首页 > 文章中心 > 电化学腐蚀

电化学腐蚀

电化学腐蚀

电化学腐蚀范文第1篇

关键词:不锈钢;腐蚀;电化学腐蚀;防护方法

中图分类号:TF764+.1 文献标识码:A 文章编号:

不锈钢的不锈特性是由于钢板表面特殊的钝化保护膜,首先简单介绍一下不锈钢的耐蚀机理,即钝化膜理论。 所谓钝化膜就是在不锈钢表面有一层以Cr(铬)与氧结合的Cr2O3 (三氧化二铬)为主的薄膜它是在金属表面形成厚度约100万分之数mm的非动态皮膜。由于这个薄膜的存在使不锈钢基体在各种介质中腐蚀受阻,这种现象称为钝化。这种钝化膜的形成有两种情况,一种是不锈钢本身就有自钝化的能力,这种自钝化能力随铬含量的提高而加强。另一种较广泛的形成条件是不锈钢在各种水溶液(电解质)中,在被腐蚀的过程中形成钝化膜而使腐蚀受阻。 不锈钢对比炭钢或铝耐蚀性突出优秀,但不是像金或者铂金那样绝对不生锈的金属。因此研究其电化学腐蚀性能具有很重要的意义。

不锈钢常见的腐蚀类型

不锈钢的钝性赋予它极好的耐蚀性,在某些特殊条件下钝性的破坏可导致严重的局部腐蚀。常见的不锈钢腐蚀可分为两大类[1,2],即均匀腐蚀和局部腐蚀,后者还可细分为晶间腐蚀,点腐蚀,缝隙腐蚀,应力腐蚀破裂等。

1.1均匀腐蚀是一种最常见的腐蚀形式,由于侵蚀均匀并可预测,因而这类腐蚀的危险性最小,均匀腐蚀的程度取决于钢种和介质条件。

1.2晶间腐蚀是一种局部的选择性的自晶界区发生的腐蚀,它使晶粒之间的结合力受到破坏,不易被察觉,特别是不锈钢类材料,即使晶界腐蚀已发展到相当严重的程度,其表观仍保持光亮无异的原态。

1.3点腐蚀是一种外观隐蔽而破坏性大的局部腐蚀,虽然因点蚀而损失的金属重量很小,但若连续发展,能导致腐蚀穿孔直至整个设备失效。造成巨大的经济损失,甚至产生危害性更大的事故。

1.4缝隙腐蚀是在电解液中由于不锈钢与金属或非金属间存在极狭窄的缝隙,使有关物质的迁移受到阻抑形成浓差电池而在缝隙内或其近旁产生的局部腐蚀缝隙腐蚀可在多种介质中发生,但在氯化物溶液中最为严重。在海水中,缝隙腐蚀通常是由于缝内氧含量较低和周围溶液中氧含量较高形成氧浓差电池所致。这时缝间成为阳极,而缝边金属表面成为阴极。

1.5应力腐蚀破裂是指材料在外加或残余应力和腐蚀介质联合作用下产生的破坏,破坏形态是裂纹、裂缝直至断裂。

1.6除了上述几种腐蚀形式,不锈钢还可能发生电偶腐蚀、腐蚀疲劳裂纹、磨损腐蚀等。

极化曲线

不锈钢在溶液中发生电化学腐蚀的根本原因是溶液中含有能使该种不锈钢氧化的物质,即腐蚀过程的去极化剂[3]。阴极的去极化还原反应与阳极的金属氧化反应共同组成整个腐蚀过程。显然,没有阴极反应,阳极反应就不能进行,金属就不会发生腐蚀。

以氢离子作为去极化剂的腐蚀过程称为氢离子去极化过程,简称氢去极化腐蚀,亦称析氢腐蚀,这是常见的危害性较大的一类腐蚀。以氧作为去极化剂的腐蚀过程,称为氧去极化腐蚀,亦称吸氧腐蚀,这是自然界普遍存在因为破坏性最大的一类腐蚀。

