首页 > 文章中心 > 微电子电路分析与设计

微电子电路分析与设计

微电子电路分析与设计

微电子电路分析与设计范文第1篇

选取多层微波电路中,微带线-带状线-微带线通过过孔互连的结构模型,使用电磁仿真软件HFSS对过孔进行电磁特性分析,得出过孔散射参数(S参数)。分析不同参数:过孔半径、接地板开孔半径、是否存在接地孔对过孔的传输特性的影响。所得出结论对实际应用设计具有指导作用。

【关键词】多层微波电路 过孔 微带线 带状线 电磁特性 散射参数 HFSS

1 前言

随着集成电路工艺的不断发展,微波电路趋向于集成化、小型化。微波电路已经从分立原件发展到三维微波集成电路,又称为多层微波电路(Multilayer Microwave Circuits)。在多层微波电路中,不同电路层之间的连接线问题,已经成为微波集成电路设计的重要课题。而过孔已经成为多层微波电路中不同层间信号互连的重要方式。

过孔是一种“不连续”结构,随着电子器件的小型化和工作频率的不断增加,由于其不连续性引发信号在传输过程中的反射、辐射会不断增加,当工作频率达到微波阶段以后,这些反射和辐射就必须加以考虑。因此,对过孔的电磁特性分析,对多层微波电路的设计和分析具有重要意义。

本文对选取的微带线-带状线-微带线结构模型,通过仿真软件对不同参数:过孔半径、接地板开孔半径、是否有接地孔进行分析,得出这些参数对过孔的电磁特性的影响。

2 过孔结构分析

2.1 过孔模型

本文从实际应用角度出发,选取了具有实际应用价值的简单多层微波电路进行分析,并对该结构进行简化以便建立合理的分析模型。下图中,图1为实际应用的多层微波电路。该微波电路总共有4层,顶层为左右两条微带线,中间层为带状线带通滤波器,顶层和中间层通过过孔互连,实现微带线-带状线-微带线结构。图2为图1结构的简化分析模型,将中间层带状线带通滤波器简化为带状线,从而便于分析计算。由于本文的重点工作是对过孔互连结构的电磁特性进行分析研究,将实际应用的带通滤波器简化为带状线,不会影响分析结果,对于带状线滤波器的设计与分析以及带状线的传输特性问题不做考虑。

2.2 过孔互连方式

图3为微带线-带状线-微带线模型的侧面图。水平微带线通过过孔与中间层带状线连接,信号从顶层微带线传输经过过孔传输到中间层带状线,再经过过孔传输到顶层微带线。常见的过孔连接方式有三种,这三种情况均忽略了过孔焊盘。本文的分析中主要使用连接方式3。(见图4)

3 仿真分析

运用电磁仿真软件HFSS对所构建模型进行电磁仿真,得出过孔的散射参数。主要研究过孔半径r,接地层开孔半径R对该微带线-带状线-微带线过孔互连结构传输特性的影响。由于单独研究研究过过孔半径r变化,接地层开孔半径R变化,是否存在接地孔对过孔传输特性的影响时,其结果与介质层选取无关,为简化仿真计算量,快速得出散射参数,将介质层设为空气,导体设为理想导体。,分析频率为0.5G-10G,扫频间隔设置为0.2G。

3.1 过孔半径的影响

通过仿真可以得出过孔半径变化时,散射参数S11和S21的变化曲线。图5、图6分别为过孔半径为0.3mm、0.4mm、0.5mm、0.6mm时的S11和S21变化曲线。S11表示信号的反射系数,也称为反射损耗。其值大小反应信号被反射回源端口的多少。S21表示信号的正向传输系数,也称为插入损耗。其大小反应信号传输到目的端口的多少。

