首页 > 文章中心 > 生物质气化技术

生物质气化技术

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇生物质气化技术范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

生物质气化技术

生物质气化技术范文第1篇

中国工程院院士,南京林业大学教授。长期从事木材与竹加工利用的教学与研究工作,开发了成竹材胶合板、高强覆膜竹材胶合板、竹材碎料板、竹木复合集装箱底板、竹木复合层积材等系列产品,并在众多领域得到推广应用,出版专( 译)著8本、论文70 余篇,是我国和世界竹材加工利用研究领域的开拓者,为竹材加工利用事业作出了创造性的贡献,先后获得“国家级有突出贡献的优秀中青年科技专家”、“国家星火科技先进工作者”、“国家科技推广先进工作者”等荣誉称号。

所谓生物质,就是指利用太阳、土地、水等而产生的可以持续再生长的含有碳元素、氢元素、氧元素的物质,包括动物、植物和微生物。农作物及其废弃物、木材、木材废弃物和动物粪便都是极具代表性的生物质。生物质能源是地球上最古老的能源,跟煤炭、石油相比,其能源密度很低,即材料中碳元素含量不多,所以运输、储存、使用都很不方便。但是,可再生性、低碳环保的优点,以及广泛分布的特点,使得它在能源资源日趋枯竭的今天,成为了一个全世界都高度关注的领域。

气化技术是生物质能源的一种利用方式,是指生物质在高温、无氧或缺氧条件下加热产生可燃气的过程。气化技术是一项古老的技术,早在1883 年就问世于欧洲。但是,在长达一个多世纪的岁月中,气化技术并没有很好地被人类加以利用。究其原因,不仅在于气化技术问世以来便是便捷的油、气年代,更在于这项技术本身存在的一些缺陷。气化技术仅产生可燃气这一单一产品,经济效益不显著。更致命的是可燃气中焦油的含量高,污染机具,影响设备正常运行,并且在净化可燃气过程中,产生的生物质提取液未能很好利用,造成环境污染。同时,气化设备产能太小(一般为200~300kw 的发电量),也是它未能引起工业界关注的一个重要因素。

生物质气化多联产技术正是针对生物质气化技术的提质与升级,它是指利用气化成套设备将农林生物质热解生成燃气、生物质提取液和生物质炭、热能的技术。它可获得多种产品,可以解决因单一产品造成的效益低下问题,提高生物质气化的综合效益;它采用科学、高效的气液分离技术,使可燃气中焦油含量满足用气设备的要求,解决了污染问题,确保发电机长期稳定运行。在创新应用中,生物质多联产技术可以开发出1MW 大功率的燃气发电机和配套的气化炉。同时,生物质气化多联产技术可以解决工业化规模问题,并利用可燃气、生物质炭、生物质提取液、焦油的多种应用途径和余热的回收利用技术,建设综合的电、热、炭联合工厂。应用生物质气化多联产技术,可同时获得气、炭、液、热,它们各有特性、各有用途、各具效益。

可燃气。不同的生物质原料,可燃气的成分有差别,热值也有差别。1Kg 生物质燃料,可以产生2.5~3m3可燃气。可燃气可用于发电。1kg 木片产生的可燃气可发电0.9~1.0 度、1.5kg 稻壳产生的可燃气可发电1.0度。可燃气也可用于锅炉燃料,1500m3 可燃气每小时可产生2 吨中低压饱和蒸汽。

生物质炭。炭是地球上化学成分最稳定的物质,用途非常广泛。木炭含碳量高、灰分少,可制成活性炭,作为优良的吸附、净化材料,也可作为催化剂或催化剂载体,是工业、农业、国防、交通、医药卫生、环保事业和尖端科学不可或缺的重要材料。每吨活性炭可售价6000~8000 元,经济效益非常可观。秸秆炭含有钾、氮、磷、镁、铜、铁、锌等矿物质,因灰分含量高,不适宜用来制活性炭,主要用于改良土壤和制作炭基复合肥。秸秆中的钾、硅、镁等多种大量、中量、微量元素可回田,其中钾元素约为5%,硅为3~10%。硅的回田对农作物抗倒伏意义非凡,水稻吸收硅以后,秸秆的强度就会得到提高,谷穗也会长得饱满。炭回田可以增加土壤的孔隙度,改善土壤的通气、透水状况;抑制土壤对磷的吸附,改善作物对磷的吸收;修复被重金属污染的土壤;提高土壤地温1~3℃,使作物成熟期提前3~5 天;提高土壤的持水能力,对土壤中的肥料和农药均有缓释作用,使肥料成为缓释肥。

生物质提取液。生物质材料热解气化时产生的液体成分经冷凝、分离可得到含有酸类、醇类、酯类、酮类、酚类等多种有机化学成分的生物质提取液。生物质提取液中许多有机化合物都具有生物活性,可以促进作物生长,并起到抑菌、杀菌的作用。如生物质稻壳提取液对白色念珠菌、大肠杆菌的抑菌率可达90% 以上。此外,生物质提取液可以作为基质,加上农作物生长必需的一定数量的大量元素、中量元素、微量元素,制成活性有机叶面肥,显著提高作物的产量和品质。