从热力学已知,金属在腐蚀介质中能发生电化学腐蚀的必要条件是该金属的平衡电极电位比氢的平衡电极电位低,即Ee,M

如果在腐蚀电池中,阳极的电位比氢的平衡电位还正,阴极电位必然会比氢的平衡电位更正,那么腐蚀电位ER必定比氢平衡电位也正,所以氢气不能作为该腐蚀电池的阴极。当阳极电位比氢的平衡电位负时,则腐蚀的电位ER才有可能比氢的平衡电位负,才有可能放氢而实现氢去极化。因此氢的平衡电位是一个重要的基准,酸性越强,氢离子浓度越高(pH值越小),其氢的平衡电位(EH越正)。氢的平衡电位越正和阳极电位越负,对于氢去极化腐蚀可能性的增加具有等效作用。

在中性介质中,氧去极化过程必然伴随着氧的消耗。常常把氧去极化腐蚀称之为吸氧腐蚀。在各种可能的阴极去极化反应中,以氧去极化过程最为重要,并且较为普遍。一般实际腐蚀问题中以氧去极化(吸氧腐蚀)腐蚀占有相当大的比例。例如淡水、海水、潮湿大气和土壤中只要有氧气就有吸氧腐蚀。

不锈钢腐蚀的防护方法

不锈钢防腐蚀的方法很多,主要有改善不锈钢的本质,把不锈钢与腐蚀介质隔开,或对金属进行表面处理,改善腐蚀环境以及电化学保护等。在不锈钢中添加合金元素,提高其耐蚀性,可以防止或减缓金属的腐蚀。例如在不锈钢表面覆盖各种保护层,把被保护不锈钢与腐蚀性介质隔开,是防止不锈钢腐蚀的有效方法。同时还可以通过磷化处理和热处理等方法提高不锈钢的耐蚀性。也可以在不锈钢表面涂上一层非金属涂层或者金属涂层。改善环境对减少和防止腐蚀有重要意义。电化学保护法是根据电化学原理在金属设备上采取措施,使之成为腐蚀电池中的阴极,从而防止或减轻金属腐蚀的方法。

讨论

为了提高不锈钢的电化学腐蚀性能,可以通过电化学腐蚀加速试验来评价。电化学在理论、技术和装置上的不断革新与创造,使得它比以往任何时候更具有对社会经济发展中各种问题进行挑战的能力。在全球环境问题日益严峻的今天,电化学及其技术将同显其重要作用。腐蚀电化学过程有以下特点:可自动控制、经济合算。腐蚀电化学分析方法是仪器分析的一个分支,随着科研的发展,对分析方法的灵敏度、选择性、自控等各个方面都提出了很高的要求,具有以下几个优点:分析速度快、多种方法测量、仪器简单、经济、易微型化、需要试样的量较少、易于操作控制。

参考文献:

[1] 王正蕉,吴幼林等.不锈钢.北京:化学工业出版社,1991,28-37, 43-54, 100-151, 227-245.

电化学腐蚀范文第2篇

关键词:电化教学;材料腐蚀与防护;改革;作用

中图分类号:G642.0 文献标识码:A 文章编号:1671-0568(2013)29-0041-02

作者简介:李远会,男,副教授,研究方向为材料表面改性。

《材料腐蚀与防护》是一门以物理化学为基础、与材料学、电化学、冶金,化学、物理、力学、环境学等多门学科交叉渗透的新兴学科。主要介绍材料各类腐蚀的定义、机理、影响因素以及对应的防腐措施等内容。课程理论性、实践性、应用性、综合性强,要求学生既要掌握扎实的电化学腐蚀理论基础,又有较强的分析问题、解决问题的实践能力,以适应社会的需求。[1,2]该课程大三下学期开设,讲授课时数少,内容复杂、陈旧,理论性强,模糊抽象,理解困难。有的学生面临考研准备阶段,对课程学习不重视。电化教学具有知识表达的多样性、交互科学性、反馈性、以及教学管理的开放性、灵活性等突出的特点。[3,4]在这种背景下,电化教学对《材料腐蚀与防护》教学改革有着积极创新的作用。

一、运用电化学教学,激发学生的学习兴趣

电化教学能创设生动、形象、直观、视听结合的教学环境,尤其是新颖性、多样性、生动性、趣味性易吸引住学生的注意力,激发学生的学习兴趣。[5]精心筛选日常生活中的铁锈、铜绿、塑料脆断等腐蚀现象,以形象、直观、生动的“看图识知”方式向学生介绍材料腐蚀现象无所不有,无所不在。学生通过全球著名的腐蚀事件、损失概况图表,腐蚀科技前沿的授课内容,感受到“材料腐蚀现象与社会生活息息相关”,激发学生的学习兴趣。近几年,本专业教师也涉及材料腐蚀与防护领域课题研究,如铝合金微弧氧化、钛合金、不锈钢阳极氧化,不锈钢在磷酸实际生产中的应用,等等,在课堂上演示一些研究成果图片。学生明白材料腐蚀与防护课程的重要性,树立学好、用好《材料腐蚀与防护》课程内容的信心和决心,从而激发对该课程的学习兴趣和求知欲。

