前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇无线电通信基本原理范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。
关键词:无线电;通信传输;传输形式;风险控制
无线电通信传输技术的发展时间很早,在上世纪80年代就已经开始受到关注。从上世纪80年展至今天,无线电通信传输技术在人们的生产、生活中始终发挥着极其重要的作用。需要强调的是,尽管无线电通信传输技术可以为人们的生产、生活提供便利,但在通信传输方面,无线电通信传输技术本身却面临着一个严峻的挑战,即通信安全。关于这一点,无线电研发团队在现有的技术基础上作了大量的反思,也探讨出了多种安全管理和风险控制手段,从根本上提高了无线电通信传输技术水平,拓宽了无线电的使用范围。下面就无线电通信传输的常见形式以及风险控制措施进行探讨。
一、无线电技术与光纤技术在通信传输上的区别
就我国现有的通信技术而言,无线电通信传输技术和光纤通信技术是两种最为常见的通信技术,也是现代社会中应用频率最高的两种信息传输手段。其中,无线电技术通过网络技术来控制所在轨道卫星的运行、工作来实现信息的传送与信号的传输,而光纤技术则主要是通过光缆电线来实现信息传送。尽管两者最终都能实现信息、信号的传输,但信号传输所借用的介质是完全不同的。前者无线电通信以电波作为主要的信息传播介质,后者光纤通信则借助光来完成信息传输。分析两者的优势,光纤通信技术尽管具有着信息传输速度快、传输安全等特点,但在实际应用时,它并不能完全代替无线电通信传输。某些特殊情况下,信息的远程传输仍然得借助无线电通信技术。
二、无线电通信传输的常见形式
无线电实现信号传输的基本原理是,借助蜂窝网网络技术来控制所在轨道中卫星的运行,进而实现电波通信,完成信息信号的传输。由于蜂窝网网络中所获得的信号是由城市发送过来的,所以蜂窝网建设的主要目的就是为了获取城市信号。无线电通信传输中,无线电蜂窝网所覆盖的地区,都配置有可以接收信息信号的车辆,这些车辆可以接受外来的通信信号,也可发送信号,实现无线电通讯。无线电通信传输技术注重创新,从其产生到现在,相关研究人员已经对无线电通信传输技术进行了多次改进和改革,到目前已经完成了第一代到第二代的转变,现在正由第二代向更高层次发展。
第二代无线电通信技术是将基台的数量扩充、分布区域扩大,克服蜂窝区面积狭小的困境,进一步密集无线电信号的覆盖,保证了信号接收的畅通无阻。值得一提的是,第二代无线电通信的最大特点是数字性的运用功能较强。在信号的传输过程中,专门的人员会负责监测最低数字传送速度,再通过无线电基台和城市蜂窝网的“强强联合”来稳固信息传送结构,增大信号传送密度,为大众通信的效率提升提供方便。
无线电通信接下来的任务是巩固其在宽带连接服务和多媒体系统的更新。进一步运用尖端科学通信技术分化移动信号覆盖领域,将信号的覆盖区域划分为更小的部分,细化服务项目,各个击破,实现个人全球范围内信息的畅通有效。
无线电通信技术的应用经过这么多年的改进仍然在追求精进卓越,向更高层次发展。近些年来,技术人员始终在借助卫星传送无线电信号方面深入研究,试图利用卫星高空发送无线电信号将移动信息高效传送工作步伐向前迈进。无线电通信技术经过层层的改进,地面与高空的信号传输工作达到了在技术人员的操作范围内可控,通信技术的掌握也向前迈进了很大一步。但不得不承认的是移动通信在操作过程中仍存在一些技术性的问题,例如:天气变化对无线电通信的影响,通信系统的频度效率能否进一步提高的问题、宽带容量能否增大等。
三、无线电通信传输系统运行中的风险控制
无线电通信自兴起以来,特殊的地理位置和奇特地理环境的通信一直是科研人员努力设法攻克的难题。例如高大的山峰阻挡电波的传送,密集的森林会影响电波频率,地形复杂的偏远地区技术落后,地形突兀不平,信号很难稳定。经过几年的发展,通过国际对无线电传输系统的资金和科研大量投入,其网络系统在接收信号的效率、传送码的正确率、传送范围的扩大等方面都有较大程度的进步,但地理位置的特殊性对通信的干扰和个别地形奇特地区无线电不能正常传送这一系列问题在通信技术改进的过程中仍然没有取得突破性的发展。近些年,科研人员在通信传输过程中嵌入式系统的引入一定程度上打破了特殊地理位置和环境对无线电通信的技术限制这一方面的僵局。
嵌入式网络系统模式是利用无线电技术在网络局限区域传送信号,以此来弥补无线电通信在其自身的空白区的传输的正常进行,实现通信的密集分布。在实验的过程中,科研人员设法在几个网络局限区应用嵌入式网络系统,使这些区域的网络通信相互连接,如果连接顺畅,无线电通讯局域网中信号传送的多个空白区域间就能正常通信,实现无线电通信的无缝隙覆盖。这样一来,在日常生活中,不论在工业、农业、第三产业的通信中,在任何地点都能快捷、有效地实现网络信号接收,从而加强无线电通信再传送过程中的风险控制。
嵌入式网络系统在设计方面需注意两个方面。一个方面是要注意负责控制全局通信的主控模块的挑选。众所周知,在通信技术中主控模块的设置决定着无线电传输能否正常、和谐的运行。而操控全局的主控模块设备质量的好坏、科技含量的高低制约着无线电通信的网络信号,决定着无线电能否接收,确保着数据传送的正确率,如果主控模块质量过硬,无线电在网络运行过程中不必要的损耗会大大地减少。所以,嵌入式网络技术中主控模块的选择对无线电的传送过程起着至关重要的作用,选择时亟需谨慎,一般使用国际先进通信控制仪器。从另一方面来看,信息传送过程中,无线模块的设置也发挥着很大的作用。
四、结束语