热能。气化过程中,为净化可燃气,获取生物质提取液,冷凝器需使用冷却水;发电机高速运行需使用冷却水冷却电机;为使气化炉保持适当炉温,并使生物质炭冷却,需对气化炉进行冷却。这几个过程的冷却水出来都是具有温度的。1MW 功率的气化炉每小时可产生10T60~80度热水;发电机尾气达600℃高温,每小时可产生1T 余热蒸汽。蒸汽和热水都是很重要的有价值的资源,1T蒸汽约250 元,1T 热水约80 元。一座5MW 的电厂,每小时可产生5 吨蒸汽和50T 的热水,其一天产生的蒸汽和热水达12 万多元。

生物质气化技术范文第2篇

生物质能是人类用火以来,最早直接应用的能源。随着人类文明的发展,生物质能的应用研究开发几经波折,最终人们深刻认识到,石油、煤、天然气等化石能源的有限性,同时无节制地使用化石能源,大量增加co2、粉尘、so2等废弃物的排放,污染了环境,给人类赖以生存的星球,造成十分严重的后果。而使用大自然馈赠的生物质能源,几乎不产生污染,资源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用,是理想的可再生能源之一。生物质能的应用技术开发,旨在把森林砍伐和木材加工剩余物以及农林剩余物如秸杆、麦草等原料通过物理或化学化工的加工方法,使之成为高品位的能源,提高使用热效率,减少化石能源使用量,保护环境,走可持续发展的道路。

七十年代,由于中东战争引发的能源危机以来,生物质的开发利用研究,进一步引起了人们的重视。美国、瑞典、奥地利、加拿大、日本、英国、新西兰等发达国家,以及印度、菲律宾巴西等发展国家都分别修定了各自的能源,投入大量的人力和资金从事生物质能的研究开发。

我国生物质能研究开发工作,起步较晚。随着经济的发展,开始重视生物质能利用研究工作,从八十年代起,将生物质能研究开发列入国家攻关计划,并投入大量的财力和人力。已经建立起一支专业研究开发队伍,并取得了一批高水平的研究成果,初步形成了我国的生物质能产业。

2、生物质能应用技术的研究开发现状

2.1国外研究开发简介

在发达国家中,生物质能研究开发工作主要集中于气化、液化、热解、固化和直接燃烧等方面。

生物质能气化是在高温条件下,利用部份氧化法,使有机物转化成可燃气体的过程。产生的气体可直接作为燃料,用于发动机、锅炉、民用炉灶等场合。气化技术应用在二战期间达到高峰。随着人们对生物质能源开发利用的关注,对气化技术应用研究重又引起人们的重视。目前研究主要用途是利用气化发电和合成甲醇以及产生蒸汽。奥地利成功地推行建立燃烧木材剩余物的区域供电计划,目前已有容量为1000~2000kw的80~90个区域供热站,年供应10×109mj能量。加拿大有12个实验室和大学开展了生物质的气化技术研究。1998年8月发布了由freel,barrya.申请的生物质循环流化床快速热解技术和设备。瑞典和丹麦正在实行利用生物质进行热电联产的计划,使生物质能在提供高品位电能的同时满足供热的要求。1999年,瑞典地区供热和热电联产所消耗的能源中,26是生物质。

美国在利用生物质能方面,处于世界领先地位,据报道,目前美国有350多座生物质发电站,主要分布在纸浆、纸产品加工厂和其它林产品加工厂,这些工厂大都位于郊区。装机容量达7000mw,提供了大约66000个工作岗位,根据有关科学家预测,到2010年,生物质发电将达到13000mw装机容量,届时有4000000英亩的能源农作物和生物质剩余物用作气化发电的原料,同时,可按排170000个以上的就业人员,对繁荣乡村经济起到积极的推动作用。

流化床气化技术由于具有床内气固接触均匀、反应面积大、反应温度均匀、单位截面积气化强度大。反应温度较固定床低等优点,从1975年以来一直是科学家们关注的热点。包括循环流化床、加压流化床和常规流化床。印度anna大学新能源和可再生能源中心最近开发研究用流化床气化农业剩余物如稻壳、甘蔗渣等,建立了一个中试规模的流化床系统,气体用于柴油发电机发电。1995年美国hawaii大学和vermont大学在国家能源部的资助下开展了流化床气化发电的工作。hawaii大学建立了处理生物质量为100t/d的工化压力气化系统,1997年已经完成了设计,建造和试运行达到预定生产能力。vermont大学建立了气化工业装置,其生产能力达200t/d,发电能力为50mw。目前已进入正常运行阶段。

生物质的直接燃烧和固化成型技术的研究开发,主要着重于专用燃烧设备的设计和生物质成型物的应用。目前,已开发的技术有:林产品加工厂的废料(如造纸厂的树皮、家具厂的边角料等)的专用燃烧蒸汽锅炉,国外造纸厂几乎都有专门的设备,用来处理废弃物。由于生物质形状各异,堆积密度小较松散,给运输和贮存以及使用带来了较大困难,影响生物质的使用。因此,从四十年代开始了生物质的成型技术研究开发。现已成功开发的成型技术按成型物形状分主要有三大类:以日本为代表开发的螺旋挤压生产棒状成型物技术,欧洲各国开发的活塞式挤压制得园柱块状成型技术,以及美国开发研究的内压滚筒颗粒状成型技术和设备。美国颗粒成型燃料年产量达80万吨。

