首页 > 文章中心 > 多层住宅结构设计

多层住宅结构设计

多层住宅结构设计

多层住宅结构设计范文第1篇

关键词:多层民用住宅 轻钢结构

1. 轻钢住宅在我国的发展

我国轻型钢结构经过20多年的发展历史,虽然起步并不晚,主要由于经济与技术的原因使得多层轻钢住宅的发展受到制约。国内最早出现的轻钢结构住宅是94年11月建于上海浦东北蔡的8层钢结构住宅,采用冷弯成型的矩形钢管混凝土柱和U型冷弯型钢组合梁组成框架。其特点是采用稻草板作外墙和楼板的组件,单位面积用钢量34kg/m2。

天津经济开发区太平村是我国住宅产业化的探索基地之一,来自中国,日本,美国,加拿大等15个国家和地区的95名参展商展示了各自的产品,其中钢结构住宅均采用框架结构。楼板及墙体、屋顶均采用复合结构,工厂预制,现场安装,缩短了施工工期。

长沙远大集团建造的8层钢结构公寓,称之为集成化建筑。该建筑装有中央空调一体化机组,整体浴室,“五表”远传系统等现代化设备。室内设计考究,体现了钢结构住宅的风格和质量,表明了钢结构住宅的良好发展前景。表1为若干轻钢住宅经济技术指标。

当前,国家将住宅产业作为国民经济新的经济增长点。为居民提供高质量的符合市场需求的商品化住宅成为必然趋势。国家鼓励发展

表1 轻钢住宅经济技术指标

工程名称 马钢住宅试验楼 北京西三旗水电工程宿舍 涿州中铁紫荆关钢结构公司试验楼保定太行集团轻钢住宅示范楼

结构体系 12层框架-支撑体系 6层框剪体系 6层钢框架-砼核心筒体系 空间框架结构

结构型式 热轧H型钢 H型钢,压型钢板组合楼板焊接工型梁柱 H形柱,工形梁

用钢量(kN/m2) 52 63 46 52

单位造价(元) 1100 1100 1200 900

“新型建筑体系”,已将其列入优先发展的高新技术领域中。国务院1999年颁发的72号文件

提出要发展钢结构住宅产业,在沿海大城市限期停止使用粘土砖。建设部标准定额研究司正在编制与修改与多层钢结构房屋密切相关的技术规程。建设部科技司在今年上半年分别召开了“钢结构住宅产业化技术导则编制研讨会”和“钢结构住宅建筑体系及关键技术研究课题立项评审会”。通过了18个包括钢结构住宅建筑体系及其关键和试点工程的立项。国家政策为钢结构住宅开发创造了条件,钢结构产业化住宅有望在最近取得突破性进展。

2. 多层轻钢住宅的优势

过去我国大量开发的是以小开间砖混结构为主的住宅。这种住宅体系由于使用实心粘土砖,浪费土地资源,建筑物自重大,对抗震不利。另一方面,由于结构体系自身的限制,住宅平面布局多为封闭式的小开间,不能适应不断变化的居住模式的要求。与传统住宅相比,多层轻钢住宅具有明显的特点与优势,日益受到重视。

(1)自重轻,抗震性能好。采用高效轻型薄壁型材,构件截面特性优良,相对承载力高,受力性能良好,整体刚度大,抗震性能好,可以大量节约材料,减轻结构重量,降低基础,运输和安装费用。因此,对地震区,地质条件差和运输不便的地区,其优越性更为明显。

(2)外形美观,建筑造型简洁,丰富,构件截面尺寸小,净使用面积增加。钢材强度高,可以提供较大的柱网布置;当考虑楼板的组合作用,使用组合梁或扁梁时,可以增加净高。这种开放式住宅既为建筑师提供设计的回旋余地,又为住户提供了灵活分隔室内空间的可能。

(3)供货迅速,安装方便,可以比混凝土结构至少缩短一半工期。在当前贷款利率高的金融形式下,早投产,早回收投资,这对于降低工程总造价,增加投资效益幅度是十分重要的。

(4)干法施工,装备化程度高,建设快速,高效,质量有保证。

(5)轻钢结构在生产和使用的过程中能源与原材料消耗低,建筑垃圾少,粉尘少,噪音低,具有很高的可重复使用性和可循环性,因此是一种绿色环保结构。

3.多层轻钢住宅的体系与结构特点

3.1抗侧力结构体系

主要应用于多层轻钢住宅的体系可分为:纯钢框架体系,框架-支撑体系,钢框架-混凝土剪力墙体系,周围抗侧力体系等。

(1)纯框架体系常用于4~8层住宅。它主要由宽翼缘的H型或箱形柱和工字型梁组成,亦可采用热轧H型钢。这种体系具有较为灵活的空间布局,但侧向刚度较弱。相对于框架-支撑体系,用钢量较大。纯框架体系多采用双向刚接,这样可以加大结构自身的侧移刚度,减少抗侧移构件内力,加强耗能机制,提高建筑物的延性。但节点形式较为复杂。由于建筑美观的要求,端板连接不宜于多层轻钢住宅。