二、利用电化学教学,增设课程教学内容,突出重点难点

电化教学能克服时空限制,图形并茂,有声有色,生动形象,调动学生学习主动性和积极性。[6]将图像、文字、声音、动画等信息有机融合,形象生动直观地突出重点、难点、疑点,注重材料学、物理化学等内容有机糅合,不断优化充实教学内容。以用途为目的,按照成分――结构――腐蚀性能主线,将多学科零散的知识点连贯熔融起来,化静为动,化虚为实,化抽象为直观,由表及内,深入浅出,解释疑惑。在讲解典型阳极氧化曲线时,用钛合金阳极氧化实验为例,用虚构不同色彩的球形化分子、原子、离子解释阳极的电化学作用机理,合理解释不同的成分材料会有不同的极化曲线线段,也会表现出不同的宏观腐蚀性能,解决了传统课堂教学无法讲清、难以理解的重点、难点内容,也与金属钝化概念、原理很好地区分开来。在测试金属腐蚀速率实验中,学生能举一反三,抓住重点、难点,由易到难,步步深入,能合理地解释钛合金、铝合金阳极氧化前后在中性溶液中腐蚀速率差异的原因。

三、利用电化教学,提高课程教学质量

电化教学使微观世界宏观化,抽象内容具体形象化,强化巩固所学的专业知识,增加课堂教学感染力,有利于提高课程教学质量。讲解不锈钢晶间腐蚀内容时,用电化教学演示材料熔炼――凝固、固溶――敏化热处理、腐蚀、检测过程。在对应的程序里巧妙地串联冶炼――凝固、热处理、制样、抛光、腐蚀、检测设备以及相关操作步骤和方法内容,用不同色彩的虚构球形化分子、原子或离子间的物理化学作用机理融解于凝固、固溶组织演变、碳化物晶间析出、电化学溶解、破坏过程等重点、难点内容,让人一目了然。学生通过学习材料成分、组织结构、热处理工艺过程等与腐蚀性能之间的关系,巩固所学过《物理化学》、《材料科学基础》、《固态相变及热处理工艺》、《现代材料测试分析方法》课程等专业基础知识,还获取大量无法从课程中直接获取的设备操作方面的知识。学生步步深入,广泛了解腐蚀性能与材料成分――组织――应用内在联系,清晰地认识材料腐蚀与防护跟材料学、物理化学、电化学、冶金学等学科的密切相关,多角度综合分析加以吸取与课程相关学科知识。

四、利用电化教学,全面提高学生的素质

电化教学平台与实验平台相通,加深理解和验证腐蚀与防护的理论知识,逐步培养学生动脑思考,自己解决问题的能力。[7]要培养应用研究型的人才,必须在实验过程中培养其动手能力,分析问题和解决问题的能力。[8]材料科学与工程专业结合教师科研课题,也相继开放《测试金属腐蚀速率》、《不锈钢晶间腐蚀》等综合性实验。还抽调2008、2009级优秀学生参与了不锈钢在含卤素离子磷酸中应用、铝合金、钛合金阳极氧化科研课题。学生能用在电化教学平台上获取的交叉学科知识综合分析电化学腐蚀实验现象,并在教师指导下,通过查阅文献,优化设计成分,冶炼、中间处理,选用新型耐蚀材料,在实践中取得不错的效果。培养了学生用物质运动、变化、发展的观点,主动积极地去获取交叉学科知识和发展智力,有力地培养了学生的观察能力、思维辨证能力、分析解决问题能力和创新能力。也为学生将来学习、就业、工作增添了自信心和竞争力,已有多名学生考入西北工业大学、贵州大学等211高校材料腐蚀与防护方向的研究生。

通过《材料腐蚀与防护》课程电化教学改革,学生能在学时数少的情况下,掌握材料腐蚀概念、机理等重点、难点,开拓获知渠道,吸收消化,发展智力,提高了《材料腐蚀与防护》课程教学质量。同时,促进了电化教学在课程教学改革中创新发展。

参考文献:

[1]冯佃臣等.“金属腐蚀与防护”课程教学改革[J].中国电力教育,2011,(11).