成型燃料应用于二个方面:其一:进一步炭化加工制成木炭棒或木炭块,作为民用烧栲木炭或工业用木炭原料;其次是作为燃料直接燃烧,用于家庭或暧房取暧用燃料。日本、美国、加拿大等国家,开发了专用炉灶。在北美有50万户以上家庭使用这种专用炉灶作为取暧炉。

将生物质能进行正常化学加工,制取液体燃料如乙醇、甲醇、液化油等;是一个热门的研究领域。利用生物发酵或酸水解技术,在一定条件下,将生物质转化加工成乙醇,供汽车和其它工业使用。加拿大用木质原料生产的乙醇上产量为17万吨。比利时每年用甘蔗为原料,制取乙醇量达3.2万吨以上,美国每年用农林生物质和玉米为原料大约生产450万吨乙醇,计划到2010年,可再生的生物质可提供约5300万吨乙醇。

生物质能的另一种液化转换技术,是将生物质经粉碎预处理后在反应设备中,添加催化剂或无催化剂,经化学反应转化成液化油。美国、新西兰、日本、德国、加拿大国家都先后开展了研究开发工作,液化油的发热量达3.5×104kj/kg左右,用木质原料液化的得率为绝干原料的50以上。欧盟组织资助了三个项目,以生物质为原料,利用快速热解技术制取液化油,已经完成100kg/hr的试验规模,并拟进一步扩大至生产应用。该技术制得的液化油得率达70,液化油低热值为1.7×104kj/kg。

生物质能催化气化研究,旨在降低气化反应活化能,改变生物质热处理过程,分解气化副产物焦油成为小分子的可燃气体,增加煤气产量,提高气体热解;同时降低气化温度,提高气化速度和调整生物质气体组成,以便进一步加工制取甲醇或合成氨。欧美等发达国家科研人员在催化气化方面已经作了大量的研究开发,研究范围涉及到催化剂的选择,气化条件的优化和气化反应装置的适应性等方面,并且已经在工业生产装置中得到了应用。

2.2国内研究开发

我国生物质能的应用技术研究,从八十年代以来一直受到政府和科技人员的重视。主要在气化、固化、热解和液化开展研究开发工作。

生物质气化技术的研究在我国发展较快,应用于集中供气、供热、发电方面。中国林科院林产化学工业研究所,从八十年代开始研究开发了集中供热、供气的上吸式气化炉,并且先后在黑龙江、福建得到工业化应用,气化炉的最大生产能力达6.3×106kj/hr。建成了用枝桠材削片处理,气化制取民用煤气,供居民使用的气化系统。最近在江苏省又研究开发以稻草、麦草为原料,应用内循环流化床气化系统,产生接近中热值的煤气,供乡镇居民使用的集中供气系统,气体热值约8000kj/nm3。气化热效率达70/以上。山东省能源研究所研究开发了下吸式气化炉。主要用于秸杆等农业废弃物的气化。在农村居民集中居住地区得到较好的推广应用,并已形成产业化规模。广州能源所开发的以木屑和木粉为原料,应用外循环流化床气化技术,制取木煤气作为干燥热源和发电,并已完成发电能力为180kw的气化发电系统。另外北京农机院、浙江大学等单位也先后开展了生物质气化技术的研究开发工作。

我国生物质的固化技术在八十年代中期开始,现已达到工业化规模生产。目前国内有数十家工厂,用木屑为原料生产棒状成型物木炭。螺旋挤压成型机有单头和双头二种,单头机生产能力为120kg/hr,双头机生产能力达200kg/hr。1990年中国林科院林化所与江苏省东海粮机厂合作,研究开发生产了单头和双头二种型号的棒状成型机,1998年又与江苏正昌集团合作,共同开发了内压滚筒式颗粒成型机,机器生产能力为250~300kg/hr,生产的颗粒成型燃料尤其适用于家庭或暖房取暖使用。南京市平亚取暖器材有限公司,从美国引进适用于家庭使用的取暖炉,通过国内消化吸收,现已形成生产规模。

生物发酵制气技术,在我国已经形成工业化,技术亦趋成熟,利用的原料主要是动物粪便和高浓度的有机废水。在上海亦已建成沼气集中供气系统。

沈阳农业大学从国外引进一套流化床快速热解试验装置,研究开发液化油的技术,和利用发酵技术制取乙醇试验。另外,中国林科院林化所进行了生物质催化气化技术研究。华东理工大学还开展了生物质酸水解制取乙醇的试验研究,但尚未达到工业化生产。

3、我国生物质能应用技术的展望

生物质能是一个重要的能源,预计到下世纪,世界能源消费的40来自生物质能,我国农村能源的70是生物质,我国有丰富的生物质能资源,仅农村秸杆每年总量达6亿多吨。随着经济的发展,人们生活水平的提高,环境保护意识的加强,对生物质能的合理、高效开发利用,必然愈来愈受到人们的重视。因此,科学地利用生物质能,加强其应用技术的研究,具有十分重要的意义。

目前,我国已有一批长期从事生物质转换技术研究开发的科技人员,已经初步形成具有中国特色的生物质能研究开发体系,对生物质转化利用技术从理论上和实践上进行了广泛的研究,完成一批具有较高水平的研究成果,部分技术已形成产业化,为今后进一步研究开发,打下了良好的基础。