比较数据可以很清晰的看出:随着过孔半径的增大,反射系数和传输系数都不断增大。分析信号的传输性能时主要考虑传输系数,因此设计过孔时应尽量保证其较小的半径。

3.2 接地层开孔半径的影响

通过仿真可以得出接地层开孔半径变化时,散射参数S11和S21的变化曲线。图7、图8分别为接地层开孔半径为0.6mm、0.8mm、1.0mm、1.2mm时的S11和S21变化曲线。

比较数据可以很清晰的看出:随着接地层开孔半径的增大,反射系数增大,传输系数减小。因此,考虑传输性能时,较小的接地层开孔半径能改善信号的传输质量。

3.3 接地孔的影响

多层微波电路中,各个接地金属层间通过互连形成统一参考面,接地孔的存在直接影响过孔的传输特性。仿真中,直接选取有无接地孔对比,对微带线-带状线-微带线过孔互连结构的传输特性进行分析。图2为有接地过孔。对比分析中去掉该孔进行仿真得出两组数据。

图9中,随频率的升高,过孔的反射系数不断增大;但有接地过孔的反射系数变化较为缓慢,且整体的反射系数小于无接地孔情况。图10中有接地孔时传输系数最大衰减为-1.75db,显然小于无接地过孔时的-2.25db。因此,接地过孔的存在是对该微带线-带状线-微带线过孔互连结构中过孔传输特性的改善,使得信号的反射减弱,传输变强,在某种程度上改善传输质量。与实际设计应用相吻合。

4 总结

本文从实际应用角度出发,选取了一个具有实用价值的结构,抽象出一个合理的仿真模型。通过电磁仿真软件HFSS对微带线-带状线-微带线模型进行仿真。得出了几个简单的过孔设计结论:1.过孔半径增大,传输系数也随之增大。2.接地层开孔半径增大,反射系数增大,传输系数减小。3.接地孔的存在能改善传输质量。这几个结论对实际应用设计具有指导作用。

由于时间关系,本文对过孔传输特性只做了部分研究,文中还有多处可改进深入研究的地方。例如:介质层材料及厚度的不同对过孔传输特性的影响、导带宽度对过孔传输特性的影响(此处涉及不同的连接方式)、接地孔的半径、数量及接地过孔与信号过孔的位置对过孔传输特性的影响。在以后的学习中,我将进一步对其他地方进行深入研究。

参考文献

[1]李力,年夫顺.微波多层印制板带通滤波器[J].国外电子测量技术,2013,04:63-65.

[2]杨操.高速PCB板过孔电磁模型优化研究[D].华中科技大学,2011.

[3]熊锦康.微带线与不同层间带状线在LTCC设计中相互转换[J].集成电路通讯,2006,03:13-20.

[4]蔡萱葳.多层微波电路垂直通孔结构电磁特性分析[D].电子科技大学,2008.

[5]李海良.多层微波电路通孔结构的建模与电磁特性研究[D].电子科技大学,2010.

[6]任辉,杨邦朝,苏宏,胡永达.LTCC多层微波带通滤波器的设计与仿真[A].中国电子学会元件分会.中国电子学会第十四届电子元件学术年会论文集[C].中国电子学会元件分会,2006:14.

[7]L.Tsang,and D.Miller.Coupling of vias in electronic packaging and printed circuit board structures with finite ground plane.IEEE Trans.Adv.Package.Nov.2003.vol.26,no.4,pp.375-384.

[8]S.G.Hsu and R.B.Wu.Full-wave characterization of a through hole via in multi-layered packaging,IEEE Trans.Microwave Theory Tech.,May 1995,vol.43,pp.1073-1081.

[9]李明洋编著.HFSS电磁仿真设计应用详解[M].北京:人民邮电出版社,2010.

[10]李明洋,刘敏编著.HFSS电磁仿真设计从入门到精通[M].北京:人民邮电出版社,2013.

[11]谢拥军等编著.HFSS原理与工程应用[M].北京:科学出版社,2009.