综上所述,无线电通信技术在当前已经得到了广泛的应用,并且从其产生之日起,发展到今天,无线电通信技术已经实现了第一代到第二代的改进与跨越,在更大程度上提高了无线电通信传输技术在应用时的安全性与可靠性。本篇文章通过对无线电通信传输技术常见形式、改进技术以及风险控制方法的分析,得出了无线电通信传输安全是该技术在应用时应该高度重视的问题,必须采取措施加以控制。■
参考文献
[1] 宋怡桥,郑小平.光载毫米波无线电通信技术的现状与发展[J].中兴通讯技术.2009(03)
1 UWB基本原理
FCC(美国通信委员会)对超宽带系统的最新定义是:相对带宽(在-10dB点处)(fH-fL)/fc>20%(fH,fL,fc分别为带宽的高端频率、低端频率和中心频率) 或者总带宽BW> 500MHz。它与现有的无线电系统比较,在花费更小的制造成本的条件下,能够做到更高的数据传输速率(100~500MbPs)、更强的抗干扰能力(处理增益50dB以上),同时具有极好的抗多径性能和十分精确的定位能力(精度在cm 以内)。
发射超宽带(UWB)信号最常用和最传统的方法是发射一种时域上很短(占空比低达0.5%)的冲激脉冲。这种传输技术称为“冲击无线电(IR)”。UWB-IR又被称为基带无载波无线电,因为它不像传统通信系统中使用正弦波把信号调制到更高的载频上,而是用基带信号直接驱动天线输出的;由信息数据对脉冲进行调制,同时,为了形成所产生信号的频谱而用伪随即序列对数据符号进行编码。因此冲击脉冲和调制技术就是超宽带的两大关键所在。
2 UWB的调制技术
超宽带系统中信息数据对脉冲的调制方法可以有多种。脉冲位置调制(PPM) 和脉冲幅度调制(PAM)是UWB 最常用的两种调制方式。通常UWB信号模型为:
(1)
其中,w (t) 表示发送的单周期脉冲,dj,tj分别表示单脉冲的幅度和时延。PAM是一种通过改变那些基于需传输数据的传输脉冲幅度的调制技术。在PAM调制系统中,一系列的脉冲幅度被用来代表需要传输的数据。任何形状的脉冲都是通过其幅度调制使传输数据在{-1,+1}之间变化(对于双极性信号)或在M个值之间变化(对于M 元PAM)。
采用脉冲幅度调制(PM)的超宽带信号波形如下:
(2)
其中,dj是信息序列,Tf是脉冲重复周期。根据dj的不同取值,可将PAM调制方式分为以下三种:
(1)OOK(发送数据为1,UWB信号的幅度为1,发送数据为0 ,UWB 信号的幅度为0);
(2)PPAM(发送数据为1,UWB 信号的幅度为β1 ;发送数据为0 ,UWB 信号的幅度为β2);
(3)BPSK(发送数据为1 ,UWB 信号的幅度为1 ;发送数据为0 ,UWB 信号的幅度为- 1) 。
对于这三种方式,在超宽带的PAM调制方式中多采用BPSK方式。
脉冲位置调制(PPM) 又称时间调制(TM) ,是用每个脉冲出现的位置落后或超前某一标准或特定时刻来表示某个特定信息的。二进制PPM 是超宽带无线通信系统经常使用的一种调制方法,相对其它调制方法来说也是较早使用的一种方法。采用PPM的一个重要原因是它能够使用零相差的相关接收机来接收检测信号,而这种接收机有着非常好的性能。图1 给出了上述四种制方法的信号波形图,对这四种调制方式给出了一个比较直观的描述。
3 UWB 技术特点
由于UWB 与传统通信系统相比,工作原理迥异,因此UWB具有如下传统通信系统无法比拟的技术特点:
(1)系统容量大。香农公式给出C = Blog2 (1+S/N)可以看出,带宽增加使信道容量的升高远远大于信号功率上升所带来的效应,这一点也正是提出超宽带技术的理论机理。超宽带无线电系统用户数量大大高于3G系统。
(2)高速的数据传输。UWB系统使用上GHz的超宽频带,根据香农信道容量公式,即使把发送信号功率密度控制得很低,也可以实现高的信息速率。一般情况下,其最大数据传输速度可以达到几百Mbps~1Gbps。
(3)多径分辨能力强。UWB由于其极高的工作频率和极低的占空比而具有很高的分辨率,窄脉冲的多径信号在时间上不易重叠,很容易分离出多径分量,所以能充分利用发射信号的能量。实验表明,对常规无线电信号多径衰落深达10~30dB 的多径环境,UWB 信号的衰落最多不到5dB。
(4)隐蔽性好。因为UWB 的频谱非常宽,能量密度非常低,因此信息传输安全性高。另一方面,由于能量密度低,UWB 设备对于其他设备的干扰就非常低。
(5)定位精确。冲激脉冲具有很高的定位精度,采用超宽带无线电通信,可在室内和地下进行精确定位,而GPS 定位系统只能工作在GPS 定位卫星的可视范围之内。与GPS提供绝对地理位置不同,超短脉冲定位器可以给出相对位置, 其定位精度可达厘米级。
(6)抗干扰能力强。UWB 扩频处理增益主要取决于脉冲的占空比和发送每个比特所用的脉冲数。UWB 的占空比一般为0.01~0.001 ,具有比其它扩频系统高得多的处理增益,抗干扰能力强。一般来说,UWB 抗干扰处理增益在50dB 以上。
(7)低成本和低功耗。UWB 无线通信系统接收机没有本振、功放、锁相环(PLL)、压控振荡器(VCO)、混频器等, 因而结构简单,设备成本将很低。由于UWB信号无需载波,而是使用间歇的脉冲来发送数据,脉冲持续时间很短,一般0.20ns~1.5ns之间,有很低的占空因数,所以它只需要很低的电源功率。一般UWB 系统只需要50~70mW的电源,是蓝牙技术的十分之一。
4 UWB发射机和接收机组成框图
1.UWB发射机
UWB发射机直接发送纳秒级脉冲来传输数据而不需使用载波电路。所以,UWB发射机比现有无线发射设备要简单得多。TH-UWB发射机组成框图如图2所示。