从国外生物质能利用技术的研究开发现状结合我国现有技术水平和实际情况来看,本人认为我国生物质能应用技术将主要在以下几方面发展。

3.1高效直接燃烧技术和设备

我国有12亿多人口,绝大多数居住在广大的乡村和小城镇。其生活用能的主要方式仍然是直接燃烧。剩余物秸杆、稻草松散型物料,是农村居民的主要能源,开发研究高效的燃烧炉,提高使用热效率,仍将是应予解决的重要问题。乡镇企业的快速兴起,不仅带动农村经济的发展,而且加速化石能源,尤其是煤的消费,因此开发改造乡镇企业用煤设备(如锅炉等),用生物质替代燃煤在今后的研究开发中应占有一席之地。把松散的农林剩余物进行粉碎分级处理后,加工成型为定型的燃料,结合专用技术和设备的开发,在我国将会有较大的市场前景,家庭和暧房取暧用的颗粒成型燃料,推广应用工作,将会是生物质成型燃料的研究开发之热点。

生物质气化技术范文第3篇

我国目前生物质气化应用最广泛的领域是集中供气以及中小型气化发电,少量用于工业锅炉供热。农村集中供气工程解决了农作物秸秆的焚烧和炊事用能问题,而生物质气化发电主要针对具有大量生物质废弃物的木材加工厂、碾米厂等工业企业。我国的秸秆气化主要用于供热、供气、发电及化学品合成。

(1)秸秆气化供热。秸秆气化供热是指秸秆经过气化炉气化后,生成的燃气送人下一级燃烧器中燃烧,为终端用户提供热能。秸秆气化供热技术广泛应用于区域供热和木材、谷物等农副产品的烘干等,与常规木材烘干技术相比具有升温快、火力强、干燥质量好的优点,并能缩短烘干周期,降低成本。

(2)秸秆气化供气。秸秆气化供气是指气化炉产生的生物质燃气通过相应的配套设备为居民提供炊事用气。秸秆气化供气又分为集中供气和单独供气两种类型。

①秸秆气化集中供气。生物质气化集中供气系统是20世纪90年代以来在我国发展起来的一项新的生物质能源利用技术。它是在农村的一个村或组,建立一个生物质气化站,将生物质经气化炉气化后转变成燃气,通过输气管网输送、分配到用户,系统规模一般为数十户至数百户供气。目前,我国已广泛推广利用生物质气化技术建设集中供气系统,以供农村居民炊事和采暖用气。

在秸秆气化集中供气系统中,气化炉的选用是根据不同的用气规模来确定的,如果供气户数较少,选用固定床气化炉;如果供气户数多(一般多于1000户),则使用流化床气化炉更好。秸秆燃气的炉具与普通的城市煤气炉具有所区别,国内此类炉具的生产厂家也较多,效果较好,可以满足用户要求。

②户用秸秆气化供气。该种方式为一家一户的农村居民使用,户用小型秸秆气化炉,产生的燃气直接接人炉灶使用,系统具有体积小、投资少的优点。但也有明显的缺点:由于气化炉与灶直接相连,生物质燃气未得到任何净化处理,因而灶具上连接管及气化炉都有焦油渗出,卫生很差,且易堵塞连接管及灶具;因气化炉较小,气化条件不易控制,产出气体中可燃气成分质量不稳,并且不连续,影响燃用,甚至有安全问题;从点火至产气需要有一定的启动时间,增加了劳动时间,而且该段时间内烟气排放也是个问题。

③秸秆气化发电。我国在生物质气化方面有一定的基础。早在20世纪60年代初就开展了这方面的研究工作,近20年来加快了生物质气化发电技术的进一步研究。开发的中小规模气化发电系统具有投资少、原料适应性和规模灵活性好等特点,已研制成功的中小型生物质气化发电设备功率从几千瓦到5000千瓦。

气化炉的结构有层式下吸式、开心式、下吸式和常压循环流化床气化炉等,采用单燃料气体内燃机和双燃料内燃机,单机最大功率已达500千瓦。

农业废弃物气化发电技术经过近年来的研究、探索,分别解决了流化床气化、焦油裂解、低热值燃气机组改造、焦油污水处理和系统控制及优化等各种核心技术,在技术的产品化和标准化研究、提高农业废弃物气化发电站的成套性和实用性方面取得较大进展,形成了具有我国特色的农业废弃物能源利用方式。我国的生物质气化发电正在向产业规模化方向发展,在国内推广很快,而且设备还出口到泰国、缅甸、老挝等东南亚国家和地区。目前已签订的中小型农业废弃物气化发电项目总装机容量40兆瓦以上,成为国际上应用最多的中小型生物质气化发电系统。

生物质气化技术范文第4篇

关键词:生物技术;环保工程;处理

随着经济和科学水平的发展,我国的环境问题越来越严重,各地不断出现的雾霾天气以及水资源都发生的不同程度的恶化,是我们必须要重视和加强对环保工程的治理。目前生物技术由于其自身的特点逐渐受到学者的青睐,如何充分利用生物技术手段有效的解决一些环境污染问题,使环保工作得以顺利进行已成为当前研究的热点。