(2)框架-支撑体系主要由焊接工字型梁柱组成。多数情况下,这种体系为横向承重。梁柱节点在横向上,为刚接;纵向为铰接。因此,结构在纵向相当于排架,抗侧移刚度很低,需设置侧向支撑抵抗水平荷载,限制结构的水平变形。支撑可用槽钢,角钢或圆钢杆,具体形式可结合建筑立面或门窗洞口需要采用单斜杆、X型、K型或偏心支撑。单斜杆简单明快,但必须设置两组不同倾斜支撑,以保证结构在两个方向具有同样抗侧力能力。X型支撑具有很好的侧向刚度,但是交叉点处的细部构造比较复杂。偏心支撑具有非常好的抗震耗能效果。它的工作原理是:在中、小地震作用下,支撑提供主要的抗侧力刚度,与中心支撑相似;在大地震作用下,保证支撑不发生受压屈曲,而让耗能梁段屈服消耗能量。它是专为抗震设计提供的支撑形式。

(3)框架-钢筋混凝土剪力墙(筒)体系。用钢筋混凝土剪力墙部分或全部代替钢支撑,就形成了框架-钢筋混凝土剪力墙(筒)体系。它适用于小高层住宅。一般将楼梯或电梯间设计成钢筋混凝土墙(筒)。这样即有效的加强了建筑物的侧向刚度,又解决了楼梯间的防火问题。如果结构刚心偏移过大,出现扭转的问题,可在适当部位设置钢支撑。

(4)周围抗侧力体系。这种体系在欧美国家的商业和民用建筑中十分流行。它的特点是刚架柱强轴与其相交的建筑轴线垂直,形成外筒,抵抗水平荷载,将之传递到基础。它适用于建筑外型接近于正方型的结构。可以将这种思路应用到框架-支撑体系中。把纵向的支撑去掉,将原有位置的刚架柱扭转90度,梁柱由铰接变为刚接。这样,刚架柱同时起到抗风柱与竖向支撑的作用。

对于多层轻钢民用住宅体系的选择,不必拘泥于某一种特定的体系。可以根据建筑平面设计的要求,灵活处理,综合使用不同的抗侧力体系。

3.2 楼面屋盖结构

楼面和屋盖必须有足够的强度,刚度和稳定性,同时应当尽量减少楼板厚度,增加室内净高。压型钢板-混凝土组合楼盖是目前应用较为广泛的形式。它具有施工速度快,平面刚度大,增加房屋净高的优点。具体做法是在钢梁上铺设压型钢板,再现浇100~150mm混凝土。在钢梁上焊接足够的剪力连接件,使钢梁与混凝土协同工作构成组合楼盖。这种做法耗钢量较大,且需防火处理。可以用预应力钢筋混凝土薄板取代压型钢板。此外,预应力圆孔板、迭合板、组合扁梁也是常用形式。

3.3 墙体结构

各种轻质墙体材料以其良好的保温、隔热、隔声性能受到开发商的青睐。目前,墙体主要分为自承重式和非自承重式。自承重墙体主要包括用于护结构的加气混凝土块、太空板、轻钢龙骨加强板等,以及用于内墙的轻混凝土板、石膏板、水泥刨花板、稻草板等。外挂的非自承重式墙体材料主要有彩色压型钢板、彩色压型钢夹芯板、玻璃纤维增强外墙板等。采用非自承重式墙体材料,需设置墙梁用以悬挂护结构。门窗洞口上下要布置。墙梁多采用C或Z型冷弯薄壁型钢,尺寸取决于跨度(刚架间距)和墙距(板跨)。

3.4 多层轻钢住宅的防火

钢材属于不耐火材料,温度为400 °C时,钢材的屈服强度将降为常温的一半,温度达到600 °C时,钢材基本丧失全部强度和刚度。所以,钢结构不仅要进行结构的抗火设计,还要采用防火措施保护。目前常用的防火措施有以下四种方法(1)防火涂料法。将具有一定厚度的防火涂料直接喷在钢结构构件上。防火涂料主要两类:涂层8~50mm,粒状表面,密度较小,耐火极限1~3h的为厚涂型防火隔热材料;涂层3~7mm,遇火膨胀增厚,耐火极限0.15~2h的为薄涂型防火隔热材料。喷涂法造价较低,操作简便,施工速度快,但是构件表面不平整,影响美观。(2)隔离法。将防火材料或防火砖沿构件的,将构件包裹,与外界隔离。这种方法美观,无污染,但施工速度较慢,适用于外露的构件。(3)实心包裹法。将钢构件浇注到混凝土中。(4)膨胀漆覆盖法。将具有一定厚度的膨胀漆喷涂、抹、刷在经过处理的构件表面。抗火极限最高达2h。覆盖法施工容易,但不适用于潮湿的环境,仅适用于干燥的室内。