微电子电路分析与设计范文第2篇

【关键词】微世界;PSpice;电子教学;模拟仿真

【中图分类号】G420 【文献标识码】B 【论文编号】1009―8097(2010)01―0127―03

一 微世界理论及其在模拟仿真中的应用

微世界(Microworld)一词最早由Papert提及,特指Logo的学习环境。Logo语言主要作为激发学习者思考、创造、认知发展的学习环境。利用简单的电脑几何作图,学习者可以学习基本的程式设计、逻辑思考、几何空间概念与解决问题的方法。它能够让学习者用很简单的指令,学习控制“海龟”的移动,并观察其移动的轨迹和特性;借由将“操作海龟”转变成自己的物件来创造出自己个人的视觉世界,进而产生有趣的逻辑问题与几何现象,探索逻辑与几何观念问题,最后提出假设加以验证并解决问题[1]。

微世界是一种模拟真实世界现象与环境的发现式学习系统(环境)。它只是提供某一个学科知识领域的微小但完整的“世界”,将微世界作为向学习者传递知识和技能的一种环境或一种载体[2]。创建微世界环境的目的是为了向学习者提供一个可供自由探索、完全自主控制的学习环境,在该环境中学习者可以对学习进行自我组织,自行确定学习内容与目标,从而达到帮助教师讲授某个教学难点,或帮助学生学习某个知识技能点和探究新知的效果。

当前微世界的教学或学习环境大多是借助计算机化建模技术构造的,从这个意义上讲,可以将微世界看作是一个有效整合计算机科技与模拟环境的认知学习支援工具。由于微世界具有仿真模拟真实环境的特点,它已经被逐步应用到数学、计算机、经济学等各种不同的领域:20世纪90年代开始在中国广泛应用的“几何画板”工具解决了平面几何、物理矢量分析、作图和函数作图的难题,把抽象的内容以形象的方式呈现给学习者;台湾学者张基成以微世界在自然科学学习上的应用为着眼点,开发出名为《小小旅行家微世界探险》的微世界学习环境,其设计理念正是提供模拟真实世界现象的发现式与探索式的经验学习环境,借助于模拟与实验活动,促进学习者主动发现与探索问题的认知历程,从而激发学习者高层思考、多元创造、主动积极学习与解决问题的能力[3]。

二 PSpice在教学中的应用

在电子技术教学中经常会遇到这样的情况:学生对专业中所涉及的实用技术有浓厚的观察和动手兴趣[4],但对课堂教学却十分厌恶。究其原因主要就是教学时因为学时的限制和实验设备的局限性,使教师无法全部采用边讲理论边做实验的教学模式,以至于学生的好奇心被磨灭,甚至使学生对模电这门课产生畏惧,认为“模电就是魔鬼电路”。

由于微世界要求学生对模拟的环境可操纵、可建构,因此将基于微世界理论的仿真软件引入到电子线路课堂教学中进行辅助教学可以大大改善教学的效果。比如现在比较流行的PSpice软件,它允许学习者利用它提供的元件构造各种模拟电路和数字电路,并可以动态测试电路的性能,帮助学生在理论学习过程中及时印证所学的内容,理解电路的复杂变化工程,达到理论与实践相结合的目的。

PSpice是由SPICE发展而来的用于微机系列的通用电路分析程序。SPICE(Simulation Program with Integrated Circuit Emphasis)是由美国加州大学伯克利分校于1972年开发的电路仿真程序。随后版本不断更新,功能不断增强和完善。PSPICE可以对众多元器件构成的电路进行仿真分析,能进行模拟电路分析、数字电路分析和模拟数字混合电路分析。其主要分析功能包括直流分析、瞬态分析、蒙特卡罗(Monte Carlo)分析和最坏情况(Worst Case)分析等,用它还可以观察到变量的各种波形数据列表,功能强大[5]。

下图是PSpice A/D的运行界面,PSpice A/D (included in OrCAD with PSpice v10.5)是一个全功能的模拟与混合信号仿真器,它支持从高频系统到低功耗IC设计的电路设计。PSpice的仿真工具已和 OrCAD Capture及Concept HDL电路编辑工具整合在一起,让工程师方便地在单一的环境里建立设计、控制模拟及得到结果。

