首页 > 文章中心 > 量子通信

量子通信

量子通信

量子通信范文第1篇

然而,新闻报道透露的少量信息,还不足以使人们了解量子通信,并且质疑的惯性也使人们对这一技术的实际状态产生了怀疑。

量子是物理世界里最小的、不可分割的基本个体,因此可以说所有物质都是由量子组成的。量子具有非常奇妙的特性:量子叠加和量子纠缠。量子叠加原理使得量子的测量会被感知,是量子保密通信的基本逻辑。光量子通信主要基于量子纠缠理论,使用量子隐形传态的方式实现信息传递,这是实现量子高速通信的基本逻辑。

一个量子可以有多个可能状态的叠加态,只有在被观测或测量时,才会随机地呈现出某种确定的状态,但是对量子的测量又会改变被测量量子的状态。利用量子叠加原理,就可以实现量子密钥分发,一旦有人试图截获或测试量子密钥,就会改变量子状态,发送方可以销毁密钥重新分发。量子不可克隆和不可分割的特性也保证了量子密钥无法复制,实现了量子保密通信。

这种通信真的是无条件的绝对安全吗?目前还没有绝对安全的通信,不管多么保密的技术,最后都可能在人的身上功亏一篑,这是永远的安全悖论。

两个量子的相互作用,还可以产生一种纠缠态,处于纠缠态的一对量子,不管距离多么遥远,只要其中一个量子的状态发生变化,另一个量子也会发生相应的状态变化,这就是量子纠缠。根据这个原理,只要观测到一个量子的状态,那么就能得到另一个远距离量子的状态。也就是说,由这种状态变化就能实现瞬间通信,这就是量子的隐形传态。

量子隐形传态将粒子的未知量子态精确传送到遥远地点而不用传送粒子本身,因此在量子通信的宣传中,得到这样一个结论:量子通信的速度可以超越光速。

量子理论中,光的速度是极限速度,无法突破。但是量子纠缠理论在实验室状态下是经过验证的,难道真的可以突破光速吗?这只有在更远的距离下才能验证。当距离和速度接近于光速的量级时,能够确保没有各种抑制作用的产生吗?别忘了经典力学中的速度叠加在高速时就已经不再成立,量子级别的状态我们还远没有探索完成。如果我们制作一个远距离的理想刚性框架,在其中一端转动时,另一端也会瞬间改变状态,理论上,这种信息传输速度也将超过光速。然而实际上,当扭矩过大时,状态的变化一定会滞后,这也可以类比到量子纠缠上。要将处于纠缠态的一对量子分置于非常遥远的距离并保持量子纠缠状态并非易事,隐形传态的实际速度会不会超越光速,也许会在墨子号实验卫星上得到一些数据。

量子通信范文第2篇

量子是现代物理的重要概念,与经典物理有根本的区别,提供了全新的原理和思考方式。量子具有不确定性和不可测量性,量子的世界不遵循经典物理学定律,因此人们对量子世界的探索存在很多困y。通过科学家的不断探索,在量子信息研究领域有了许多的突破,其中产生了量子通信这一新兴技术。目前量子通信主要有两种应用,一种是较为成熟的量子密码通信,一种是量子隐形传送。2012年度诺贝尔物理学奖,法国科学家塞尔日・阿罗什与美国科学家大卫・维因兰德实现了对单个原子的测量和控制,阿罗什的工作是打造出一个微波腔,借助单个原子在微波腔中会辐射或吸收单个光子的特性,实现了操纵单个光子。而维因兰德则制造出了一个离子阱,先用光来俘获离子,然后用激光冷却离子,进而对离子进行测量和控制。量子计算和精密测量有了变成现实的可能性。