调制后的数据与伪码产生器生成的伪码一起送入可编程延迟电路,可编程延迟电路产生的时延控制脉冲信号发生器的发送时刻,脉冲信号发生器输出的UWB信号由天线辐射出去。脉冲信号产生电路的一个关键部分是天线,它的作用相当于一个滤波器。
2.UWB接收机组成框图
TH-UWB接收机采用相关接收方式,接收机框图如图3所示。图3中虚线内的部分是相关器。它由乘法器、积分器和取样/保持电路三部分组成。
接收机与发射机类似,两者的区别在于接收机的基带信号处理器从取样/保持电路中解调数据,基带信号处理器的输出控制可编程时延电,为可编程时延电路提供定时跟踪信号,保证相关器正确解调出数据。
5 UWB 技术的应用前景
UWB 系统在很低的功率谱密度的情况下,UWB具有巨大的数据传输速率优势,最大可以提供高达1000Mbps 以上的传输速率,使UWB 同其它短距离无线通信系统的技术优势非常明显。现有的各种无线解决方案(例如:802.11 ,Bluetooth等) 的速率均低于100Mbit/s ,UWB 则在10m 左右的范围之内打破了这一限制,UWB 的应用将使人们可以摆脱更多线缆的牵绊,通信因而变得更为方便。
无线通信已经迅速渗入我们的生活当中,对容量不断增长的要求需要一种不对现有的通信系统造成影响的新的无线通信方案,超宽带脉冲无线电系统正好满足了这一要求。UWB 技术对于无线短距离的高速数据通信是非常有竞争力的,随着研究的深入,凭借多方面的优势,它将在很多领域占有一席之地。特别是短距离传输的后3G领域,UWB 将有广阔的发展空间。
关键词:4G4G关键技术OFDMSAMIMOSDR4G发展现状
一、前言
根据国际电联的工作安排,2009年将集中征集4G技术标准,2010年会推出第一个4G版本,并在2011年世界无线电通信大会上通过。4G预计2015年左右投入商用。4G技术的飞速发展,使得广大用户享受更新、更快捷、更丰富的通信生活成为可能。
二、4G网络中的关键技术
4G系统针对各种不同业务的接人系统,通过多媒体接入连接到基于口的核心网中。基于IP技术的网络结构使用户可实现在3G、4G、WLAN及固定网间无缝漫游。4G网络结构可分为三层:物理网络层、中间环境层、应用网络层。
(1)物理网络层提供接入和路南选择功能。
(2)中间环境层的功能有网络服务质量映射、地址变换和完全性管理等。
(3)物理网络层与中间环境层及其应用环境之间的接口是开放的,使发展和提供新的服务变得更容易,提供无缝高数据率的无线服务。并运行于多个频带,这一服务能自适应于多个无线标准及多模终端,跨越多个运营商和服务商,提供更大范围服务。
据国际电信联盟定义,4G技术是可为移动中的用户提供100Mb/S的数据传输、为静止的用户提供1Gb/S的数据传输的无线通讯技术,包含OFDM、智能天线(SA)与多人多出天线(MIMO)技术、软件无线电技术(SDR)三大关键技术。
1、OFDM
OFDM即正交频分复用技术,实际上OFDM是MCMMulti-CarrierModulation,多载波调制的一种。OFDM技术有很多优点:可以消除或减小信号波形间的干扰,对多径衰落和多普勒频移不敏感,提高了频谱利用率;适合高速数据传输;抗衰落能力强;抗码间干扰(ISI)能力强。
2、智能天线(SA)与多入多出天线(MIMO)技术
智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,被认为是未来移动通信的关键技术。智能天线成形波束能在空间域内抑制交互干扰,增强特殊范围内想要的信号,这种技术既能改善信号质量又能增加传输容量。其基本原理是在无线基站端使用天线阵和相干无线收发信机来实现射频信号的接收和发射。同时通过基带数字信号处理器,对各个天线链路上接收到的信号按一定算法进行合并,实现上行波束赋形。目前智能天线的工作方式主要有两种:全自适应方式和基于预多波束的波束切换方式。
移动通信环境中的多径传播对通信的有效性与可靠性造成了严重的影响。而多输入多输出(M1MO)技术在通信链路两端均使用多个天线,发端将信源输出的串行码流转成多路并行子码流,分别通过不同的发射天线阵元同频、同时发送,接收方则利用多径引起的多个接收天线上信号的不相关性从混合信号中分离估计出原始子码流,这相当于频带资源重复利用,使频谱利用率和链路可靠性极大的提高。
3、软件无线电技术(SDR)
软件无线电(SDR)是将标准化、模块化的硬件功能单元经一通用硬件平台,利用软件加载方式来实现各类无线电通信系统的一种开放式结构的技术。其中心思想是使宽带模数转换器(A/D)及数模转换器(D/A)等先进的模块尽可能地靠近射频天线的要求。尽可能多地用软件来定义无线功能。其软件系统包括各类无线信令规则与处理软件、信号流变换软件、调制解调算法软件、信道纠错编码软件、信源编码软件等。软件无线电技术主要涉及数字信号处理硬件(DSPH)、现场可编程器件(FPGA)、数字信号处理(DSP)等。
4、基于IP的核心网
4G移动通信系统的核心网是一个基于全IP的网络,可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接人方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种窄中接口接人核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。在4G通信系统中将取代IPv4协议,主要采用全分组方式IPv6技术。
三、4G技术的发展现况及其挑战
1、日本NTI-DoCoMo在4G的领先优势