在电子技术实验教学中,除了要求学生掌握一些常用仪器的使用方法和参数测量方法外,一般要求学生通过所做实验进一步掌握有关元器件及电路的各种性能,通过直观的实验巩固所学的理论知识。然而对于复杂电路,学生在短时间内很难把握电路输出及各种性能指标。由于PSpice的仿真计算精确,利用PSpice仿真软件进行电子电路的分析验证几乎与真实实验室环境下的实验调试结果一致。PSpice有文本和图形两种输出方式,有利于学生对电路的全面理解,而且具有完全不耗材和元器件资源、仪器仪表资源丰富及设计调试安全等特点。

三 教学应用实例

1 教学问题

我们结合一个具体的教学实例来对PSpice在模拟电子教学中的应用进行详细阐述。如图2a是一个乙类互补对称功放电路(参照PSpice帮助文档中功率放大器电路仿真例题及联系),基于该电路要解决如下问题:

第一,Vi幅值为5V,频率为1KHz的正弦波。作瞬态分析,观察输出Vo形的交越失真。进一步作直流扫描分析,求失真所对应的输入电压范围。

第二,为减小和克服交越失真,在两基极间加上补偿二极管及相应电路,以供给T1和T2两管一定的正向偏压,构成甲乙类互补对称功放电路(图2b)。再作瞬态分析,观察输出Vo交越失真是否消除。

第三,求图2b的最大输出电压范围。

2 教学过程

在PSpice中可以通过以下步骤来分析该电路:首先进入Schematics主窗口,绘出图a所示电路,并设置好参数,接着按以下步骤进行解题:

第一,设置瞬态分析(Transient)功能。得瞬态波形如图2c所示,可看出Vo有交越失真。再设置直流扫描分析(DC Sweep),信号源Vi的扫描范围为-2V~+2V。得电压传输特性如图2d所示,由图中看出,输入电压在-0.68V~+0.68V范围内出现失真。

第二,将电路改成图2b的形式,重复(1)的步骤,可得电路的瞬态波形和传输特性分别如图2e、2f所示,可看出Vo已无交越失真。

第三,设置直流扫描分析,电压源Vi的扫描范围为-10V~+10V。得电压传输特性如图2g所示,由图中看出,最大输出电压范围约为-5V~+5V。

3 讨论

根据上述教学实例,我们可以看出基于微世界理论的PSpice模拟仿真软件在辅助教学中可以起到如下作用:

(1)将实验室引进课堂,提高教学效率

微世界倡导的学习模式是情境式、经验式、自我调节式的“在做中学”。在有关电子技术的部分教学中,实验耗时多,实际操作难度大,难以在课堂时间内穿插演示,而人的记忆具有随时间推移遗忘率增大的特点,如果理论与动手的时间间隔较长,学生的学习效率就会降低。例如在上述“乙类互补对称功放电路”教学中通常采用分段式教学,论教学和实验部分分开进行,但这样会造成知识在传授过程中的断点。应用PSpice辅助教学就能直接在课堂上快速、完整的建构出实验原理图,并且能够展现完美的仿真实验过程,及时显示实验结果。

(2)调动学生学习的主观能动性,培养学生的分析、应用和创新能力

微世界学习环境的出现为学生问题的解决提供了崭新的平台,促进学生在学习后将知识迁移到实际环境中,学生可以借助于微世界建立问题空间的模型,通过假设验证等类似科学家探究问题的方法来解决遇到的问题。例如在该教学实例中,学生可以在PSpice中添加或修改各种元器件以探索解决乙类互补对称功放电路出现的交越失真问题的方法。它可以加强学生与学习环境的交互,使学生明确问题的性质,进而作出明确的表征,并通过建模调试到反思和总结,在遍遍错误和重新寻找解决办法的反复过程帮助学生解决问题。同时学生还能对问题所涉及的相关知识有更深刻的理解,达到将所学知识融会贯通的目的。

