标含量作单因子方差分析;除注明外,各数值均用平均值(Mean)+SE表示。所有的数据分析均用SAN software version8.01完成。

3、结果与分析

3.1 养殖场水体中的重金属水平

对各鹅养殖地洗浴池水体中的铅、镉、铬和砷等四种重金属含量进行检测。测定结果显示,鹅养殖地洗浴池水体中铅、镉、铬和砷等四种重金属的含量很低,均仅10-4 mg/L级的含量。

3.2 养殖场水体池底土壤中的重金属水平

对各鹅养殖地洗浴池池底土壤中的铅、镉、铬和砷等四种重金属含量进行检测。测定结果显示,三个鹅场池底土壤中铅的含量介于25~50 mg/kg之间,最高的为鹅场c,次之为鹅场B,最低为鹅场A;三个鹅场池底土壤中镉的含量介于0.1~O.4 mg/kg之间,最高的为鹅场c,鹅场B和鹅场A均低于前者,水平相当;三个鹅场池底土壤中铬的含量介于7~28 mg/kg之间,最低的为鹅场B,鹅场A,而鹅场c要明显高于前两者;三个鹅场池底土壤中砷的含量介于1~2.5 mg/kg之间,鹅场B和c较高,两者水平较高,鹅场A则较低。

3.3 不同养殖场鹅机体各组织的重金属水平

对各鹅养殖地种机体内胸肌、骨骼、肝脏等组织中的铅、镉、铬和砷等四种重金属含量进行检测。测定结果显示,在三个养殖中,铅在不同组织中的含量均以骨骼最高,达到3.9~23.9mg/kg,而胸肌和肝脏中含量远远低于前者,仅0.01~0.1 mg/kg之间;三个养殖地鹅相同组织间比较,鹅场c的水平均高于鹅场A和B,后两者胸肌和肝脏的水平相关,除鹅场A骨骼的水平高于鹅场B外。在三个养殖中,镉在不同组织中的含量均肝脏最高,均可以检出,0.08~0.3 mg/kg之间,其中鹅场A和鹅场c的水平相当,明显高于鹅场B;而三个鹅场中鹅胸肌和肝脏中均检不出镉。在三个养殖中,铬的含量无明显组织分布特点,在鹅场A中的含量为肝脏>胸肌>骨骼,在鹅场B中的含量为胸肌>骨骼>肝脏,在鹅场c中的含量为骨骼>肝脏>胸肌;三个鹅场相同组织间进行比较,以鹅场B较高,高于鹅场A和c,后两者水平相当。在三个养殖中,三种组织中均检不出砷。

4、讨论

鹅各养殖地洗浴池水体中铅、镉、铬和砷等四种重金属的含量很低,水体还没有受到重金属的污染。而各养殖场水体池底土壤中,铅的含量很高,远远超过正常水平;铬的含量也很高,特别是鹅场C远远超过正常水平,砷的含量也属于正常水平,镉的含量很低。不同养殖场鹅机体各组织的重金属水平,由试验可知:镉、铬和砷等三种重金属的含量很低或较低,而铅在胸肌和肝脏里的含量都很低,但在骨骼里的含量较高,特别是鹅场c远远超过正常水平。因些我们得知:各养殖场水体池底土壤受到铅跟铬金属的污染,而各养殖场鹅受到了铅金属的污染(特别是鹅场C)。

铅对环境的污染,一方面来自冶炼、制造和使用铅制品的工矿企业,特别是来自有色金属冶炼过程中所排出的含铅废水、废气和废渣造成的。另一方面由汽车排出的含铅废气造成的。而在诸如铁冶炼、电镀、制革工业、颜料制造与化工镀膜等工业都可产生大量的含铬废水与废渣。因此我们估计,有可能是吃进受污染含铅的饲料,也有可能是本身土壤已严重受铅重金属的污染,当开挖水塘后注入的水是没受污染的,而鹅期生活在跟受污染的土壤接触后也受到了污染。

要保证鹅的安全生产,避免受铅、铬等重金属的污染,除了政府要切实加强铅蓄电池(包括铅蓄电池加工(含电极板)、组装、回收)及再生铅行业的污染防治工作,保护群众身体健康,促进社会和谐稳定,另外还要对铅蓄电池企业采取有效措施,建设完善铅烟、铅尘、酸雾和废水收集、处理设施,并保证污染治理设施正常稳定运行,达标排放,减少无组织排放。而养殖作为场要尽量选择远离那些工业厂房排放污水的下游,要用正规厂商生产的饲料,同时最好远离市区饲养鹅。