2008年日本NTTDoCoMo公司新闻公报称,该公司在2007年年底进行的4G外场试验中,创下5.3Gb/s的最大下行速率纪录。在此次试验中,无线通信系统的发射端和接收端天线均从一年前试验时的6根增加到12根,并采用了该公司独有的接收信号处理技术,使下行速率成功翻倍。
2、WiMAX“准4G”标准
2007年10月19日,国际电信联盟ITU在日内瓦举行无线通信全体会议,无线宽带技术WiMAX通过投票正式成为3G标准。
WiMAX,即IEEE802A6x,全称是“微波存取全球互通技术(WorldwideInteroperabilityforMicrowaveAccess)”,被业界认为是高于现有3G标准的“准4G”标准。和传统的TD-SCDMA、WCDMA和CDMA2000相比,WiMAX的最大传输半径达到了约50km,接近前者的两倍。而在传输速度上,WiMAX也让其他3G标准望尘莫及。在10km范围内,WiMAX网络的带宽可以达到70Mb/S,甚至超过了ADSL等有线网络的技术,而3G标准中的TDSCDMA和WCDMA则均为2Mb/s。
3、美国与欧洲针对4G的举动
作为美国的代表,3G时代的霸主高通公司一方面希望通过引入DMMX和HMMX这两项技术后,性能达到4G的要求;另一方面则通过收购Flarion科技公司获得了近300项OFDM技术专利,这被业界视为高通欲在4G时代继续保持专利的绝对领先之举。
在欧洲,爱立信已与美国加利福尼亚大学合作开发4G技术。加利福尼亚大学已正式成立了加州通信和信息技术学会,并得到了爱立信的投资。而阿尔卡特、爱立信、摩托罗拉、诺基亚、西门子成立了旨在推动4G技术开发的世界无线研究论坛WWRF(WirelessWorldResearchForum)。该组织下设的6个工作组,分别讨论业务、市场、结构、接口、核心技术等问题。
4、我国正在加快4G关键技术研究步伐
从2001年底起,继在国产3G标准制定方面取得巨大进展之后,国家“十五”、“863”计划启动了面向未来移动与无线通信发展的“FUTURE计划”。
2006年7月,上海建设的世界最大的4G实验网通过了863项目的验收。通过验收的上海试验网由三个无线覆盖小区、六个无线接入点组成,具有在移动环境下支持蜂值速率为100Mb/S的无线传输及高清晰度交互式图像业务演示等功能。
“FUTURE计划”负责人之一、国家“863”计划未来移动通信总体组组长尤肖虎表示,我国已经在国内外申请移动通信技术发明专利100余项,我国在第四代移动通信技术上已经处于世界前沿。
2009年,我国对4G的发展步伐明显加快。大唐移动联合中兴通讯、华为以及相关高校和科研院所完成了4G相关白皮书。相关业内人士透露,我国已经完成了4G标准的技术方案起草工作,目前正在进行4G关键技术的系统验证。我国目前正在更多地区进行4G系统的测试工作,且要赶在2010年前对其进行商业化测试,以便在2011年世界无线电通信大会时向国际电信联盟提交有着自主知识产权的4G标准。
四、4G移动通信技术未来预测
【关键词】UWB 通信技术 发展 特点
一、UWB简介
UWB是Ultra Wide Band(超宽带通信)的简称,是一种主要应用于近距离无线通信的技术。根据美国联邦通信委员会(FCC)的定义:信号带宽与中心频率之比小于1%为窄带,在1%到25%之间为宽带;信号带宽大于1.5Ghz或与其中心频率之比大于25%为超宽带。UWB是一种超宽带通信技术,UWB信号所含有的频率成分的范围要大于窄带信号和宽带信号,位于超宽带信号的范围。UWB与现有通信技术最大的不同是不需要载波,而且是通过发送纳秒级脉冲进行数据传输,因此信号在传输时所需要的功率很低,只有几十μW,最大数据传输速率可达几十Mbit/s到几百Mbit/s。UWB技术在保证数据高速传输的同时,解决了移动终端的功耗问题,因此有着广泛的应用前景。
(一)UWB的历史发展。
UWB技术起源于20世纪60年代对微波网络冲击响应的研究。此后一直被美国军方严格控制,研究焦点主要集中在雷达系统中,主要应用于军用雷达。该技术开始被称为“无载波”无线电,或脉冲无线电,1989年,美国国防部首次使用超宽带(UWB)名称作为这一技术的术语。自1998年起,为了探究UWB在民用领域使用的可行性,FFC开始广泛征求业界意见。2002年2月14日,FFC批准UWB用于民用通信,正式开放UWB在短距离通信的应用许可。2003年2月,在美国新墨西哥州举行有关UWB标准的大讨论,形成以Intel与德州仪器为首支持MBOA标准和以摩托罗拉为首支持DS-UWB标准的两大阵营,双方在这场讨论中互不相让,标准悬而未决。此后,两大阵营中的众多公司纷纷加大研发投入,相继有了各自主打的产品上市,UWB技术越来越受到各方面的重视。我国在2001年9月的“十五”国家863计划通信技术主题研究项目中,首次将“超宽带无线通信关键技术及其共存与兼容技术”作为无线通信共性技术与新技术的研究内容,鼓励国内学者加强这方面的研究工作。
(二)UWB技术的特点。
由于UWB采用与传统技术迥异的无载波传输技术,所以与传统通信相比UWB具有如下主要特点:
1.耗能低。通常情况下,无线电通信系统需要发射连续载波,要消耗一定的能量,而UWB只是发出瞬间脉冲,直接按0和1发送出去,并且只有在需要时才发送电波,所以电能消耗很低。UWB信号的发送功率也很小,大大延长系统电源工作时间,电磁波辐射对人体影响也小。
2.传输速率高。UWB数据传输速率可达到几十Mbit/s到几百Mbit/s,这样的传输速率,高于蓝牙技术100倍,也高于IEEE802.11a和IEEE802.11b.