1 废气处理工程中的应用

在目前的废气处理生物技术中,生物膜法和生物过滤法是最为有效的方法。

1.1 生物膜法

生物膜法主要是指在多孔性介质填料的表面附着一些微生物,并促使污染废气能够在填料床层中得到生物性的处理,将一些污染物吸附于孔隙表面,再对其进行科学利用。通过合理运用微生物的新陈代谢功能将废气中存在着的一些有害物质转化降解为一些有机物、CO2、中性盐。除臭主要分为三个过程:第一步,气液扩散过程。气体流经填料时,在生物膜的作用下气态中的有害成分可在较短的时间内由气态转化为液态。第二步,液固扩散过程。液态的有害物质被吸附固定,逐渐在生物膜中扩散。第三步,生物氧化过程。填料中的微生物通过新陈代谢不断氧化已经被固化下来的有害物质,将一些成分作为微生物的营养物质吸收,其他成分在风机的作用下被排放出填料塔。

1.2 生物过滤法

生物过滤法是指将收集到的废气通过满是微生物的填料(也就是我们常说的固体载体),并且要求在适当的条件下,气体物质首先被固体载体所吸收,之后被微生物分解,这样废气的除臭就完成了。完成物质转换这一功能的就是微生物,其成长和培育需要充足的有机养分,因此,填料内就需要拥有充足的有机成分,要想微生物具有较高的活性,那么必要条件就是需要一个很好的生存环境,因为微生物生长的环境直接影响了微生物的生长与繁殖,所以,在会改变微生物生长环境的情况下就应该注意其生长环境的温度、含氧量、湿度等问题。

2 水体处理工程中的应用

目前,生物膜法,活性污泥法和生物-生态修复技术是常用的处理污水的有效方法。

2.1 生物膜法

所谓生物膜法启是一种借助某些固体物表面的生物膜(或附着的微生物)来实现有机污水处理的生物技术。污水处理生物膜法的工作原理为首先生物膜把附着在水层的有机物吸附牢固,然后有机物经好气层的好气菌被分解,有机物流入厌气层,有机物经厌气被分解,流动水层冲掉老化的生物膜,最后新的生物膜生长出来,污水净化完成。

2.2 活性污泥法

活性污泥法是指用微生物将废水中的生物进行处理的方式。活性污泥包括好气性的微生物和无机有机物所生成的微生物,微生物是用来对污染物质进行降解的主要物质,这种微生物是一种易与水分离的黄褐色物质。

2.3 生物-生态修复技术

生物-生态修复技术主要是利用微生物、植物等生物的生命活动,对水中污染物进行转移、转化及降解作用,从而使水体得到净化,创造适宜多种生物生息繁衍的环境,重建并恢复水生生态系统。这种技术的目的是为了让水体得到净化,其中的媒介是微生物和其他的一些生物,其方式是通过移动、改变和降解。重新构建了并且恢复了水体中的生态系统。芦苇床系统是利用性价比较高的各种水生以及半水生植物的处理污水的研究中效果最好的一个。这种修复技术因其独特的优势,如今已经成为了水污染处理和富营养化治理这两方面的重要的发展方向,其优势包括:性价比高、处理的效果明显、耗能较低、向水体中投放药物不会出现二次污染。

3 有机固体废物处理工程中的应用

有机固体废物通常是指可生化降解的有机废物,他们通常含水率低于85%~90%,如有机垃圾、污泥、禽畜粪便、秸秆等。利用生物技术河以将有机固体废物进行无害化、资源化处理。有机固体废物处理中目前较为有效的方法有好氧堆肥法和厌氧消化法。

3.1 好氧堆肥法

好氧堆肥法是通过人工干预的方式将自然界中的微生物的种类和数量进行控制,使其与固体废物中的易于生物降解的有机物在微生物的作用下不断被分解,转化为腐殖质的过程。

3.2 厌氧消化法

所谓厌氧消化法是在缺氧环境条件下,以接种生物或自然微生物为载体,把有机物转化成甲烷气体及二氧化碳的生物技术。厌氧消化技术目前已倍受国内外所关注,原因在于一方面能够消耗掉大量的有机废弃物;另一方面能够获取高质量的沼气与堆肥产品进而实现生物质能的循环再利用,但是厌氧消化的最佳生物转化条件、生态微环境以及设计完善的过程控制系统等方面,还需要进一步深入研究,以达到最佳的处理效果。

4 污泥和土壤中重金属的处理工程中的应用

生物技术用于处理污泥和土壤中的重金属,主要有微生物法、生物消解技术和植物修复技术。

4.1 微生物法

微生物法能有效地去除污泥中的重金属离子。运用微生物法对污泥及金属进行处理时,重金属元素的去除与pH值有关,其PH值极为重要。微生物的代谢、吸附等特性可以大大促进污泥中的重金属形态的转变和促使重金属元素的溶出。在对污泥、土壤中金属的形式转变进行加速处理时,对于微生物的特性运用较多,如代谢及吸附性。

4.2 生物消解技术

生物消解技术是应用生态学的理论,其中的不可缺少的物质是微生物以及蚯蚓,通过水蚯蚓与微生物协同作用,人工延长污泥处理过程的生物链,使污泥在传递过程中被生物消耗达最大化。同时应用生物吸附与富集重金属机理,有利于污泥后续处置,控制重金属污染,实现污泥减量化、资源化、无害化处理,达到环保和节省费用的目的。

4.3 植物修复技术

植物的修复技术是一种以植物分解或超量积累某些化学元素的生理功能为基础,利用植物及其共存微生物体系来吸收、降解、挥发和富集环境中污染物的治理技术,该技术主要是指运用植物对环境进行降解处理,所运用到的媒介多为植物及微生物。此种处理技术极为简便环保,仅对土壤具有一定要求。

结束语

环保问题现在已经成为我国经济社会可持续发展的头等大事,由于生物技术自身具有的优势,它对环保工程的推进起到非常好的效果,环境污染的治理和控制将随着新理论、新方法的运用而日益完善,同时为社会带来一定的经济效益,为国家的可持续发展做出重要的贡献。

参考文献

[1]牛炳晔.生物技术在环保工程中的应用[J].环境工程,2010,28:407-409.