[2]倪世兵等.在“材料腐蚀与防护”教学中谈大学生创新能力的培养[J].中国电力教育,2012,(12).

[3]刘片红.影响电化教学效果的几种因素[J].湖南教育,2008,(3).

[4]李芳英.电化教学在外语教学中的应用[J].山东师范大学外国语学院学报,2003,(3).

[5]乔金德.电化教学在地理教学中的作用[J].青海教育,2008,(1).

[6]宋金玲等.“材料腐蚀与防护”课程教学的思考[J].科教导刊,2011,(15).

电化学腐蚀范文第3篇

关键词: 吸氧腐蚀;析氢腐蚀;手持技术;实验改进

文章编号:10056629(2014)3005203 中图分类号:G633.8 文献标识码:B

金属的电化学腐蚀是在原电池内容的基础上所展开的,是中学化学教学的重点以及难点内容。钢铁的析氢腐蚀与吸氧腐蚀是一个缓慢的氧化过程,尽管传统的对比实验已进行了较多的实验改进来缩短反应时间,使反应现象更加明显,但是只能对实验现象做出定性的分析,仍无法将二者定量地反映出来,不利于学生理解析氢腐蚀、吸氧腐蚀的概念。由于在金属的析氢腐蚀、吸氧腐蚀的过程中,不仅伴随着物质浓度的变化,而且还伴随着压强的改变,因此我们可以借助于电子传感器捕捉化学反应过程中的细微变化,利用手持技术对金属的电化学腐蚀实验进行改进和补充,从而帮助学生正确理解析氢腐蚀与吸氧腐蚀的概念,解决学生的迷思概念问题。

1 实验原理

不纯的金属与电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子被氧化,这种腐蚀叫做电化学腐蚀。当在钢铁表面形成的电解质溶液薄膜呈酸性时发生析氢腐蚀[1],反应如下:

负极:Fe-2e-=Fe2+(氧化反应)

正极:2H++2e-=H2(还原反应)

总反应:Fe+2H+=Fe2++H2

当在钢铁表面形成的电解质溶液薄膜呈中性或酸性很弱,且溶有一定量的氧气时发生吸氧腐蚀,反应如下:

负极:2Fe-4e-=2Fe2+(氧化反应)

正极:2H2O+O2+4e-=4OH-(还原反应)

总反应:2Fe+O2+2H2O=2Fe(OH)2

进一步反应:4Fe(OH)2+O2+2H2O=4Fe(OH)3,

2Fe(OH)3=Fe2O3・xH2O+(3-x)H2O

根据上述原理,本实验主要利用氧气传感器和压强传感器测定反应过程中压强变化和氧气浓度变化,并利用pH传感器测定吸氧腐蚀反应前后溶液的pH。通过计算机和数字采集器收集数据、绘制曲线,并通过相应软件进行实验分析。

2 实验用品与仪器

炭粉、还原铁粉、2 mol/L盐酸溶液、2 mol/L醋酸溶液、2 mol/L氯化钠溶液[2,3]、橡皮塞、乳胶管、导气管、止水夹、三口烧瓶。

本实验采用pasco公司的数字采集器、datastudio数据采集软件、氧气传感器以及压强传感器。

(1)用USB数据线将计算机与数字采集器连接起来。

(2)将氧气传感器、压强传感器连接到数据采集器上。

(3)三口瓶的左端接入带止水夹导气管的单孔胶塞(以便调节内外压平衡),中间用单孔胶塞将三口瓶与氧气传感器连接,右端用单孔胶塞将压强传感器与三口瓶连接。

4 实验过程

4.1 在中性条件下发生吸氧腐蚀

(1)取下三口瓶,用滴管滴取2 mol/L的氯化钠溶液,均匀的润湿三口烧瓶的内壁2~3次,将炭粉和铁粉的混合物加入到三口瓶中,沿同一方向转动,使炭粉和铁粉的混合物均匀地粘附在三口烧瓶的内壁上[4,5],迅速地塞紧各个单孔胶塞,打开止水夹调节内外压平衡后,关闭止水夹。