(3)可以恰当运用反例教学,培养学生发现与解决问题的能力,优化教学效果[6]

微世界可以培养学生观察现象、发现问题、寻找资料、提出假设、设计实验、执行实验、验证结果与讨论结果等系统化程序的能力。在传统电子技术的实验课中,对实验时接线的要求非常严格,万一接错线可能会烧坏元件甚至烧坏仪表,不仅造成实验材料的浪费而且还有一定的危险性。而将PSpice引入教学后,学生则不必畏首畏尾,可以把电路图故意接错,设置短路、断路、漏电等故障:如在电路中接一指示灯进行故障仿真时会出现指示灯被烧坏或不亮等现象,此时再加上教师的及时解释和强调,将会给学生留下深刻的印象,从而大大减少实际操作中的线路故障率,节约实验材料,提高实验效率,改善和提高学生掌握正确的测量方法和熟练使用仪器方面的能力。PSpice给学生提供了模拟真实情景的问题情境,是学生应用知识、解决问题的一种良好的训练工具。

四 结语

简言之,基于微世界理论的PSpice软件具有逼真再现真实电路并能自行操作的显著特点,将其作为一种教学媒体和教学环境引入电子技术的课堂可以给学生留下深刻的印象,显示出传统教学不可比拟的优势。它能有效地激发学生的学习兴趣和求知欲,激励学生积极主动的学习思考,从而达到认识事物、启发思维、激发想象、引导感情的目的,提高了学生分析问题和解决问题的能力,提高了学生实践和动手能力,培养了学生勇于探索不断创新的能力,促进了电子技术课堂面貌的革新,使电子技术不再枯燥。但同时也应看到电子实验培养学生动手能力的重要性,电路的焊接和调试的实际操作是该软件无法实现的,因此完全依赖微世界而舍弃实际操作是不可取的,在实际教学中必须将两者合理结合,充分发挥仿真软件在电子教学中的魅力,达到最佳教学效果。

参考文献

[1] 张基成.电脑微世界认知学习环境――探索与发现问题之心智工具[J].视听教育双月刊,1999,(1):30-39.

[2] 张伟.微世界教育应用探索[J].远程教育杂志,2003(5):7-10.

[3] 张基成,岳修平,吴明德 等.微世界学习环境[C].第八届国际电脑辅助教学研讨会大会论文,1988.

[4] 何克抗,郑永柏,谢幼如.教学系统设计[M].北京:北京师范大学出版社,2003.

微电子电路分析与设计范文第3篇

关键词:微电子工艺;创新性;实验教学

一、引言

微电子技术与国家科技发展密切相关,是21世纪我国重点发展的技术方向。在新形势下,无论军用还是民用方面都对微电子方向人才有强烈需求。高校微电子专业是以培养能在微电子学领域内,从事半导体器件、集成电路设计、制造和相应的新产品、新技术、新工艺的研究和开发等方面工作的高级应用型科技人才为目标的。因此,要求学生不仅要具备坚实的理论基础,还需具备突出的专业能力和创新能力,满足行业的快速发展和社会需求。

目前我国微电子行业中,微电子工艺研究相对于器件和集成电路设计研究工作是滞后的,处于不平衡发展状态,为使行业发展更均衡,需要加强微电子工艺人才的培养。微电子工艺是微电子专业中非常重要的专业课,主要研究微电子器件与集成电路制造工艺原理与技术。微电子器件与集成电路尺寸都是在微米甚至纳米量级,导致在理论学习过程中,学生理解有一定的困难,因此需要通过开设微电子工艺实验课程加深和巩固知识内容,使学生更加直接地接触微电子行业核心技术,了解半导体器件、集成电路生产制造加工的技术方法,从而促进学生对微电子工艺等课程的学习。因此,微电子工艺实验教学可以有效地弥补理论教学的局限性和抽象性,促进学生对理论课的理解和提高学生的动手能力。