[2]满江滨等.生物技术在环保工程中的应用分析[J].科技论坛,2007,33(6):20.

[3]杨荣,颜淼.探讨生物技术在环保工程中的应用[J].科技创新导刊,2013,9:150.

[4]陆天才.生物技术在环保工程中的应用研究[J].江西建材,2015,4:290.

[5]周.浅谈生物技术在环保工程中的应用[J].视界,2015,7:111.

[6]于雪梅.浅析环保工程中生物技术的应用[J].黑龙江科技信息,2014,(26):129.

生物质气化技术范文第5篇

一、发展农业生物质能产业的重要意义

通过一系列技术和经济手段,将农业生物质进行资源化利用,可以形成具有广阔发展前景的大产业。发展农业生物质能产业,不仅能够发挥我国农业生物质资源丰富的优势,开辟可再生资源利用的有效途径,缓解制约我国发展的能源和环境约束,提高发展的可持续性,而且可以围绕农业培育新兴能源产业,拓展农业功能,带动农民就业,促进农民增收,推进经济社会又好又快发展。

(一)发展农业生物质能产业,是贯彻落实科学发展观,实现节能减排目标的基本要求

我国是世界上第二大能源生产和消费国,化石能源的生产和消费是我国大气污染的主要来源。如煤炭占能源消费总量的比例高达69%,煤烟型污染程度一直较高。同时,部分农村地区大量使用薪柴等作为生活燃料,森林植被破坏严重;大量畜禽粪便得不到及时有效处理,面源污染日益加剧。积极发展农业生物质能产业,可以有效替代高污染、高排放的化石能源,降低薪柴使用量,资源化利用畜禽粪便等农业废弃物,是贯彻落实科学发展观的基本要求,是推动节能减排的战略举措,是保护生态环境的重要途径,有利于建立资源节约型和环境友好型社会,促进人与自然和谐发展和经济社会的可持续发展。

(二)发展农业生物质能产业,是拓展农业多种功能,促进农民增收的重要举措

发展农业生物质能产业,突破传统农业的局限,利用农产品及其废弃物生产新型能源,拓展了农产品的原料用途和加工途径,为农业提供了一个产品附加值高和市场潜力无限的平台。有利于转变农业增长方式,发展循环经济,延伸农业产业链条,提高农业效益,拓展农村剩余劳动力转移空间,促进农民增收致富。据专家测算,若充分利用我国现有生物质资源,可以新增约3万亿元产值,提供约6000万个就业岗位。

(三)发展农业生物质能产业,是调整能源结构,保障能源供应安全的迫切需要

我国能源资源总量较为丰富,但人均占有量低,人均煤炭、石油和天然气储量仅为世界平均水平的56.3%、7.7%和7.1%。近年来,随着我国经济社会的快速发展,能源需求持续增长,供求矛盾日益突出,2009年一次能源生产总量为27.5亿吨标准煤,能源消费总量达到28.5亿吨标准煤;石油净进口量1.99亿吨,对外依存度达52%。预计到2020年,我国GDP将达到5万亿美元,能源总需求达到25亿吨到30亿吨标准煤,其中石油缺口1.6~2.2亿吨,能源安全问题凸现。大力发展农业生物质能产业,减少煤炭资源的过度开发,弥补石油和天然气资源短缺,对缓解能源供应紧张局面,优化能源结构,保障国家能源安全具有重大意义。

(四)发展农业生物质能产业,是改善农村生活环境,扎实推进新农村建设的有效途径

我国农村经济社会发展水平较低,基础设施落后,环境卫生条件差,50%以上农户生活用能主要采用直接燃烧秸秆、薪柴等落后方式,同时大量人畜粪便得不到及时有效的处理,导致了疾病的发生和疫病的传播,影响了广大农民群众的生活质量和身体健康。发展农村生物质能,将农村分散的生产生活废弃资源集中起来,实现循环利用,清洁水源、家园、田园,有效地治理农村废弃物污染,将有效改善农民生产生活环境,提高农村能源利用水平,逐步实现农民生活用能的现代化、优质化和清洁化,保障社会主义新农村建设顺利进行。

二、我国农业生物质能产业发展现状和存在的主要问题

(一)我国农业生物质能产业发展现状

我国是一个农业大国,农村生物质资源品种多、数量大而且分布广,发展农业生物质能产业的条件优越。据农业部测算,全国每年生产农作物秸秆7亿多吨,农产品加工业废弃物(包括稻壳、玉米芯、花生壳、甘蔗渣等)超过1亿吨,畜禽粪便以及农产品加工业有机废水超过30亿吨,另有用于开发能源作物的边际土地1亿多公顷。近年来,在国家有力政策的支持下,我国农村生物质能开发利用取得了可喜的进展。