3.带宽宽。UWB使用较宽带宽,可以和目前的窄带及宽带通信系统共同工作而互不干扰,在频率资源紧张的今天,开辟了新的无线电资源。
4.抗干扰性能强,保密性好。UWB采用跳时扩频系统,具有较大的处理增益,这样在发送端可以使用极低功率发送微弱信号,避开传输中可能的干扰,在接收端利用足够的增益处理,得出所需信号。采用跳时扩频,接收机只有知道发送端扩频码时才能解出发射数据,而且用传统的接收机无法接受。
二、 技术原理及问题
脉冲无线电是早期UWB技术的代名词,其与传统正弦载波通信技术的最大不同是采用冲击脉冲作为信息载体而非高频正弦波,也正是由于这一点,UWB技术与传统技术相比具有上述优点。以下分几个方面对UWB技术基本原理进行阐述。
(一)UWB常用基本脉冲。
UWB技术采用的典型基带窄脉冲是高斯双叶脉冲,这种脉冲生成容易而被经常使用。其对应的时域和频域波形如下:
由频域图可知,UWB采用的时域脉冲信号使得其频域带宽很宽,有数Ghz。
(二)UWB调制方式。
UWB常用的调制方式为脉位调制(PPM)。PPM是用待传数据控制改变发射脉冲的时间间隔或发射脉冲相对于基准时间的位置来传递信息,实现起来简单,但是对时间控制的精确度要求很高,其波形如下所示:
除了典型的PPM调制方式外,还有用待传数据控制基带脉冲其他参量的多种调制方式。通过编码技术实现的伪随机编码调制可使UWB信号的频谱接近白噪声谱,并使功率大幅度减小。
(三)UWB信号的接收技术。
目前实现UWB接收的方法主要有:相关接收机法;自相关器接收机法;采用自适应的最小均方误差实现多用户检测的接收机。UWB信号的接收天线,需要是微型的,在各种条件下能正常工作,具有一定增益和超宽频带。目前UWB天线通常有:单极、双极、电磁环、陀螺旋、碟-锥形等。
(四)面临的问题。
虽然UWB技术已经发展了几十年,但仍然有许多问题亟待解决。主要有:保证信号准确性的前向纠错编码的设计;高速脉冲电路的设计与实现;多址方案的设计;信道建模;多径衰落的处理;调制技术的改进。
超宽带(UWB,Ultra Wide Band)无线技术在无线电通信、雷达、跟踪、精确定位、成像、武器控制等众多领域具有广阔的应用前景,因此被认为是未来几年电信热门技术之一。1990年,美国国防部首先定义了“超宽带”概念,超宽带无线通信开始得到美国军方和政府部门的重视。2002年4月,美国FCC通过了超宽带技术的商用许可,超宽带无线通信在民用领域开始受到普遍关注。目前“超宽带”的定义只是针对信号频谱的相对带宽(或绝对带宽)而言,没有界定的时域波形特征。因此,有多种方式产生超宽带信号。其中,最典型的方法是利用纳秒级的窄脉冲(又称为冲激脉冲)的频谱特性来实现[1]。
超宽带无线电是对基于正弦载波的常规无线电的一次突破。几十年来,无线通信都是以正弦载波为信息载体,而超宽带无线通信则以纳秒级的窄脉冲作为信息载体。其信号产生、调制解调、信号隐蔽性、系统处理增益等方面,具有独特的优势,尤其是能够在密集的多径环境下实现高速传输。由于脉冲持续时间很短,多径分量在时域上不易重叠,多径分辨能力高,通过先进的多径分离技术或瑞克接收机,可以充分利用多径分量。
目前,典型的超宽带无线通信调制方式以TH-PPM、TH-PAM为主,本论文中,介绍超宽带无线通信中的调制技术,主要讨论TH-PPM、TH-PAM的基本原理,并且对比调制技术的优缺点,性能的好坏,并进行动态的仿真,从仿真图中较清楚的研究调制方式,从而得出正确的结论,细致的研究超宽带无线通信中的调制技术。
关键字:超宽带 调制方式 PPM调制 PAM调制 OFDM调制
2 概述
2.1 总述
近几年来,超宽带短距离无线通信引起了全球通信技术领域极大的重视。超宽带通信技术以其传输速率高、抗多径干扰能力强等优点成为短距离无线通信极具竞争力和发展前景的技术之一。FCC(美国通信委员会) 对超宽带系统的最新定义是:相对带宽(在- 10dB 点处) (fH - fL)/fc > 20 %(fH ,fL ,fc分别为带宽的高端频率、低端频率和中心频率) 或者总带宽BW> 500MHz。[1]它与现有的无线电系统比较,在花费更小的制造成本的条件下,能够做到更高的数据传输速率(100~500MbPs) 、更强的抗干扰能力(处理增益50dB 以上) ,同时具有极好的抗多径性能和十分精确的定位能力(精度在cm 以内) 。
2.2 UWB基本原理
发射超宽带(UWB) 信号最常用和最传统的方法是发射一种时域上很短(占空比低达0. 5 %) 的冲激脉冲。这种传输技术称为“冲击无线电( IR) ”.UWB - IR 又被称为基带无载波无线电,因为它不像传统通信系统中使用正弦波把信号调制到更高的载频上,而是用基带信号直接驱动天线输出的[6];由信息数据对脉冲进行调制,同时,为了形成所产生信号的频谱而用伪随即序列对数据符号进行编码。因此冲击脉冲和调制技术就是超宽带的两大关键所在。