(2)数据图像纵轴选择O2浓度(%)(体积分数),横轴选择时间,开启仪器采集数据,采集氧气浓度和压强变化情况(见图2、图3)。

(3)保存数据。

(4)实验结果及讨论:通过图2可以看出,本次测量中,瓶内空气中氧气浓度为21.0%,50s后为20.8%,500s后为20.0%,氧气的浓度在不断地缓慢减少,利用氧气传感器可使我们在较短时间内看出变化趋势。通过图3可以看出,此时瓶内初始测量压强为100957Pa(由于加完试剂塞紧胶塞等过程中瓶内的反应已经进行,所以导致瓶内初始的测量压强略小于理论压强值),随着氧气浓度的减小,压强也在下降,50s后瓶内压强降为100699Pa,10min内瓶内压强共下降了1080Pa。但是随着反应的进行,我们可以发现,氧气浓度的下降量不仅是由于吸氧腐蚀的发生而造成的,在后续的反应中,氢氧化亚铁转化为氢氧化铁的过程中也消耗了部分氧气,所以紧靠氧气浓度的变化还不足以完全说明是否发生了吸氧腐蚀。因此,我们还通过pH传感器检测pH的变化来证明确实发生了吸氧腐蚀。经检测,如图4所示,反应前溶液的pH为6.8,反应后经过滤,测得滤液的pH为9.5,正是由于吸氧腐蚀的发生,从而造成了三口瓶内溶液pH的升高。由此可以得出,在中性条件时主要发生吸氧腐蚀,而且吸氧腐蚀是缓慢进行的。

4.2 酸性较弱条件下同时发生吸氧腐蚀和析氢腐蚀

4.2.1 定性实验

取一支小试管,滴入5 mL 2 mol/L的醋酸溶液,加入适量炭粉和铁粉的混合物,静置一段时间后,观察现象。

4.2.2 定量实验

(1)取下三口瓶,用滴管滴取2 mol/L的醋酸溶液,均匀的润湿三口烧瓶的内壁2~3次,将炭粉和铁粉的混合物加入到三口瓶中,沿同一方向转动,使炭粉和铁粉的混合物均匀地粘附在三口烧瓶的内壁上,迅速地塞紧各个单孔胶塞,打开止水夹调节内外压平衡后,关闭止水夹。

(2)数据图像纵轴选择O2浓度(%)(体积分数),横轴选择时间,开启仪器采集数据,采集氧气浓度和压强变化情况(见图5、图6)。

(3)保存数据。

4.2.3 实验结果及讨论

由于没有直接测量氢气浓度的传感器,本实验中采取测量容器内压强的变化和观察小试管内金属与弱酸反应的实验现象的方法来说明氢气浓度的变化。

定性观察可见,小试管内有气泡冒出,可以断定容器内有析氢腐蚀发生。

在定量研究中,如图5所示,当电解质溶液为醋酸溶液时,随着反应的进行,氧气浓度逐渐缓慢减少,说明瓶内消耗了部分氧气,可知有吸氧腐蚀发生;如图6所示,在10min内,瓶内压强由起始的101075Pa下降到100626Pa,共下降了449Pa。正是由于三口瓶内同时发生了吸氧腐蚀和析氢腐蚀,所以导致了瓶内压强的下降幅度小于实验1中压强的下降幅度。由此可以看出,当电解质溶液为弱酸条件时,析氢腐蚀和吸氧腐蚀同时发生。

4.3 酸性较强条件下以析氢腐蚀为主

(1)取两支试管,各加入5 mL 2 mol/L的盐酸溶液和等量的0.22 g铁粉,再向其中一支试管中加入少量的炭粉,将两支试管同时连接上两个压强传感器,得到如下数据:

(2)仅将实验1中的“2 mol/L的氯化钠溶液”改为“2 mol/L盐酸溶液”,其他操作步骤与实验1完全相同。实验结果如图8、图9所示:

(3)实验结果及讨论:在较短的时间内可明显地观察到步骤(1)中两支试管内均有气泡冒出。由图7可知,铁粉和盐酸反应发生化学腐蚀,试管内压强在60s内上升了4288Pa,而加入炭粉后,试管内压强值始终大于不加炭粉的试管的压强值,且压强上升得更高,在60s内上升了7316Pa,这说明加了炭粉的试管不仅仅发生了化学腐蚀,还发生了电化学腐蚀,即析氢腐蚀。从图8和图9可以看出,在实验过程中,容器内的压强不断上升,50s内压强便上升了2435Pa,600s内上升了11244Pa,可知有氢气生成,瓶内总的分子数增加,但是由于瓶内氧气的分子数不变,所以氧气的体积浓度也呈略微的下降趋势。再结合步骤(1)中的实验结论,可以得出,在酸性较强的条件下,电化学腐蚀主要以析氢腐蚀为主,且腐蚀速度快于吸氧腐蚀。