重金属污染与其他有机化合物的污染不同,重金属具有富集性,不易在环境中降解。当前我国由于在重金属的开采、冶炼、加工过程中,造成不少重金属如铅、汞、镉、钻等进入大气、水、土壤引起严重的环境污染。废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,继而被鸭、鹅体表吸附。当受重金属污染的水禽例如鸭、鹅被人类吃用后,重金属在人体内能和蛋白质及各种酶发生强烈的相互作用,使它们失去活性,也可能在人体的某些器官中富集,如果超过人体所能耐受的限度,会造成人体急性中毒、亚急性中毒、慢性中毒等,对人体会造成很大的危害。例如,日本发生的水俣病(汞污染)和骨痛病(镉污染,等公害病,都是由重金属污染引起的。

重金属在大气、水体、土壤、生物体中广泛分布,而底泥往往是重金属的储存库和最后的归宿。当环境变化时,底泥中的重金属形态将发生转化并释放造成污染。鸭、鹅的生活环境离不开水,它们一般要生活于水塘或河道中,这大大增加了它们受污染的机会。重金属不能被生物降解,但具有生物累积性,可以直接威胁高等生物包括人类,有关专家指出,重金属对土壤的污染具有不可逆转性,已受污染土壤没有治理价值,只能调整种植品种来加以回避。因此,底泥重金属污染问题日益受到人们的重视。科技是一把双刃剑,20世纪以来科学技术迅猛发展,促进了经济的发展,提高了人民的生活水平,然而,与此同时,人类也付出了惨重的代价。多数金属在体内有蓄积性,半衰期较长,能产生急性和慢性毒性反应,可能还会有致畸、致癌和致突变的潜在危害。目前,我国儿童铅污染较为严重。

重金属对水体的污染范文第5篇

关键词:地下水;重金属污染;原位修复技术

地下水是指地表以下,赋存于岩石空隙中的水。地下水是自然界水循环的重要组成部分,同时也是人类生存和发展所必需的重要资源。但是随着人类工业化和城市化进程的快速发展,矿产资源的开发与利用过度,使地下水环境的污染变得日益严重。特别是地下水的重金属元素污染,地下水中的重金属元素含量超标,通过食物链进入人的身体,严重影响了人们的身体健康,导致了各种罕见疾病的出现。

地下水重金属元素污染已经引起了国家的高度关注,与此同时国内专家学者积极参与地下水重金属元素污染治理技术的研究工作。在借b国外专家提出方法的情况下,根据国内的实际情况,使地下水重金属元素污染修复技术在大量的实践应用中得到不断的改进。

现在较为有效的地下水重金属元素污染修复技术已经达到十多种了,但由于诸多原因使得各种修复技术不利于推广使用和管理。本文主要是根据地下水重金属元素污染修复技术的方式,将修复技术分为原位修复技术和异位修复技术。原位修复技术是指在基本不破坏土地和地下水的自然条件下,对于被污染对象不做搬运,而在原地进行修复的技术;异位修复技术是指被污染对象先做收集和抽提,将其转移到地面上,然后对其进行修复的技术。由于原位修复技术不但可以节约成本、减少修复的工程量、修复效果也较好,而且最大限度的减少污染物对环境的扰动。同时,专家学者也将原位修复技术作为地下水重金属元素污染治理的研究重点和主要方向。本文将重点介绍地下水重金属元素污染原位修复技术的主要方法。

1 地下水重金属元素污染的原位修复技术

在地下水重金属元素污染的原位修复技术中,将重点介绍处理效果好、处理周期相对较短的几种技术,主要包括可渗透反应墙修复技术(PRB)、原位生物修复技术和原位电动修复技术。

1.1 可渗透反应墙修复技术(PRB)

可渗透反应墙修复技术(PRB)是由美国在20世纪80年代提出的,目前在欧美国家作为地下水重金属元素污染原位修复技术主要的技术手段之一。可渗透反应墙修复技术(PRB)是通过在污染区域放置一个活性反应介质的被动反应区,当污染的地下水经过时,地下水中的污染物质与活性反应介质发生反应,污染物质被降解、吸附、去除和沉淀,使地下水中的污染物质能有效的降低,并且符合地下水的环境质量标准。