二、量子纠缠

Hilbert空间是欧几里德空间的一个推广,不再局限于有限维,是一个完备的空间,其上所有的柯西序列等价于收敛序列,从而微积分中的大部分概念都可以无障碍地推广到Hilbert空间中。能用Hilbert空间中的一个矢量表示的量子系统称为纯态,反之,如果不是处于确定的态而是以某一种几率分布的,称之为混合态。通常量子比特表示为:|Ψ〉=α|0〉+β|1〉,|α|2+|β|2=1(叠加态形式)。两个纯态|Ψ1〉和|Ψ2〉的线性叠加所描述的量子态|Ψ〉=c1|Ψ1〉+c2|Ψ2〉对应Hilbert空间的一个矢量,也是一个纯态。经过测量的量子态会坍缩到|0〉或|1〉,这个过程是不可逆的。这是二维Hilbert空间中量子态的描述,类似于三维球面上的一个点。在具有n个量子态的系统中,状态空间由2n个基向量组成。在未对系统进行操作之前,量子态可能为2n中的一个,与经典存储系统相比,量子系统能在某一时刻保持2n个状态,因此量子系统具有更大的计算潜力。爱因斯坦不愿承认并称之为“幽灵般的超距作用(spooky action at a distance)”的量子纠缠,指两个相互独立的粒子可以相互影响,对其中一个粒子进行观测可以即时地影响到其它粒子,无论它们之间的距离有多远。量子纠缠描述了量子子系统相互影响的现象,对一个子系统的测量瞬间影响了其他子系统的状态。一个由|ΨA〉和|ΨB〉两个子系统组成的复合系统|Ψ〉,如果可以表示为|ΨA〉×|ΨB〉,则|Ψ〉处于直积态,否则处于纠缠态。常见的纠缠态有:两个粒子构成的bell基,三个粒子构成的GHZ态等。二粒子纯态纠缠的研究最为完善,bell态是量子通信中最基本的纠缠资源。处于bell态的两个纠缠粒子称为EPR对。四维Hilbert空间中的正交完备基称为bell基。在量子通信中,最常用的测量方法是bell基测量。

三、量子纠缠的应用

目前量子通信的两种主要方式:量子密码通信和隐形传送。量子密码或量子密钥分配是利用了观测一般会干扰被观测系统的量子力学原理来实现的。量子的不可分割性和量子态的不可复制性保证了信息的不可窃听和破解,进而实现根本上、永久性解决信息安全问题的目标。量子隐形传态需建立在经典物理信道的基础上才能实现。在研究量子领域早期,人们最感兴趣的一个问题是能否利用量子纠缠实现超光速通信,这个问题的答案是否定的,原因在于量子的不可克隆性,仅依靠量子纠缠系统无法传递具体信息,要将原量子态的全部信息提取出来,需分别根据其经典信息和量子信息来构造,因此无法实现瞬间传输。量子隐形传态利用量子纠缠态作为通道, 利用量子作为载体, 把信息从一个地方传递到另一个地方。量子隐形传态的任务可以简单地描述为:假设存在一对共享的量子比特为 A、B,利用A、B来传送量子态C。将A、B分别置于系统的两端,现将量子比特A和C作幺正变换,测量后得到两个经典量子比特的信息,在这个过程中两个量子比特被破坏。量子比特B现在包含了关于C的信息,但观测者仍无法得到C的任何信息,量子比特B处于四个任意的量子态之一。现在需通过经典通信通道将A的测量结果发送到B端,根据A的测量结果,对B作相应的幺正变换, 此时量子比特B的状态变为C,实现了量子态的传送。

四、量子通信技术的发展现状

理想量子通信与传统通信相比,有着安全、无障碍通信等优势,但目前仍难以实现,量子测量、量子态的控制仍在不断完善,基于纠缠的量子隐形传态方式仍处在实验室阶段。2012年6月,潘建伟团队在国际上首次成功实现百公里量级的自由空间量子隐形传态和纠缠分发,为发射全球首颗“量子通讯卫星”奠定了技术基础。2016年8月16日,中国国成功发射全球首颗量子科学实验卫星“墨子号”,标志着中国在量子通信领域又迈出重要一步。“墨子号”的主要科学目标是借助卫星平台,进行星地高速量子密钥分发实验,并在此基础上进行广域量子密钥网络实验,以期在空间量子通信实用化方面取得重大突破。并在空间尺度进行量子纠缠分发和量子隐形传态实验,开展空间尺度量子力学完备性检验的实验研究。量子技术的迅速发展,预示着量子科技的无线前景,将给人类生活和生产带来革命性的成果,对国防、对经济有着重要影响。因此,我们应加快量子通信技术实用化进程,在国际技术竞争中占据有利地位。