5 实验小结

通过设计三组演示实验,利用氧气传感器和压强传感器可便捷地测定实验过程中氧气浓度和压强的微弱变化以及吸氧腐蚀中溶液pH的变化,明确提出金属铁的电化学腐蚀是一个缓慢的氧化过程。酸性较强条件下以析氢腐蚀为主,在中性条件下发生吸氧腐蚀,在弱酸性条件下,析氢腐蚀和吸氧腐蚀是同时发生的。在一组比较化学腐蚀与电化学腐蚀反应速率的学生实验中,说明应用现代的实验手段可以让学生对化学反应有一个更全面、更深刻的认识。

参考文献:

[1]宋心琦主编.普通高中课程标准实验教科书・化学反应原理(选修4)[M].北京:人民教育出版社,2007:84.

[2]陶俞佳,李桂林.吸氧腐蚀实验的改进[J].化学教学,2009,(6):26~27.

[3]雷和平,刘英丽.铁的吸氧腐蚀实验改进[J].化学教育,2009,(8):49~50.

电化学腐蚀范文第4篇

4 结语 目前的热电厂冷却塔根据循环介质主要包括淡水冷却塔、空冷冷却塔、排烟冷却塔、海水冷却塔。以前国内的冷却塔有的没有进行涂层保护,有的仅在冷却塔混凝土浇筑的同时,利用浇筑塔筒时搭建的脚手架滚涂环氧沥青漆、氯化橡胶漆或氯璜化聚乙烯涂料等进行简单防护。基本不考虑混凝土的养护期,既不用等塔体完工后进行高空作业,也不对混凝土进行表面处理,直接在混凝土浮浆层上滚涂涂料。 近些年来,火电厂化学水处理设施腐蚀相关事故屡见不鲜,其腐蚀防护工艺常见问题的处理已经逐渐受到了业内的关注。这就要求应对化学水处理设施的常见工艺问题有一个透彻的了解,总结出最为合理的处理方式,并积极地应对,从而保证火电厂的正常运行,促进火电厂建设的长足发展。

参考文献:

[1] 吕 敏.火电厂的腐蚀故障[J].防腐蚀知识大讲堂,2006(2):37~38.

[2]劳添长.火电厂腐蚀控制技术[J].第三届中国国际腐蚀控制大会,2005(11):61~62.

[3]周 军.火力发电厂的腐蚀与对策[J].华北电力技术,2008(12):72~73.

[4]陈 波.电厂化学若干问题的探讨[J].大众科技,2004(9):92~93.

[5]田雅琼.浅析反渗透技术在电厂化学水中的应用[J].中州煤炭,2002(5):112~113.

电化学腐蚀范文第5篇

【关键词】油气管道 腐蚀原因 防护措施

1 油气管道腐蚀原因分析

管道可分为金属管道、非金属管道和复合管道三大类。随着人们对腐蚀的认识过程不断深入,对腐蚀的定义也有多个版本。目前一致认可的定义是:材料腐蚀是材料受其周围环境的化学、电化学和物理作用下引起的失效破坏现象。金属腐蚀是金属与其周围环境(介质)之间发生化学或电化学作用而引起的破坏或变质。如铁在自然环境中的锈蚀。非金属腐蚀是指非金属材料由于在环境介质的化学、机械和物理作用下、出现老化、龟裂、腐烂和破坏的现象。例如涂料在阳光下的开裂、鼓泡现象。这是由于化学键在紫外线作用下断裂而导致的。金属腐蚀是在四周介质的化学、电化学作用下所引起的一种破坏现象。按管道被腐蚀的部位,可分为内壁腐蚀和外壁腐蚀;按管道腐蚀形态,可分为全面腐蚀和局部腐蚀;按管道腐蚀机理,可分为化学腐蚀和电化学腐蚀等。金属管道内壁因输送介质的作用而产生的腐蚀被称为内壁腐蚀。