可渗透反应墙修复技术(PRB)对于地下水重金属元素污染的修复周期和效果,是由选择何种活性反应介质决定的。目前,在可渗透反应墙修复技术(PRB)的研究中主要是使用活性炭、Fe0、微生物、泥炭等物质作为活性反应介质。这些活性反应介质具有吸附和降解污染物能力强、持续的时间长、不会产生二次污染等特点。

FDi Natale等选择使用活性炭作为充填的活性反应介质,来建立对于地下水中重金属污染镉元素的吸附反应格栅,最后的结论显示,活性炭对地下水中镉元素吸附能力最强的时候,是在较高的酸碱度和低含盐量的条件下;李金英等使用体积比例为1:1:0.5的砂、零价铁、活性炭作为混合的活性反应介质,对地下水中重金属元素锰、锌、铬和硒的去除率分别达到了93%、89%、90%和87%。

1.2 原位生物修复技术

原位生物修复技术是指在基本不破坏地下水原始环境的条件下,利用地下水中原始的或通过人工培养放置于地下水中的特定微生物群,通过吸收、吸附和降解等作用使地下水中的重金属污染物减少,同时地下水系统的环境恢复正常。原位生物修复技术具有其它修复技术无法比拟的独特优势,主要表现在现场进行、能与其它修复技术联合使用、降解时间短、费用低等方面。

在治理地下水重金属元素污染的微生物研究中取得了大量的成果。Charm I S等发现在重金属元素超标的地下水和土壤中分布着多种可以让铬酸盐和重铬酸盐产生还原反应的微生物(如:产碱菌属、芽孢杆菌属等微生物),铬酸盐和重铬酸盐通过微生物的作用可以使六价铬转换成三价铬,同时铬的毒性也大大降低;任茂明在研究趋磁细菌对于去除地下水中重金属元素效果的实验发现了,趋磁细菌能够吸收外部环境中的铁元素,同时在体内形成具有磁性的铁的化合物。最后,研究结果表明了这种方法对于水中二价铁、三价铬、以及二价镍等重金属离子的去除率达到了95%以上。

1.3 原位电动修复技术

原位电动修复技术也称原位电化学动力修复技术,是利用电的动力学原理对污染体进行修复的一种有效的技术手段,特别是对于去除地下水重金属元素污染具有很好的效果。具体方式是通过施加直流电压形成电场的梯度,使地下水中的重金属离子向设定的方向发生迁移,并且在设定的地方对集中后的污染物进行处理。

近年来随着修复技术的不断发展,原位电动修复技术也在不断完善。尹晋等使用原位电动修复技术对地下水中的重金属污染物进行修复时,发现电动修复技术对铬有很高的去除率(三价铬的去除率明显低于六价铬)。

2 结束语

目前,地下水重金属污染问题在一定程度上得到很大的缓解,但是要想地下水重金属污染被彻底解决还有很长的路要走。同时,人类社会的快速发展对于水资源的需求也在日益加大,受污染水体与人类的需求之间存在巨大的矛盾,所以对于受污染水体的修复成为了当前社会的重大难题之一。随着对原位修复技术研究的不断发展,有大量的原位修复技术被应用于治理地下水的重金属污染中。当前,修复技术的联合应用于治理地下水重金属污染已经成为了新的研究方向,在实践中也取得了更好的修复效果。

参考文献

[1]尹国勋,李振山.地下水污染与防治[M].北京:中国环境出版社,2005.

[2]冉德发,王建增.石油类污染地下水的原位修复技术方法论述[J].探矿工程,2005(6):208.

[3]张学礼,徐乐昌,魏广芝,等.用PRBs技术修复铀污染地下水的研究现状[J].铀矿冶,2008,27(2):55-61.

[4]F Di Natale, M Di Natale, R Greco, et al. Groundwater protectionfrom cadmium contamination by permeable reactive barriers [J].Journal of Hazardous Materials,2008,160:428-434.

[5]李金英,佟元清,蔡五田,等.地下水污染的原位修复技术-PRB法[J].环境工程,2006,24(6):92-94.

[6]任茂明.磁场-趋磁细菌处理重金属离子废水[D].天津:天津大学,2003:2-9.