2.2.1 脉冲信号
从本质上讲,产生脉冲宽度为纳秒级的信号源是UWB 技术的前提条件。目前产生脉冲信号源的方法有两类: ①光电方法,基本原理是利用光导开关导通瞬间的陡峭上升沿获得脉冲信号。由于作为激发源的激光脉冲信号可以有很陡的前沿,所以得到的脉冲宽度可达到皮秒(10 - 12 ) 量级。另外,由于光导开关是采用集成方法制成的,可以获得很好的一致性,因此是最有发展前景的一种方法。②电子方法,利用微波双极性晶体管雪崩特性,在雪崩导通瞬间,电流呈“雪崩”式迅速增长,从而获得具有陡峭前沿的波形,成形后得到极短脉冲。在电路设计中,采用多个晶体管串行级联,使用并行同步触发的方式,加快了雪崩过程,从而达到进一步降低脉冲宽度的目的[7]。
冲激脉冲通常采用单周期高斯脉冲,典型的单周期高斯脉冲的时域和频域数学模型分别表示为:
(2-1)
(2-2)
单周期脉冲的宽度在纳秒级(0. 1~1. 5ns) ,重复周期为25~1000ns ,具有很宽的频谱,如图2-1 所示。实际通信中使用的是一长串的脉冲,由于时域中信号的周期性造成了频谱的离散化,周期性的单脉冲序列频谱中出现了强烈的能量尖峰。这些尖峰将会对信号构成干扰,通过数据信息和伪随机码来进行编码P调制,改变脉冲与脉冲间的时间间隔,可以降低频谱的尖峰幅度[2]。
图2-1 单周期脉冲的时间域和频率域的表示
2.2.2 UWB的调制技术
超宽带系统中信息数据对脉冲的调制方法可以有多种。脉冲位置调制( PPM) 和脉冲幅度调制(PAM) 是UWB 最常用的两种调制方式。通常UWB信号模型为:
(2-3)
其中,w ( t) 表示发送的单周期脉冲, dj , tj 分别表示单脉冲的幅度和时延。
a PAM- UWB
PAM是一种通过改变那些基于需传输数据的传输脉冲幅度的调制技术。在PAM调制系统中,一系列的脉冲幅度被用来代表需要传输的数据。任何形状的脉冲都是通过其幅度调制使传输数据在{ - 1 , + 1}之间变化(对于双极性信号) 或在M 个值之间变化(对于M 元PAM) 。增加传输脉冲所占的带宽或减少脉冲重复频率,都可以增加一个固定平均功率谱密度的UWB 系统所能达到的吞吐量和传输距离,可以看出这一效果与增加传输功率的峰值的效果是相似的。[8]
采用脉冲幅度调制(PAM)的超宽带信号波形如下:[4]
(2-4)
其中, dj 是信息序列, Tf 是脉冲重复周期。根据dj 的不同取值, 可将PAM调制方式分为以下三种:
(1) OOK(发送数据为1 ,UWB 信号的幅度为1 ;发送数据为0 ,UWB 信号的幅度为0) ;
(2)PPAM(发送数据为1 ,UWB 信号的幅度为β1 ;发送数据为0 ,UWB 信号的幅度为β2) ;
(3)BPSK(发送数据为1 ,UWB 信号的幅度为1 ;发送数据为0 ,UWB 信号的幅度为- 1) 。
对于这三种方式,在超宽带的PAM调制方式中多采用BPSK方式。
b PPM- UWB
脉冲位置调制(PPM) 又称时间调制(TM) ,是用每个脉冲出现的位置落后或超前某一标准或特定时刻来表示某个特定信息的[3]。二进制PPM 是超宽带无线通信系统经常使用的一种调制方法,相对其它调制方法来说也是较早使用的一种方法。采用PPM的一个重要原因是它能够使用零相差的相关接收机来接收检测信号,而这种接收机有着非常好的性能。采用脉冲位置调制( PPM) 的超宽带信号波形如下:
(2-5)
其中, dj 取0 或1 ,δ为调制因子, 与脉冲宽度Tm (1/Tf ) 是一个数量级。当发送数据为1 时脉冲就会相应滞后一个时延δ。
图2-2 给出了上述四种调制方法的信号波形图,对这四种调制方式给出了一个比较直观的描述。
除了这些对脉冲的调制方法外,用伪随机码或伪随机噪声(PN) 对数据符号进行编码以得到所产生信号的频谱时,根据编码的不同即扩频和多址技术不同,超宽带系统又被分为跳时的超宽带系统(TH - UWB) 、直扩的超宽带系统(DS - UWB) 、跳频的超宽带系统(FH - UWB) 和基带多载波超宽带系统(MC - UWB) 等[9]。
图2-2 不同调制方式的信号波形[4]
2.3 UWB 技术特点
由于UWB 与传统通信系统相比,工作原理迥异,因此UWB 具有如下传统通信系统无法比拟的技术特点[4]:
(1)系统容量大。香农公式给出C = Blog2 (1 +S/N) 可以看出,带宽增加使信道容量的升高远远大于信号功率上升所带来的效应,这一点也正是提出超宽带技术的理论机理。超宽带无线电系统用户数量大大高于3G系统。
(2)高速的数据传输。UWB 系统使用上GHz 的超宽频带,根据香农信道容量公式,即使把发送信号功率密度控制得很低,也可以实现高的信息速率。一般情况下,其最大数据传输速度可以达到几百Mbps~1Gbps。