4. 工程实例

4.1 工程背景介绍

某示范楼建筑面积4665m2,5层纯钢框架结构,长67m,宽13.5m,层高3m。焊接工字形梁,纵横双向刚接H形柱。楼面活荷载为2.0kN/m2,屋面活荷载0.3kN/m2,轻型屋面恒荷载0.3kN/m2;基本风压0.25 kN/m2;设计地震烈度为7度,Ⅱ类场地。屋面为冷弯薄壁C型檩条铺双层镀锌压型钢板夹100mm厚保温棉屋面系统,外墙采用200mm厚陶粒混凝土空心砌体墙,分户墙为180mm厚菱镁土板,户内隔墙为90mm厚菱镁土板。条型基础,柱与基础为刚接。

示范楼共有四个居住单元,两种建筑平面布置形式,建筑面积分别为143 M2,102 M2。一单元为大两室两厅,二、三、四单元为小两室两厅。一单元的大客厅使用了组合扁梁,从而实现了梁与楼盖的一体化,减少了结构层高。对于正常极限状态下的组合扁梁,将钢和混凝土两种材料组成的组合梁截面换算成同一种材料的截面,再按照弹性理论计算。为了楼板的放置,扁梁的下翼缘一般较宽,需验算施工时产生的偏心荷载。为了减少设计工作量,通常把扭矩简化为已对大小相等、方向相反的力分别作用于扁梁的上下翼缘。详细分析方法见文献。

4.2 计算方法与基本要求

对于多层轻钢住宅,尽管采用单向板,但由于纵横向均有墙体荷载分布,宜采用三维空间计算模型。本工程采用的是普通楼板,不考虑楼盖对钢架梁刚度增大的作用,忽略楼板的空间联系作用,空间模型为纯框架结构。计算分析是采用有限元分析软件ANSYS完成。在结构计算中采用三维梁单元,质量单元计算结构自振周期以及静力分析。

相对于工业建筑而言,多层民用建筑的荷载工况简单明了。主要考虑以下三种工况:

工况一:1.2×恒载标准值+1.4×活荷载标准值

工况二: 1.2×恒载标准值+0.85×1.4×(风荷载+活荷载)标准值

工况三:1.2×重力代表值+1.3×水平地震作用标准值

对于多层轻钢住宅地震荷载计算,由于楼层较低,结构布置对称,采用底部剪力法就可满足要求。

多层轻钢住宅侧向位移具体要求如下:

(1)在风荷载作用下的顶点水平位移与总高度之比不宜大于1/500。

(2)层间相对位移与层高之比不宜大于1/400。

(3)在常遇地震作用下,层间侧移不超过楼层高度1/250。

对于多层轻钢住宅,还要满足刚架柱构件稳定性与钢框架的整体稳定性要求。

表2 两种方案(空间模型)比较

柱截面(mm) 柱用钢量(t) 单位用量(kg/m2)纵向主自振周期(s) 地震作用下纵向最大层间位移 横向主自振周期(s) 地震作用下横向最大层间位移(mm)

方案一 300x300x12x8 92.91 51.96 1.657 1/426 1.232 1/633

方案二 300x300x10x10 114.55 57.46 1.140 1/700 1.231 1/632

方案比较 节省19% 节省9.6% 基本相同

4.3 计算分析

由于活荷载与基本风压较小,所以工况三为控制工况。计算设计时将两种方案进行了比较,不改变刚架梁的截面形式,只对刚架柱进行改动。方案一,刚架柱为工字形;方案二,刚架柱为箱形。表2给出两种方案空间模型的主要计算结果,可得到以下结论:

(1)两种方案的刚架柱在强轴方向惯性矩相同,即在横向结构的刚度相同,因此横向主自振周期以及地震作用下横向最大层间位移基本一致。

(2)本工程长宽比5,纵横双向刚接,因此对于方案一,当横向侧向刚度满足要求时,纵向刚度也能达到要求。

(3)在满足规范要求的前提下,方案一节约钢材用量,单位面积用钢量减少约10%,经济性好。因此,在设计中选择了工字形刚架柱。表3示范楼主要构件尺寸及其用钢量。但是由于轻钢体系刚架柱的腹板很薄,为了防止局部失稳引起的结构失效,刚架柱宜在纵向梁柱刚接处做成局部箱形柱。

表3 示范楼主要构件尺寸及其用钢量

截面尺寸(mm) 用钢量(t) 比例(%)