二、课程分析

微电子工艺课程要求掌握制造集成电路所涉及的外延、氧化、掺杂、光刻、刻蚀、化学气相淀积、物理气相淀积、金属化等技术的原理与方法,熟悉双极型和M0s集成电路的制造工艺流程,了解集成电路的新工艺和新技术。微电子技术的发展是遵循摩尔定律,快速发展变化的,虽然工程教育要求教学最新最前沿的技术,但微电子设备价格昂贵,运转与维护费用很高,任何高校都很难不断升级换代;而且集成电路制造技术的更新迭代主要是在掺杂技术、光刻技术、电极制造技术方面进行了技术改进,在其他方面还都是相似的,因此,在高校中单纯追求工艺先进的实验教学是不现实的。基于此,结合实际教学资源情况,建设主流、典型工艺技术的工艺实验线,并开展理论联系实践的实验教学是微电子工艺实验室建设的重点。通过实验使学生更牢固地掌握晶体管及简单Ic的整个工艺制造技术,学会测试晶体管重要参数,以及初步了解集成电路工艺制造过程。

黑龙江大学微电子工艺实验室已建立数十年,之前受到设备的限制,所开设的实验都是分立的,不能完全按工艺流程完成器件的制作,没有形成有机整体,学生缺乏对晶体管制作工艺流程的整体认识。经过不断发展和学校的大量投入,目前该实验室拥有一条微电子平面工艺线,主要的设备包括磁控溅射设备、电子束蒸发设备、CVD化学气相淀积系统、光刻机、离子刻蚀机、扩散炉、氧化炉、超声压焊机、烧结炉等。这些设备保证了微电子工艺实验能够按晶体管制作工艺流程顺序完成制作。同时实验室配备了测试环节所必须的显微镜、电阻率测试仪、探针测试台、半导体特性图示仪等检测仪器,通过实验能进一步加深学生对微电子工艺制造过程的了解。实践证明,以上实验内容对学生掌握知识和开拓视野起到十分重要的作用,效果显著。该实验室多年来一直开展本科生教学和本科生毕业设计、研究生毕业设计、各类创新实验项目等教学、科研工作。

三、实验教学的开展

为了达到理论实践相互支撑与关联,通过实验促进理论学习,笔者根据微电子专业特点,开展了微电子工艺实验的教学改革。在原有的微电子平面工艺实验的基础上,建立由实验内容的设置、多媒体工艺视频、实际操作的工艺实验、实验考核方法和参观学习五部分组成的教学方式,形成有效的实践教学,加强了学生对制造技术和工艺流程的整体的认识,培养了学生对半导体器件原理研究的兴趣,使学生对将来从事半导体工艺方面的研究充满信心。

(一)实验内容的设置

实验内容主要包括四部分:

1.教师提供给学生难易不同的器件结构(二极管、三极管、MOS管等),学生可以自主选择;

2.根据器件结构,计算机辅助软件设计器件制作的工艺流程;

3.通过实验室提供的仪器设备完成器件制作;

4.测试器件性能参数。

通过这样设置,既能掌握微电子工艺的基本理论,又能通过实验分析完善工艺参数,使学生完全参与其中。

(二)多媒体工艺视频

为了让学生对集成电路设计和微电子制造工艺有直观的认识。结合实际的实验教学过程,制作全程相关单项工艺技术、流程及设备操作视频演示资料,同时强调工艺制作过程中安全操作和注意事项,防止危险的发生。

(三)实际操作的工艺实验

工艺实验涵盖清洗、氧化、扩散、光刻、制版、蒸镀、烧结、压焊等主要工序,为学生亲自动手制作半导体器件和制造集成电路提供了一个完整的实验条件。学生根据所学的理论知识了解器件结构、确定工艺条件、按照流程完成器件的制作。保证每名学生都参与到器件制作过程中。同时每个单项工序时间和内容采取预约制,实现开放式实验教学。