(3)多径分辨能力强。UWB 由于其极高的工作频率和极低的占空比而具有很高的分辨率,窄脉冲的多径信号在时间上不易重叠,很容易分离出多径分量,所以能充分利用发射信号的能量。实验表明,对常规无线电信号多径衰落深达10~30dB 的多径环境,UWB 信号的衰落最多不到5dB。
(4)隐蔽性好。因为UWB 的频谱非常宽,能量密度非常低,因此信息传输安全性高。另一方面,由于能量密度低,UWB 设备对于其他设备的干扰就非常低。
(5)定位精确。冲激脉冲具有很高的定位精度,采用超宽带无线电通信,可在室内和地下进行精确定位,而GPS 定位系统只能工作在GPS 定位卫星的可视范围之内。与GPS 提供绝对地理位置不同,超短脉冲定位器可以给出相对位置, 其定位精度可达厘米级。
(6)抗干扰能力强。UWB 扩频处理增益主要取决于脉冲的占空比和发送每个比特所用的脉冲数。UWB 的占空比一般为0. 01~0. 001 ,具有比其它扩频系统高得多的处理增益,抗干扰能力强。一般来说,UWB 抗干扰处理增益在50dB 以上。
(7)低成本和低功耗。UWB 无线通信系统接收机没有本振、功放、锁相环( PLL) 、压控振荡器(VCO) 、混频器等, 因而结构简单,设备成本将很低。由于UWB 信号无需载波,而是使用间歇的脉冲来发送数据,脉冲持续时间很短,一般在0. 20ns~1. 5ns之间,有很低的占空因数,所以它只需要很低的电源功率。一般UWB 系统只需要50~70mW 的电源,是蓝牙技术的十分之一[10]。尽管如此,UWB 在技术上面临一定的挑战, 还有诸多技术的问题有待研究解决,比如需要更好地理解UWB 传播信道的特点,建立信道模型,解决多径传播;需要进一步研究高速脉冲信号的生成、处理等技术;研究新的调制技术,进一步降低收发结构的复杂度等。
转贴于
2.4 UWB发射机和接收机组成框图
2.4.1 UWB发射机组成框图
UWB发射机直接发送纳秒级脉冲来传输数据而不需使用载波电路。所以,UWB发射机比现有的无线发射设备要简单得多。TH-UWB发射机组成框图如图2-3所示[5]。
图2-3 UWB发射机组成框图
调制后的数据与伪码产生器生成的伪码一起送入可编程延迟电路,可编程延迟电路产生的时延控制脉冲信号发生器的发送时刻,脉冲信号发生器输出的UWB信号由天线辐射出去。脉冲信号产生电路的一个关键部分是天线,它的作用相当于一个滤波器。
2.4.2 UWB接收机组成框图
TH-UWB接收机采用相关接收方式,接收机框图如图4所示。图4中虚线内的部分是相关器。它由乘法器、积分器和取样/保持电路三部分组成[5]。
接收机与发射机类似,两者的区别在于接收机的基带信号处理器从取样/保持电路中解调数据,基带信号处理器的输出控制可编程时延电路,为可编程时延电路提供定时跟踪信号,保证相关器正确解调出数据。
图2-4 UWB接收机组成框图
2.5 UWB 技术的应用前景
UWB 系统在很低的功率谱密度的情况下,UWB具有巨大的数据传输速率优势,最大可以提供高达1000Mbps 以上的传输速率,使UWB 同其它短距离无线通信系统的技术优势非常明显,如表1 所示。现有的各种无线解决方案(例如802. 11 ,Bluetooth等) 的速率均低于100Mbit/s ,UWB 则在10m 左右的范围之内打破了这一限制,UWB 的应用将使人们可以摆脱更多线缆的牵绊,通信因而变得更为方便[6]。
2.6 结束语
无线通信已经迅速渗入我们的生活当中,对容量不断增长的要求需要一种不对现有的通信系统造成影响的新的无线通信方案,超宽带脉冲无线电系统正好满足了这一要求。UWB 技术对于无线短距离的高速数据通信是非常有竞争力的,随着研究的深入,凭借多方面的优势,它将在很多领域占有一席之地。特别是短距离传输的后3G领域,UWB 将有广阔的发展空间[8]。
表1 几种短距离无线通信比较
家庭和办公室互连
笔记本、台式电脑、掌上电脑、因特网网关
无线电视、DVD , 高速因特网网关
3 MATLAB 软件工具介绍
3.1 MATLAB语言的概述
MATLAB是一种科学计算软件,适用于工程应用各领域的分析设计与复杂计算,它使用方便,输入简捷,运算高效且内容丰富,很容易由用户自行扩展。因此,它已成为大学教学和科学研究中最常用且必不可少的工具。
MATLAB是“矩阵实验室”(MATrix LABoratoy)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需求。与其他计算机语言相比,其特点是简洁和智能化,适应科技专业人员的思维方式和书写习惯,使得编程和调试效率大大提高。它用解释方式工作,键入程序立即得出结果,人机交互性能好,为科技人员所乐于接受。特别是它可适应多种平台,并且随计算机硬、软件的更新而用时升级。因而,MATLAB语言是数值计算用得最频繁的电子信息类学科工具。它大大提高了课程教学、解题作业、分析研究的效率。
3.2 MATLAB的历史