刚架柱(GJZ) I300x300x12x8 92.91 38.3

刚架梁(GJL) I400x180x8x6 78.52 38.4

扁梁(BL) I280x140x16x10x210 10.86 4.48

次梁1(CL1) I300x180x8x6 9.14 3.77

屋面梁 I300x160x8x6 10.56 4.36

其它 4.040 16.7

多层住宅结构设计范文第2篇

【关键词】浅谈 多层 砌体 住宅 设计

改革开放后,随着我国经济的迅速发展,建筑结构无论从理论还是施工技术都有长足发展。建筑物结构形成越来越多,使用的材料也越来越丰富,其中砌体结构在土木工程领域的应用非常广泛。

在多层住宅建筑中,用砌体内外承重墙和钢筋混凝土楼板组成的混合结构房屋占主导地位。砌体结构有其自身优点,如耐久性好、耐火性好、便于就地取材、施工技术要求低、造价低廉等;但其也有缺点,如强度低,整体性能和延性差,自重大,砌筑工作量大,劳动强度高等。为充分发挥其优势,砌体结构在材料和结构构造方式上进行了很多的探讨,取得了一些新进展,如采用配筋砌体、组合砌体和预应力砌体等新的结构形式,可以克服材料的性能不足,改善砌体结构的受力性能;采用空心称重砌块,降低结构自重;进行墙体材料改革,发展非烧结材料,利用工业废料,减少对农田的占用。

在商品房住宅小区设计中,大部分建筑采用了砌体结构。由于用户对房屋使用功能要求的多样化,使得建筑平面布置和立面造型都较为复杂,增加了设计难度。主要表现在以下几个方面:

一、总高度和层数接近规范限值

《建筑抗震设计规范》(GB50011-2001)7.1.2条规定"房屋的总高度指室外地面到主要屋面板板顶或檐口的高度,半地下室从地下室内地面算起,全地下室和嵌固条件好的半地下室应允许从室外地面算起;对带阁楼的坡屋面应算到山尖墙的1/2高度处。"城镇中小区内多数住宅楼均采用一层为车库,顶层带阁楼或是坡屋面的形式。这样房屋的总高度和层数就会接近或超过规范规定的极限值。这时,横墙内的构造柱间距不宜大于层高的2倍,即一般不宜超过5.4米;纵墙内的构造柱一般不超过3.9米(外纵墙)和4.2米(内纵墙),即大致每开间均应设置一根构造柱,如此要求是十分必要的,实验证明墙段的宽高比超过2时,构造柱的约束作用会降低。

二、纵向布置较弱

随着住宅商品化,使得砌体住宅楼的客厅面积增大,由于业主使用要求不同,大房间内不设置纵墙或只设置较短的墙段,便于其以后用隔断自由分割。众所周知,多层砌体房屋的抗震性能主要取决于砌体墙,而水平方向地震作用分为两个方向,房屋的纵向相对于横向比较弱,在地震作用下率先产生裂缝,严重者会出现倾斜、错动、倒塌等现象,进而使房屋遭到破坏。所以在拿到建筑专业的条件图后,结构设计人员要先思考分析,务必要和建筑设计人员沟通,尽量做到纵、横墙的布置均匀对称,沿平面内宜对齐,沿竖向应上下连续,同时一轴线上的窗间墙宽度宜均匀。

多层砖混住宅一般采用横墙承重或纵横共同承重的结构体系。由于内纵墙体少,因而房屋该方向空间刚度和整体性均较差,拉震能力低。当纵墙不能贯通布置时,可在纵横墙交界处采取加强措施,如在纵、横墙交接处增设钢筋混凝土构造柱,并适当加强构造配筋或者可以在纵横墙交接处每隔一定高度放置水平拉结构筋如2ф6@500,以加强房屋整体性,防止纵、横墙交界处在地震力的作用下被拉开。另外,构造柱与墙体必须依靠楼层上下楼盖圈梁的拉结才能成为一个整体。构造柱作为一种竖向构件,一般沿墙截面不变,配筋也少有变化。因此,在各楼层柱高处必须有圈梁作为锚固点,以形成上下和左右墙段的约束作用。楼盖圈梁在多层结构中很难准确计算,它的作用是多方面的,如增强拉接,提高结构的整体性,抵御地基的不均匀沉降,加强楼板与墙体的连接等。

三、墙体上下不连续

住宅楼底层平面局部内收或外伸,形成上下层墙体不连续,或底层作为汽车库、小商店以致外墙的门洞间墙宽度较小时,底部应采用框架-抗震结构体系。6、7度且总层数不超过五层的底层框架之间的砌体震墙,但应计入砌体墙对框架的附加轴力和附加剪力;其余情况应采用钢筋混凝土抗震墙。底层框架-抗震墙房屋,应允许采用嵌砌于框架之间的砌体抗震墙,但应计入砌体墙对框架的附加轴力和附加剪力;其余情况应采用钢筋混凝土抗震墙。底层框架-抗震墙房屋的纵横两个方向,第二层与底层侧向刚度的比值,6、7度时不应大于2.5,8度时不应大于2.0,且均不应小于1.0。底部两层框架-抗震墙房屋的纵横两个方向,底层与底部第二层侧向刚度应接近,第三层与底部第二层侧向刚度的比值,6、7度时不应大于2.0,8度时不应大于1.5,且均不应小于1.0。