(四)实验考核方法

在实验教学环节中,实验考核是重要的教学质量评价手段。实验着重对动手能力和综合分析问题的能力及创新能力进行考核。主要考核内容包括:

1.器件工艺设计:考核设计器件制作流程的合理性;

2.工艺实验:考核现场工艺操作是否规范,选用的工艺条件是否合理;

3.测试结果:考核制作器件的测试结果;

4.实验分析报告:考核分析问题和解决问题能力,并最终给出综合成绩。

(五)参观学习

参观学习有助于学生全面了解本行业国内外发展的概况及先进的设备、现代化的生产车间和工艺水平。每年带领学生参观中国电子科技集团公司第49研究所、海格集团等企事业单位,安排相应技术人员进行讲座和交流,使学生学习到更多的宝贵经验和实践知识。

微电子电路分析与设计范文第4篇

涉及极限的专业课学习内容有:《电工技术》中计算一阶电路的全响应方程;《电子技术》中共漏极放大电路的动态参数分析、理想集成放大电路的传输特性分析;深度负反馈放大电路电压放大倍数的估算、RC串并联选频电路的计算.

二、微积分与微分方程

专业课中有部分内容涉及一元函数导数与微分、高阶导数、多元函数偏导数、定积分、广义积分、线性微分方程:《液压传动》中液层间的速度梯度、液体内部静压力、管道液体流量、缝隙液流的连续方程、液体运动伯努利方程、阀心径向不平衡力、调速回路的速度刚性;《机械设计基础》中盘形凸轮机构压力角和许用压力角设计计算、摆动滚子从动件盘形凸轮机构的轮廓曲线方程、油膜压力的一维雷诺方程;《机械加工设备与工装》中计量器具的灵敏度、被加工表面粗糙度评定参数计算;《机床计算机数控及其应用》中零件轮廓是非圆曲线的节点计算、用数字积分法进行脉冲增量插补、圆弧插补;《电子技术》中单相半波整流电压的平均值计算、负反馈对放大倍数的影响、积分运算电路、微分运算电路、双积分型模/数转换器;《电工技术》中电压的定义、电阻及电感元件的平均功率、描述RL电路、电容的零输入及零状态响应电压计算、电容充电过程中电阻消耗的电能、变压器中的电压变换原理;《数控机床车削加工直接编程技术》中进给功能系统自动加减速算法、非圆曲线轮廓的编程.

三、机电一体化技术专业数学课程内容体系的构建

通过以上调查和分析,制定机电类数学课程内容体系应以培养人才为目标、以专业需要为依据、以应用能力为主线、以创新思维为导向,加强专业针对性教学,探讨数学教学内容与专业教学内容的深度衔接,实行教学内容模块化、层次化,做到因材施教,将数学建模与数学实验的思想与方法融入数学课程教学,培养学生分析解决问题的能力以及创新能力.构建“公共基础模块+专业基础模块”的课程内容结构:公共基础模块包括一元微积分,专业基础模块包括常微分方程、二元函数微积分、数学建模基础.

四、更新教学模式及教学方法

微电子电路分析与设计范文第5篇

关键词:高职;工作过程;微电子技术;课程体系

中图分类号:G712 文献标志码:A 文章编号:1674-9324(2012)07-0139-03

近年来,我国高等职业技术教育发展迅猛,规模迅速扩大。另一方面,随着我国社会经济的快速发展,企业对技能型劳动人才的需求大幅增加,对技能型劳动人才的综合能力亦提出了更高的要求。虽然对高等教育大众化和社会经济的发展作出了突出的贡献,但也带来了突出的问题。课程体系是一个专业所设置的课程相互间的分工与配合,课程体系是否合理直接关系到培养人才的质量。高等学校课程体系主要反映在基础课与专业课、理论课与实践课、必修课与选修课之间的比例关系上。课程改革是高职教学改革的核心和难点。由于高职开设微电子技术专业的时间较短、学校较少,形成半导体产业链的区域还比较少,因此对微电子技术专业的人才定位、课程体系等都还不很完善,从而给本专业的人才培养带来不确定因素,不利于专业的发展,也难以满足微电子技术行业企业对人才的需求。本文即针对以上问题展开一些有益的探讨与实践。