参 考 文 献

[1] 《量子安全通信与量子信道理论有关问题的研究》王敏杰

[2] 《量子纠缠技术与量子通信》1007-9416(2012)10-0060-01舒娜 石际

量子通信范文第3篇

量子力学诞生于1926年,是人类对微观世界加以认识的理论基础之一。量子力学和相对论之间的不相容性在1935年被爱因斯坦、波多尔基斯和罗森论证后,约翰•贝尔于1964年提出贝尔理论,,阿斯派克等人于1982年证明了超光速响应的存在。1989年第一次演示成功量子密钥传输,1997年量子态隐形传输的原理性实验验证由奥地利蔡林格小组在室内首次完成,2004年,该小组又将量子态隐形传输距离成功提高到600米。2007年开始我国架设了长达16公里的自由空间量子信道,于2009年成功实现世界上量子隐形传态的最远距离。

二、量子通信技术的发展趋势

量子通信技术的研究方向除了包括量子隐形传态还包括量子安全直接通信等,突破了现有信息技术,引起了学术界和社会的高度重视。与传统通信技术相比,量子通信除具有超强抗干扰能力外且不需对传统信道进行借助;与此同时量子通信的密码被破译的可能性几乎没有,具有较强的保密性;另外,量子通信几乎不存在线路时延,传输速度很快。量子通信发展仅仅经历了20年左右,但其发展却十分迅猛,目前已经被很多国家和军方给予高度关注。

量子通信在国防和军事上具有广阔的应用前景,作为量子技术的最大特征,量子技术的安全性是传统加密通信所无可企及的。量子通信技术的超强保密性,能够有效保证己方军事密件和军事行动不被敌方破译及侦析,在国防和军事领域显示出无与伦比的魅力。另一方面,在破解复杂的加密算法上,也许现有计算机可能需要好几万年的时间,在现实中是完全无法接受且几乎没有实用价值的。但量子计算机却能在几分钟内将加密算法破解,如果未来这种技术被投入实用,传统的数学密码体制将处于危险之中,而量子通信技术则能能够抵御这种破解和威胁。

在民间通信领域量子通信技术的应用前景也同样广阔。中国科技大学在2009年对界上首个5节点的全通型量子通信网络进行组建后,使得实时语音量子保密通信被首次实现,城市范围的安全量子通信网络在这种“城域量子通信网络”基础上成为了现实。

三、总结

量子通信范文第4篇

关键词:量子信息论;信道容量;光通信

中图分类号:N031 文献标识码:A

文章编号:1005-913X(2012)08-0163-01

一、引言

信息论或者称为通信的数学理论,是研究信息的传输、存储和处理的科学。Shannon信息论是其主要代表。而在量子世界里,信号的物理特性与其所传输的信息完全紧密联系,从而产生了量子信息论。近年来,量子密码技术、量子通信、量子计算、量子模拟、量子度量学等方面都取得了很大进展[1]如今,光通信中有关信息论的相关理论已成为人们关心的课题。本文将对量子信息学在光通信中的应用进行分析和比较。

二、Shannon信息论

(一)信息熵的概念

Shannon从研究通信系统传输的实质出发提出了信息熵H(X)的概念 [2]

I(X;Y) = H(X)-H(X/Y) (1)

也可表示为:

■ (2)

(二)信道容量

信道容量C,它反应了信道传输信息的能力,是信道特性的参量。

C=max{I(X;Y)} (bit/event) (3)

Shannon对信道研究后发现由高斯信道可推导出Shannon公式[2]

C=Bln=Bln

■ (4)

N0是每单位频率的信噪比,B是带宽。

高斯信道中的信息量达到极限时[6]:

C=limB ln(1+S/(N0*W))=■lne=1.44■(bit) (5)

三、量子信息论

量子信息论采用与信息论相类似的方式向前发展。 [3] 在量子信息论中常用量子位或者量子比特表示信息单位。如|Ψ>=α|0>+β|1>(|α|2+|β|2=1),|Ψ>,又称为叠加态。

量子比特之所以与比特有如此大的差异是因为量子态是相互纠缠的。

(一)冯诺依曼(Von Neumann)熵

与经典信息论相似,量子信息论定义了冯诺依曼(Von Neumann)熵为:

S(ρ)=-Trρlogρ (6)