底部抗震墙的布置宜均匀对称,避免由于水平地震作用下扭转导致破坏;抗震横墙间距应满足规范要求;同时调整底部大片剪力墙的布置形式和开洞方式,当墙体较宽时可考虑开设一些洞口,以减少该大墙片的刚度。钢筋混凝土抗震墙周边应设置由梁(或暗梁)和边框柱(或框架柱、暗柱)组成边框;各墙段的高宽比不宜大于2。底层框架-抗震墙的纵、横地震剪力设计值应乘以增大系数,以提高底层或底部两层结构的安全度,满足规范对于薄弱部位应采取必要措施的要求。其值应根据第二层与底层的侧向刚度比值的大小在1.2-1.5范围内选用。对于采用嵌砌于框架之间的普通砖砌抗震墙,墙厚不应小于240mm,砌筑用的砂浆强度等级不应小于M10的要求,且施工时应先砌墙后浇筑框架的施工方案。

四、异形楼板的配筋

多层住宅结构设计范文第3篇

关键词:多层住宅 轻钢结构 抗震设计

中图分类号:TU973+.31 文献标识码:A 文章编号:

1.抗震结构体系的类型

关于多层轻钢住宅结构抗震体系的类型,根据抗侧力结构体系的组成方式划分,有如下几种类型:

1)纯钢框架结构。这种结构在水平作用力之下,有两部分的框架侧移,一是结构倾覆力矩造成柱拉压变形,引起整个结构的弯曲,二是结构剪力造成梁柱受弯之后,引起了部分的侧移。纯钢框结构具有比较好的延性体系,而且平面布置上各个部位的刚度都较为均匀,具有较长的自震周期。如下图1.1所示:

图1.1:纯钢框架结构

2)框架支撑结构体系,荷载力集中于结构的梁柱上,但抗侧的刚度比较小,如果结构的高度较高,结构的抗侧刚度不能满足设计的,而如果结构的梁柱截面设计得太大,又会增加结构设计施工的成本,因此框架支撑结构体系通常都均匀对称布置了支撑构成中心支撑框架结构。如下图1.2所示:

图1.2:框架支撑结构体系

3)伸臂及带状桁架。建筑物越高,其支撑系统的高度和宽度也会随之增大,但抗侧的刚度会明显下降,为了提高结构体系的刚度,可以在建筑物的顶部和中部位置设置伸臂及带状桁架结构,提高建筑结构体系的抗弯能力。如下图1.3所示:

图1.3:伸臂及带状桁架

4)钢框架混凝土剪力墙结构,在钢框架当中设置混凝土剪力墙,布置于住宅的建筑平面中心位置,以提高结构的抗侧力刚度水平。这种结构由钢框架和混凝土两种不同的材料组成,属于混合型的结构。如下图1.4所示:

图1.4:钢框架混凝土剪力墙结构

2.抗震结构体系设计的基本方法

地震的作用具有复杂性,在计算其作用力的时候要尽量简单化,常见的有底部剪力法:

根据结构水平地震作用的规律,确定结构总水平地震作用的分布状态,在计算的时候,需要考虑所有主轴方向的自由度。

总水平地震作用的标准值大小,可用公式2.1计算: (式2.1)

上式中

指的是结构体系的总水平地震作用标准值;

指的是水平地震影响系数;

指的是多层建筑的重力荷载。

当水平地震作用沿结构高度的方向分布,可用公式2.2计算: (式2.2)

上式中

指的是在第i层水平地震作用的标准值;

和分别代表第i层和第j层的计算高度;

和指的是集中在第i层和第j层的重力荷载代表值;

指的是结构顶部附加地震的作用系数。

3.抗震结构体系设计的内容

抗震结构体系的设计内容,可分为钢框架抗侧力体系、钢框架梁柱连接体系两种:

1)钢框架抗侧力体系

钢框架抗侧力体系包括偏心支撑框架、抗弯框架和中心支撑框架三种类型。如下图1.5所示:

图1.5:钢框架抗侧力体系

首先是偏心支撑框架,一端的支撑斜杆和梁连接,偏离梁柱轴线的交接点,另外一端在梁柱的交界处相连接。这种结构,能够在支撑梁和支撑柱之间形成耗能短梁,以消耗地震的能量,适用于地震频发地区的多层房屋。

其次是抗弯框架,组成部分是梁柱,不仅布置灵活,而且不占室内空间。其设计原理是利用梁端的非弹性变形特征,用塑性铰来消耗地震产生的能量,但其抗侧的刚度比较小,如果侧向力太大,需要增加梁柱截面的面积,会增加设计和施工成本。