在1980年前后,美国的Cleve Moler博士在New Mexico大学讲授线性代数课程时,发现应用其他高级语言编程极为不便,便构思并开发了MATLAB(MATrix LABoratory,矩阵实验室),它是集命令翻译、科学计算于一身的一套交互式软件系统,经过在该大学进行了几次的试用之后,于1984年推出了该软件的正式版本。它是以著名的线性代数软件包LINPACK和特征计算软件包EISPACK中的子程序为基础发展而成的一种开放型程序设计语言,其基本的数据单元是一个维数不加限制的矩阵,这就允许用户可以根据数值计算问题的复杂程序,对问题进行分段甚至逐句编程处理,显然这与C、FORTRAN等传统高级语言完全不同。在MATLAB下,矩阵的运算变得异常的容易,后来的版本中又增添了丰富多彩的图形图像处理及多媒体功能,使得MATLAB的应用范围越来越广泛,Moler博士等一批数学家与软件专家组建了名为MathWorks的软件开发公司,专门扩展并改进MATLAB。
为了准确地把一个控制系统的复杂模型输入给计算机,然后对之进行进一步的分析与仿真,1990年MathWorks软件公司为MATLAB提供了新的控制系统模型图形输入与仿真工具,并定名为SIMULAB,该工具很快在控制界得致函广泛的使用。但因其名字与著名的软件SIMULA类似,所以在1992年正式改名为SIMULINK。此软件有两个明显的功能:仿真与连接,亦即可以利用鼠标在模型窗口上画出所需的控制系统模型,然后利用该软件提供的功能来对系统直接进行仿真。很明显,这种做法使得一个很复杂系统的输入变得相当容易。SIMULINK的出现,更使得MATLAB的控制系统的仿真与其在CAD中的应用打开了崭新的局面。
3.3 MATLAB语言的特点
MATLAB语言有以下特点。
(1) 起点高
每个变量代表一个矩阵,以矩阵运算见长。当前的科学计算中,几乎无处不用矩阵运算,这使它的优势得到了充分的体现。
(2) 人机界面适合科技人员
MATLAB的语言规则与笔算式相似。MATLAB的程序与科技人员的书写习惯相近,因此,易写易读,易于在科技人员之间交流。矩阵的行列数无需定义。MATLAB不必有阶数定义,输入数据的行列数就决定了它的阶数。键入算式立即得到结果,无需编译。MATLAB是以解释方式工作的,即它对每条语句解释后立即执行,若有错误也立即做出反应,便于编程者立即改正。这些都大大减轻了编程和调试的工作量。
(3) 强大而简易的做图功能
能根据输入数据自动确定坐标绘图,能规定多种坐标系,(极坐标系、对数坐标系等),能绘制三维坐标中的曲线和曲面,可设置不同颜色、线型、视角等。如果数据齐全,通常只需一条命令即可出图。
(4) 智能化程度高
绘图时自动选择坐标,大大方便了用户;做数值积分时自动按精度选择步长;自动检测和显示程序错误的能力强,易于调试。
(5) 功能丰富,可扩展性强
MATLAB软件包括基本部分和专业扩展两大部分。
基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分等等。可以充分满足大学理工科学生的计算需要。
扩展部分称为工具箱。它实际上是用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的专门问题,或实现某一类的新算法。现在已经有控制系统、信号处理、图像处理、系统辨识、模糊集合、神经元网络及小波分析等工具箱,并且向公式推导、系统仿真和实时运行等领域发展。
MATLAB的核心内容在于它的基本部分,所有的工具箱子程序都是用它的基本语句编写的。
3.4 MATLAB仿真
通过利用所学的理论知识,建立一个完整、准确的需求说明,清楚、准确地提出仿真试验所要解决的问题。
对所提出的仿真系统给出详细定义,明确系统中的模块、系统构成、模块之间的相互关系,系统的输入输出、边界条件以及系统的约束条件,并明确仿真所要达到的目标。
根据仿真系统分析的结果,确定系统中的参数、变量及其互之间的关系,并以数学形式将这些关系描述出来,从而构成仿真系统的数学模型。数学建模是系统仿真中最关键的一步,所建立的数学模型必须尽可能准确地反映所关心的真实系统的特性,而又不能过于复杂,以免降低模型的效率,增加不必要的计算过程,即建模需要根据求解问题的要求,在模型的近似程度与复杂程度之间折中。电子与通信系统的数学模型通常以方框图形式或数学方程形式来表达。
根据建立的数学模型所需要的数据元素,收集与模型系统有关的数据。根据数学模型建立系统的计算机仿真模型,收集数据,确定其中各子模块的结构,输入输出接口,输入输出的数据表达形式,数据的存储方式等。然后编制相应的程序流程,用MATLAB语言实现。
仿真模型验证的目的是确定计算机仿真模型是否准确表达了数学模型。仿真模型验证通常的方法是将数学模型的解析结果(或理论结果)与仿真所得到的数值结果相比较来完成的;或通过已知的系统输入输出结果,对比在相同条件下的系统仿真结果来验证仿真模型的正确性。