1.沼气产业稳步发展

经过多年的研究开发,我国农村户用沼气技术已居国际领先水平,形成了南方的“猪-沼-果”、北方的“四位一体”、西北五配套等多种农村沼气综合利用模式,户用沼气规模不断扩大。据农业部最新数据显示,截至2010年7月底,全国农村户用沼气达到3566万户,各类沼气工程5.9万处(大中型养殖场沼气工程近5000处),乡村沼气服务网点13.3万个,年产沼气约143亿立方米,生产沼肥(沼渣、沼液)约4.5亿吨,使用沼气相当于替代约2160万吨标准煤,相当于替代薪材1.32亿亩林地的年蓄积量,减少排放二氧化碳5260多万吨,年可为农户直接增收节支近180亿元。

2.农作物秸秆能源化利用势头良好

截至2006年底,我国农村地区已累计推广省柴节煤炉灶1.9亿户,普及率70%以上,节能炕2000万铺,建成秸秆集中供气站602处;生物质燃烧发电也具备了一定的规模,到2008年底,全国生物质发电装机容量约315万千瓦,主要是蔗渣发电和垃圾发电。我国生物质固化成型燃料技术的研究、生产和开发呈现良好的发展势头,并开展了试点示范。

3.生物液体燃料初具规模

生物液体燃料也已开始在道路交通部门中初步得到规模化应用。2009年,以陈化粮为原料的定点燃料乙醇年生产能力132万吨;以餐饮业废油、榨油厂油渣、油料作物为原料生产生物柴油的能力达到年产50万吨以上。值得注意的是,为不影响粮食安全并改善能源环境效益,我国已经确定了不扩大现有陈化粮玉米乙醇生产能力的政策,转向以木薯和甜高粱等非粮作物为原料生产燃料乙醇,并开始了商业化生产,目前在广西木薯项目的生产能力超过20万吨,2008年全国燃料乙醇总产量达到165万吨。此外,在新一代先进生物燃料技术方面,国内企业亦正加快研发纤维素乙醇,一些企业建立了千吨级纤维素乙醇中间试验装置。

(二)我国农业生物质能产业发展存在的主要问题

1.新技术开发不力,自主研发能力弱

我国除沼气技术较为成熟外,其它技术仍处于产业化发展初期,特别是缺乏具有自主知识产权的核心技术。例如,以甜高粱、木薯、甘蔗等原料生产燃料乙醇技术还需在优良品种选育、适应性种植、发酵菌种培育、关键工艺和配套设备优化、废渣废水回收利用等方面作进一步研究。我国生产酒精、热解液化、直接燃烧的工业技术和速生林的培育也没有突破性的进展。

2.资源利用率低

据估算,我国农业生物质能资源每年可转化为能源的潜力,近期约为5亿吨标准煤,远期可达到10亿吨标准煤以上。如果加上荒山、荒坡种植的各种能源林,资源潜力在15亿吨标煤以上。然而据统计,我国生物质能利用情况仅为:截至目前,年产沼气140多亿立方米;至2008年底,生物质发电装机容量约315万千瓦,生物质液体燃料近200万吨,生物质能资源实际利用率明显不足。

3.生物质能商业化运营滞后

国外的许多生物质能技术和装置基本上都实现了工业化、规模化生产,达到了商业化运营程度,如大中型沼气工程和垃圾填埋发电技术等。巴西的乙醇开发计划更属世界之首,目前乙醇燃料已占该国汽车燃料消费量的50%以上。技术的局限、不健全的生物质能利用市场以及鼓励政策和措施的缺乏,使得生物质能与我国低价位化石能源价格相比,毫无竞争优势,导致了我国生物质能长期处于商业化的前期,有的还停留在示范阶段,在一定程度上也阻碍了一些科研成果转化为生产力。

4.政策扶持和投入不足

国家虽已颁布了《可再生能源法》,但法律体系还不完善,在财政、金融、市场开放等方面缺乏合理有效的激励政策,例如,以非粮食作物为原料的生物液体燃料的支持政策还明显不足,生物质能的定价机制还没有体现出环境效益的因素;相关政策之间也存在着协调性差,政策难以落实等问题,还没有形成支持农业农业生物质能产业持续发展的长效机制。在生物质能新技术研发及应用方面,国家及地方政府财政投入严重不足,制约了技术创新和产业化发展。

三、推进农业生物质能产业发展的总体思路

(一)发展思路

以邓小平理论和“三个代表”重要思想为指导,以科学发展观为统领,在保障国家粮食安全的前提下,围绕拓展农业功能、发展循环农业、保障能源供应、促进农民增收,充分发挥资源和技术优势,充分利用农业废弃物、大力加强沼气建设、积极推广秸秆气化和固化成型燃料,适度发展能源作物,通过加强科技创新、加大政策扶持、强化体系建设,引导、整合和利用社会力量广泛参与,推进农业生物质能产业健康有序发展,提高农业资源利用效率,降低能源消耗,优化能源结构,减少污染排放,走中国特色的农业生物质能产业发展道路。