再次是中心支撑框架,将斜向支撑构件设置于抗弯框架里面,使得支撑面、梁柱的轴心线连接成一体,以支撑承受水平的荷载,这种设计方法侧向刚度比较大,而且不需要使用太多的钢梁就能够抵抗侧向力,适合用于非地震区域的多层房屋设计。

2)钢框架梁柱连接体系

钢框架梁柱连接体系根据连接的刚度,可以分为以下三种,如下图1.6所示:

图1.6:钢框架梁柱连接体系

首先是刚性的连接模式。在设计当中,可以采用全焊连接和栓焊混合连接两种模式,完全熔透对接梁翼缘和柱翼缘的焊缝。

其次是半刚性的连接模式。包括顶底角钢连接、带双腹板角钢的顶底角钢连接、端板连接,将钢板焊接于梁端,然后再与梁腹板、梁翼缘焊接。而T型钢的连接则是在梁上和下翼缘的位置设置T型钢,然后将高强螺栓连接在梁柱上面。

再次是柔性连接模式。连接梁腹板和柱,常见的是承托连接,这种连接方法是在柱翼的承托件上设置梁,然后用小角钢与柱连接于梁端,这样就能控制住梁整体的稳定性。

4.结束语

综上所述,多层轻钢住宅的抗震结构体系,要求具备足够的强度、刚度和延性,是我国目前建筑设计环节的重点所在。我们一方面是提高体系的抗侧移水平,另一方面是确保体系在地震发生时的侧移限值。根据多层轻钢住宅结构体系的受力特点,我们可以找出这种住宅抗震结构体系受力的基本原则。多层轻钢结构的住宅设计抗侧力体系的研究,需要综合结构体系的布置模式、受力变形情况和结构体系的总体特点,通过多方案的比较选择,才能够设计出符合抗震基本要求的住宅结构方式。

参考文献

多层住宅结构设计范文第4篇

??砖混结构是目前广泛采用的一种结构型式,设计人员往往认为其结构型式简单,重视不够,计算不认真,以致引起一系列问题,甚至酿成严重质量事故。首先,不少项目在缺少必要的地质勘察资料下凭经验或盲目进行基础设计,其后果是建筑物沉降过大或不均匀沉降,甚至开裂、倾斜,或过于保守,导致浪费严重。其次,对变形缝设置不按规定,亦无相应技术措施,对墙体稳定和强度不作必要的验算,或仅按建筑设计作粗略估算,造成结构隐患。其三,在钢筋混凝土梁、板设计计算方面,忽视刚度要求,挠跨比偏小;承载力计算一般只注意正截面的要求,忽视了斜截面承载力和构造要求。对房屋抗震要求,如圈梁、构造柱的布置等,普遍不够重视。以上通病,在国家颁发的相关规程、规范中均有明确规定,是属于有法不依、有章不循的问题,设计人员对此必须引起重视,认真学习规范,严格执行规范要求。但也有一些问题,规范尚未涉及,而按常规方法设计计算在某些情况下,会降低建筑的安全度,在此笔者提出与同行作一探讨。

2 工程简介和基础设计

??某5层坡屋面砖混结构住宅楼,层高均为3m,另架空层层高2.2m,基础埋深H=1.5m,地基承载力Rk=150kN/m2。

??(1)基础宽度设计问题:砖混结构条形基础宽度在设计中一般是根据各墙段在基础顶面的竖向荷载和已知的地基承载力沿基础长度方向取1m长来计算确定的。这种常规设计方法虽简单方便,但由于基础纵横交叉处底面积重叠,用上述方法确定的基础宽度所构成的基底面积将小于实际所需的基底面积。当地基承载力较低,基础宽度较大时,问题更加突出,应该对基底宽度进行合理的调整。

??(2)按常规方法分析计算基底宽度:将纵横基础交叉点定义为节点,每个节点的范围为开间方向相邻墙体中心线间的距离及进深方向相邻墙体中心线间的距离。假定条形基础的中心线与各墙体的中心线重合,并把节点分类为角节点1、边节点2、中节点3,则按常规方法求得各墙段的基础宽度分别为B1=1.39m,B2=1.88m,B3=0.31m,B4=0.88m和B5=1.48m。

??对于边节点2:由B2、B4构成的节点基底面积A1=B2(2.25+B4/2)+B4(1.8-B2/2)×2=1.88×(2.25+0.88/2) +0.88×(1.8-1.88/2)×2=6.57m2;边节点范围内基础顶面荷载合力P=1.8×106×2+2.25×226=890.1kN;P作用下边节点范围内实际所需的基底面积A=P/f0=890.1/120=7.42m2。因此,按常规设计方法所得的基底面积与实际所需基底面积相比缺少ΔA=A-A1=7.42-6.57=0.85m2,即有ΔA/A=0.85/7.42=12%。