一、构建课程体系的总体思路

构建微电子技术专业课程体系的总体思路是以微电子行业职业岗位需求为依据,以素质培养为基础,以技术应用能力为核心,构建基于工作过程的课程体系。实施学院“四环相扣”的工学结合人才培养模式,将“能力标准、模块课程、工学交替、职场鉴定”的四个环节完整统一,环环相扣,充分体现了高职教育工学结合的人才培养思想,努力为社会培养优秀高端技能型人才。

1.基于工作过程的课程体系的理论基础。基于工作过程的课程体系的理论基础,主要从德国“双元制”职业教育学习论和教学论的角度阐述构建基于工作过程的课程体系的理论依据。工作过程系统化的课程体系必须针对职业岗位进行分析,整理出具体的、能够涵盖职业岗位全部工作任务的若干典型工作过程,按照人的职业能力的形成规律进行序列化,从中找出符合职业岗位要求的技术知识和破译出隐性的工作过程知识,并以工作任务为核心,组织技术知识和工作过程知识[2]。通过完全打破原有学科体系,按照企业实际的工作任务、工作过程和工作情境组织课程,形成围绕工作过程的新型教学项目的“综合性”课程开发。

2.行业、企业等用人单位调研。通过调研国内(“成渝经济区”为主)微电子技术行业、企业等用人需求和要求,了解现有高职微电子技术专业学生就业情况、用人单位反馈意见及人才供需中存在的问题。电子信息产业是重庆市国民经济的第一支柱产业。重庆市“十二五”规划建议提出,培育发展战略性新兴产业。把新一代信息产业建设为重要支柱产业,建设全球最大的笔记本电脑加工基地、建设通信设备、高性能集成电路、光伏组件及系统、新材料等重点产业链(集群),建成国家重要的战略性新兴产业基地。以集成电路产业的重点项目为牵引,建成包括芯片制造、封装、测试、模拟及混合集成电路设计和制造等项目的产业集群,形成较为完善的集成电路产业链;四川电子信息产业未来5年将迈万亿元,成渝经济区将打造成西部集成电路的产业高地。随着惠普、富士康、英业达、广达集团等世界级的IT巨头进入成渝,未来几年IT人才需求在20万以上,而现在成渝地区每年培养的相关人才不过2万人左右,远远不能满足社会需求。市场需求的调查表明,近年来成渝地区IC制造、IC封装及测试、IC版图设计等岗位的微电子技术应用型人才紧缺。同时调研表明半导体行业企业却难以招到满意的人才,学生在校学非所用,用非所学,实践动手能力、社会适应能力、责任意识、职业素养难以满足企业要求。

3.形成专业定位,确定培养目标。根据存在的问题及半导体产业链过程:集成电路设计裸芯片精细加工封装测试芯片应用PCB设计制造,充分掌握现有微电子技术专业课程体系建设的基础及存在的问题,形成重庆电子工程职业学院微电子技术专业定位,确定培养目标:培养德、智、体、美全面发展;掌握微电子技术专业领域必备的基础知识、专业知识;有较强的岗位职业技能和职业能力;面向集成电路设计、芯片制造及其相关电子行业企业,满足生产、建设、服务和管理第一线的优秀高端技能型专门人才。毕业生应该既掌握微电子方面的基本技术,又具有很强的实际操作能力。具体可从事岗位:集成电路版图设计;半导体器件制造;IC制造、测试、封装;电子工艺(半导体)设备运行、维护与管理;简单电子产品的设计与开发;电子产品的销售与售后服务,并为技术负责人、项目经理等后续提升岗位奠定良好基础。

二、构建基于工作过程的学习领域课程体系