(二)发展重点

根据目前我国经济、社会发展需要和生物质能利用技术状况,我国农业生物质能产业发展的重点是农村沼气、农作物秸秆固化成型和气化燃料以及适度发展能源作物。

1.农村沼气

(1)农村户用沼气

农村户用沼气的基本建设单元为“一池三改”,即沼气池和改厕、改厨、改圈(可因地制宜地选择改院、改水等)。沼气池容积为6~12立方米,改造的厕所、圈舍与沼气池相连,实现自动进料,并配备自动或半自动的出料装置。改造的厨房要建固定灶台,地面硬化。北方地区还要配套建设太阳能暖圈等增温设施。鼓励因地制宜发展秸秆沼气,建设“四位一体”和“猪-沼-果(菜、茶)”等能源生态模式,发展循环农业。

(2)大中型沼气工程

主要在规模化养殖场和养殖小区建设的大中型沼气工程。大中型沼气工程以“一池三建”为基本建设单元,“一池”:建设沼气发酵装置,即在厌氧条件下,利用微生物分解有机物并产生沼气的装置。“三建”:建设预处理设施,包括沉淀、调节、计量、进出料、搅拌等装置,以秸秆为原料的,还须增加粉碎设备;建设沼气利用设施,包括沼气净化、储存、输配和利用装置;建设沼肥利用设施,包括沼渣、沼液综合利用等设施。鼓励大中型沼气工程向农户集中供气,向农户提供清洁的生活能源。

(3)养殖小区和联户沼气工程

养殖小区沼气工程是在人畜分离、小区集中养殖的村或300-5000头猪单位的小型养殖场,以畜禽粪便污水为原料,建设沼气集中供气工程。其主要的建设内容包括前处理系统、厌氧消化系统和沼气利用系统三部分。单个小区沼气工程的供气户数不少于50户。联户沼气工程以相邻的几户为单元,建设一处或多处沼气池,输气管道连接在一起,配套进行改厕、改厨和改圈,必要时还可配套小型贮气柜,实现供气互补。

2.农作物秸秆能源化利用

(1)生物质高效炉灶炕

主要包括三个方面内容:一是配置高效低排生物质炉,重点购置以农作物秸秆等生物质为燃料,采用多级配风的高效燃烧方式,热效率可达到35%以上的高效低排生物质炉;二是更新改造省柴节煤炉灶。重点对使用年限超过10年以上的炉灶,进行更换箅子等配件以及改造灶膛等,提高炉灶热效率;三是建设高效节能炕。重点对北方地区的火炕进行炕体结构改造,提高综合热效率和舒适度。

(2)固化成型燃料

秸秆固化成型燃料既可作为农村居民的炊事和取暖燃料,也可作为城市分散供热的燃料。近期秸秆固化成型燃料的发展重点:一是加大科研开发力度,尽快突破成型机具、炉具等方面的技术瓶颈。二是积极开展试点示范,合理确定生产半径,探索秸秆收集、储运和预处理模式,着力解决秸秆的分散性、周期性供应与生产的集中性、周年性之间的矛盾,取得经验后在全国逐步推广。

(3)秸秆气化燃料

秸秆气化燃料以村为单元建设供气站,敷设管网,通过管网输送和分配生物质燃气到农户家中。发展重点为:一是继续扩大秸秆气化示范范围,完善秸秆生产沼气技术。二是解决秸秆气化燃料焦油含量高的问题,提高系统运行的稳定性。三是加强和规范秸秆气化站的运行管理。

3.能源作物

根据我国的特点,结合生态建设和农业结构调整,合理利用盐碱地、荒地和冬闲田等未利用或利用不充分的土地资源,重点发展木薯、甘蔗、红薯、马铃薯等能源作物。一是要加快制订各个能源作物的发展规划,加快能源作物专用良种研发和引进,加强主导品种和主推技术的集成创新。二是积极推广能源作物的标准化示范基地建设,不断提高基础设施保障能力,大力发展机械化,加强病虫害防控,推进标准化生产。三是大力开展产加销一体化示范,积极探索“公司+协会”、“公司+基地+农户”等多种形式的产业化生产模式,延长产业链条,提高综合利用水平。

四、促进我国农业生物质能产业发展的政策建议

(一)制定切实可行的优惠政策和扶持措施

研究制定促进生物质能发展的高价收购、投资补贴、税费减免和合理配额等政策措施,鼓励和支持企业投资生物质能源开发。同时从各种渠道筹集资金,建立稳定的、有一定规模的生物质能发展专项资金,用于对生物质能科研、示范和推广、项目建设等工作的支持和对利用生物质能制造出的产品的补贴。

(二)建立健全生物质能产业市场体系

加强生物质能技术和产品的标准体系建设,规范生物质能的市场准入、生物质能发电入网的规定和要求、生物液体燃料自由进入石油销售体系的规定和要求。建立和健全生物质能技术推广服务体系,加强农业生物质能产业管理和技术队伍建设,通过市场带动,积极发展上下游企业和相关配套产业,整合资源,优化结构,建立完善的市场体系,实现农业生物质能产业健康有序、可持续的发展。

(三)加大生物质能科技创新

加大生物质能技术研发力度,推进生物质能利用技术的科技进步,提高自主开发制造能力,掌握一些核心技术的知识产权;加快试点和示范通过研发试验、关键技术基本成熟的生物质能技术,实现技术产业化和完善产业服务体系;加大国际上已成熟运用、我国短期内难于突破的先进技术和相关设备引进力度,在此基础上进行消化吸收和再创新。

(四)加强人才培训