??根据类似计算方法,对于中节点3,可得其A1=8.59m2,P=1227kN,A=10.23m2, 因而ΔA=1.64m2,ΔA/A=16%;对于角节点1,可得其A1=4.71m2,P=566kN,A=4.71m2,因而ΔA=0。由此可见,角节点的基底自然增补面积与重叠面积相等,所以按常规设计方法所得的角节点的基底面积与实际所需基底面积相等。在考虑基础宽度调整时,只需调整边节点和中节点即可。

??(3)基础宽度调整方法:由于条形基础纵横交叉处面积重叠,按常规方法计算的基底宽度所构成的基底面积比实际所需的基底面积减少了ΔA,应对基底宽度进行调整。 一般情况下,砖混结构条形基础按地基反力均匀分布进行设计,且在设计中假定“基底总面 积的形心与基底总荷载合力的重心相重合”,因此,不必考虑荷载偏心的影响,只需考虑力的竖向平衡。所以在A1中补足ΔA时,可根据竖向静力平衡的原理按节点各墙段的竖向荷载的合力与节点荷载总合力的比值将ΔA分配到各个墙段相应的基底面积中去。

??设边节点各墙段应补足的基底面积分别为ΔA2、ΔA4:ΔA2=(2.25×226)×ΔA/P=(2.25×226)×0.85/890.1=0.486m2,ΔA4=(1.8×106)×ΔA/P=(1.8×106)×0.85/890.1=0.182m2;设上述补足的面积ΔA2、ΔA4转化为各墙段原有基础增加的宽度相应为ΔB2、ΔB4, 则ΔB2(2.25-B4/2)=ΔA2,得ΔB2=0.27m,故ΔB2/B2=0.27/1.88=14%;(ΔB4/2)×(1.8+1.8-B2/2 ) =ΔA4,得ΔB4=0.14m,故ΔB4/B4=0.14/0.88=16%。在用上述方法计算时,小黑块面积被重复计算,由于值很小,对工程设计影响不大,可忽略不计。调整后,边节点基底宽度分别为:B2′=B2+ΔB2=1.88+0.279=2.15m,B4′=B4+ΔB4=0.88+0.14=1.02m。

??边节点计算结果表明:缺少面积ΔA占实际所需面积的12%,B2增加幅度为14% ,B4增加幅度为16%。调整后边节点的基底面积A′=2.15×(2.25+1.02/2)+1.02×(1.8-2.15/2)=7.413m2≈A=7.42m2,即调整后基底面积与实际所需的基底面积很接近。

??用同样方法可分别求得中节点各墙段应补足的基底面积ΔA2=0.68m2,ΔA5=0.43 m2,ΔA3=0.10m2。将补足的面积转化为各墙段相应的增加宽度:ΔB2=0.45m,ΔB2/B2=0.45/1.88=24%;ΔB3=0.08m,ΔB3/B3=0.08/0.31=26%;ΔB5=0.34m,ΔB5/B5=0.34/1.48=23%。?

3 结论

多层住宅结构设计范文第5篇

关键词: 小高层住宅;建筑结构体系;评估方案

进入二十一世纪,对人类居住问题而言,人口的与日俱增与不可再生的土地资源的日益短缺,己成为尖锐的矛盾,而且,这一矛盾正随着社会的发展呈现出激化趋势。小高层是一种约定俗成的说法,在国际住宅设计规范中并无此定义,它是一种由多层和高层发展起来的新型住宅类型,采用框架结构体系,框架结构利用短肢剪力墙来承重,柔性和刚性均较为理想。

1 建筑行业对小高层住宅的定义

小高层是一种约定俗成的说法,在国际住宅设计规范中并无此定义,它是一种由多层和高层发展起来的新型住宅类型,采用框架结构体系,框架结构利用短肢剪力墙来承重,柔性和刚性均较为理想。现行的对小高层的说法大致分为三种:

1.1 7层至9层

清华设计研究院院长庄惟敏先生,对小高层做了这样一个界定:小高层就是9层及9层以下带有一部电梯的住宅,楼、电梯无需机械通风排烟系统。这个限定是基于1999年3月25日的《住宅设计规范》对住宅层数的划分标准,它规定:中高层住宅为7层至9层。因此,庄先生所界定的小高层其实是书面表达的中高层。

1.2 9层至12层

则是房地产界比较认同的一种说法,它主要的出发点源于在高层住宅中设置电梯的要求。因为12层以上必须至少设置2部电梯,给住宅造价带来较大影响。所以,以次为分界岭,把小高层归为9到12层。

1.3 12层至18层

这种归纳方式也将小高层住宅作为高层住宅,只要高度上惟18层以下,有点象GB50045-95《高层民用建筑防火规范》中规定的二类高层(二类高层对于居住建筑来说是10层至18层的普通住宅)。