内壁腐蚀主要有水腐蚀和介质腐蚀。水腐蚀指输送介质中的游离水,在管壁上生成亲水膜,由此形成原电池条件而产生的电化学腐蚀。介质腐蚀指游离水以外的其他有害杂质,如:二氧化硫、硫化氢等,直接与管道金属作用产生的化学腐蚀。硫化氢遇水很容易分解形成电离反应,会产生氢气进而发生氢脆,氢脆产生的氢气可使管路变脆、变形形成裂纹直至开裂损坏;二氧化硫与氧气、铁等作用下可产生硫酸亚铁,硫酸亚铁水解反应会产生游离酸,这样的恶性循环会加剧管道的腐蚀。长输管道内壁一般同时存在着上述两种腐蚀过程。特别是在管道弯头、低洼积水处和气液交界面,由于电化学腐蚀异常强烈,管壁大面积减薄或形成一系列腐蚀深坑,这些深坑是管道易于内腐蚀穿孔的地方。

外壁腐蚀主要包括大气腐蚀、土壤腐蚀、细菌腐蚀和杂散电流腐蚀等。架空管道易受大气腐蚀,土壤或水环境中的管道,易受土壤腐蚀、细菌腐蚀和杂散电流腐蚀。大气中含有水蒸气会在金属表面冷凝形成水膜,这种水膜由于溶解了空气中的气体及其他杂质,可起到电解液的作用,使金属表面发生电化学腐蚀。在非潮湿环境中,很多污染物几乎没有腐蚀效应,假如相对湿度超过80%,腐蚀速度会迅速上升。因此,敷设在地沟中的管道或潮湿环境的架空管道表面极易锈蚀。管道土壤腐蚀过程的细菌通常有硫酸盐还原菌、氧化菌、铁细菌、硝酸盐还原菌等。其中厌氧性硫酸盐还原菌最具代表性,它可利用自身的生息,将硫酸盐离子还原,同时促进阴极反应,生成硫化铁等腐蚀产物覆于管道表面,形成二次的局部腐蚀(孔蚀),这就涉及了缝隙腐蚀和点腐蚀。缝隙腐蚀是指金属与金属之间或金属与覆盖物之间存在缝隙,而在缝隙中又进入并存留电解质溶液,从而在缝隙中产生加速腐蚀的现象。点腐蚀是指腐蚀集中于金属表面的很小范围内,并深入到金属内部的孔状腐蚀形态。缝隙腐蚀电位低易于发生也易于发现和预防,孔腐蚀不易发生也不易发现和预防。相对比较缝隙腐蚀广而浅,而孔腐蚀小而深,不易发现危害大。

2 油气管道防腐蚀措施研究

油气管道从油气供应场所到其使用的地方,会经过各种各样复杂的地形,管道所处的环境也是千变万化,油气管道随时都会受到腐蚀的威胁,所以必须对油气管道实施防腐保护措施。目前对油气管道进行防腐保护方法,主要有绝缘层防腐方法和阴极保护两种方法。使用绝缘层防腐蚀方法时,因根据管道特点和管道所处地形地貌选择不同类型的防腐绝缘层,阴极保护又分为牺牲阳极阴极保护和外加电流阴极保护。这两种方法必须同时实施达到“联合保护”的作用,才能高效的防护油气管道的腐蚀。

2.1 涂层防腐

通用的管道防腐方法是内壁涂层加外壁涂层(或包扎层)加阴极保护。外侧防腐涂层是用涂料均匀致密地涂敷在经除锈的金属管道表面上,使其与各种腐蚀性介质隔绝是管道防腐最基本的方法之一,管道防腐涂层也越来越多地采用复合材料或复合结构。目前,我国防腐涂层业发展迅速,而环氧涂层(FBE)是现今公认的一种金属管道高效防腐涂层,这种材料和结构都具有良好的介电性能、物理性能、稳定的化学性能和较宽的温度适应范围等,比其他防腐涂层优越;为防止管内腐蚀、降低摩擦阻力,提高输量而涂于管内壁的薄膜,被称为管内壁防腐涂层膜。常用的涂料有胺固化环氧树脂和聚酰胺环氧树脂。为保证涂层与管壁粘结牢固必须对管内壁进行表面处理,近年来趋向于管内、外壁涂层选用相同的材料,以便与管内、外壁的涂敷同时进行;鉴于管道内涂层技术具有管道增输、节能、防腐等巨大优势,其在今后的大型油气管道中将会进一步得到推广。

2.2 阴极保护