2 我国小高层住宅的发展现状

我国在七八十年代也有少量小高层的实例,但一梯服务多户,例如北京团结湖小区。高层公寓住宅出现在二十世纪三十年代,以上海建造的最多。如上海百老汇大厦、上海毕卡地大厦等。改革开放以来,高层住宅在我国大城市得到发展和普及,有关高层住宅设计方面的研究较为成熟和系统。而对小高层住宅的研究和兴起是从96上海住宅设计国际研讨会开始的,在这次研讨会上小高层住宅"概念"首次引入,而首次成功的实践则是深圳的海景花园。土地是有限的,这个大前提决定了房子要越建越高。我们国家是一个平原土地较少的国家,与面积大体相当的国家相比(例如美国,印度),我国的平原土地面积不到国土总面积的三分之一,而城市中心的土地则更加的稀有珍贵。可以说,土地条件的制约,是小高层住宅兴起的客观因素。建筑技术在不断地提升,以前是茅草房,木房,石头房,到六七十年代是砖混多层住房;进入商品房时代逐步演变成框架住房,现在又发展到小高层住房。建筑技术的不断进步,为小高层的兴起提供了实现的可能。

首先是现实的要求。土地是有限的,这个大前提决定了房子要越建越高。我们国家是一个平原土地较少的国家,与面积大体相当的国家相比(例如美国,印度),我国的平原土地面积不到国土总面积的三分之一,而城市中心的土地则更加的稀有珍贵。可以说,土地条件的制约,是小高层住宅兴起的客观因素。

其次是技术的因素。建筑技术在不断地提升,以前是茅草房,木房,石头房,到六七十年代是砖混多层住房;进入商品房时代逐步演变成框架住房,现在又发展到小高层住房。建筑技术的不断进步,为小高层的兴起提供了实现的可能。

再者是市民经济承受的要求造成了小高层住宅的兴起。现在是市场经济时代,市场的需求是决定我们开发导向的最大因素。我国的老城区面积大,新建住房要批租土地,还要拆迁旧有的房屋,土地的成本决定着房屋的售价;而市场的购买能力又不允许房价提升过高。小高层住宅可以减低土地费用在建筑面积中的成本比例,使房子能够让更多的市民能够买得起,住得好,因此,小高层的兴起也就成为了一种必然的趋势。

3 我国小高层住宅的主要问题

小高层住宅面向广大的工薪阶层,突出体现了"均好性"的特点,有着巨大的市场号召力,是当代中国住宅商品化发展的必然结果,它满足了多方需求,在种种矛盾之间找到了一个新的结合点。而目前小高层住宅的理论研究成果较少,更缺乏系统性的研究,理论不能有效地为工程实践服务。小高层住宅从起步到现在,人们对它缺乏深入全面的认识和评价也是阻碍其进一步发展的主要障碍。

由于目前设计周期短任务重,大多数结构设计仅是根据已确定好的平面和竖向布置,先假定好构件尺寸,通过电算来调整结构的周期、位移、刚度比、稳定性等结构参数及梁柱配筋等,至于整个方案是否完善,构件尺寸是否假定太大,则不做仔细研究,很多时侯都会产生不必要的浪费。另外,住宅布置有时考虑建筑立面和内部空间,使结构布置产生许多不合理之处。例如;转角窗的布置,使框架角部不能布柱,大大削弱了结构的整体刚度,受建筑平面限制某些剪力墙布置不均匀,产生刚度偏心和扭转等,这些形式对结构受力及抗震均不利。

4 我国小高层住宅的评估解决方案

对一种建筑技术体系的综合评价不是对其某一方面的评价,或简单归结为经济核算,而应该是全面的、综合的、联系的。如何在设计过程中使结构方案在适用性、经济性、抗震性能等几方面为最佳已成当务之急。针对这一急需解决的问题,选定一小高层住宅,目前小高层住宅建筑普遍采用的钢筋混凝土框架结构、框架-剪力墙结构、钢框架结构、框架-支撑结构体系,采用中国建筑科学研究院研制的PKPM设计软件进行结构计算,经济指标采用广联达预算软件计算。通过技术经济分析比较,选出小高层住宅建筑安全、适用、经济合理的结构体系,为实际工程在结构方案设计阶段确定结构选型提供参考。

由于小高层住宅不是国外发展的主要模式,关于这方面的组织设计理论和研究较少。但从一些国家中建造实例可以看出,小高层住宅发展的资源特点表现在注重生态、环境、社区文化、健康等几个方面。

参考文献

[1]吴云,多层钢结构住宅体系及技术性分析{J}.甘肃科技,2009年2月第2期第23卷

[2]G Charles Clifton,Martin J.Feeney,Fire Engineering Application to Multi-Story steel structures,Modern steel construction,2004 Vol.44