当组成混合态系统的每个纯态是相互正交时,(6)式退化为

S(ρ)=-Trρlogρ=■pilogpi (7)

冯诺依曼(Von Neumann)熵等于Shannon熵;而当各纯态相互不正交时,可证明系统的冯诺依曼熵将小于Shannon熵。

(二)量子信道与信道容量

在量子信息论中有三种信道容量概念:①无经典辅助条件下传输完整量子信息的信道容量Q(N)②只传输经典信息时的信道容量C(N)③在一般信道辅助下传输量子信息的信道容量Q2(N)。Q(N)与C(N)的定义形式相同;如Q(N)定义为:对于任意大的n和任意小的ε,当n个量子比特的每个量子态|φ>经过编码、信道传输和解码后的保真度都大于1 -ε 时的量子信道的最大传输速率;用数学公式可精确地表示为

Q(N)=■■sup{■:■m,E,D

■ψ∈H2n>1-ε (8)

但是,对于绝大多数的有噪声量子信道,这种容量并不能计算出具体值,而仅是一个取值范围。

在信息论中,Q(N)可通过干信息来描述,而C(N)完全由可获信息来确定。

四、光纤通信中的信息量

在光量子信道中,对于频率fi,输出信号的平均量子数为

yi=xi+ni (9)

假设xi与ni 统计独立。设xi,ni,yi的概率密度函数为p(xi),p(ni),p(yi),则p(yi/xi)=p(ni)。[5]在特定频率fi上,光量子信道的平均互信息[4]

I(yi;xi)=H(yi)- H(ni) (10)

因为固定时间间隔t,t=■,所以单位时间内的平均互信息

I(X;Y)=■■I(yi;xi)=H(Y)-H(n) (11)

在fi上,假设接收信号的光量子的离散能谱为

EI=hfi (h是普朗克常数) (12)

由于热辐射,光量子的波动服从Gibb分布

P(ni)=■ (13)

可得光量子的波动引起的噪声熵

H(nI)=π2Kt/3hln2 (14)

由(12)式,可得单位时间内信号的平均能量

S=EI=■■■xi ρ(xi)hfi (15)

而输出信号的平均功率是

■■■yi ρ(yi)hfi

=S+■■■ni ρ(ni)hfi (16)

所以,对于窄带的光量子信道,带宽f

就等于Shannon信道容量公式。

五、结束语

Shannon信息论是一套数学理论,而在物理效应非常明显的量子世界里讨论信息问题时,量子信息论起着支柱作用。它的实用性在量子密码通信和量子计算机已经初步实现。[7]现代信息论的理论与方法变得更加全面和深刻。必将在包括光通信在内的广阔通信领域发挥重要作用。

参考文献:

[1] 周正威,等.量子信息技术纵览[J].科学通报,2012(17).

量子通信范文第5篇

 

1.量子通信技术的特点及其发展历程

 

1.1量子通信技术的优点

 

量子通信系统是物理的量子学与现在信息理论想交叉的学科通讯技术,一类传输的是经典传输,一类是量子传输。其中经典传输是密钥的传输,而隐形的传输是无距离精确完美的传输。量子通信技术在信息化时代刚兴起不久,并迅速被应用到很多的领域中,并发挥了重要的作用。这一通信有密钥技术、远距离的传送、编码的实现、国防等领域中普及,而且通信技术具有高效率、灵活、高速、绝对安全的信息的传输、通讯时常可以为零等优点,被广泛应用各个领域。

 

1.2量子通信技术的提出发展历程

 

量子通信技术的提出简要分为19世纪进入通讯时代、信息交流与通信技术的演化、量子通信技术的突破。[2]

 

19世纪进入通讯时代,以往的通信技术是通过电磁波之类的信息载体进行信息的传送,速度很慢,没有量子效应的研制,这样的受很多因素条件限制比较大,空间距离就有可能让一些领域信息传输不够精准,一直都是信息载体的传输,效率不高且应用起来够完美。自从信息交流演化进程发展的加快,量子态开始迅速发展,时刻体现“零距离”、“高效率”“绝对安全实现”开始了通信传输进程的加快。最后在量子态的发展下具有了现在技术所需要的社会功用,具有很大的实用性。随着量子态中运用物理特性,例如原子可以表征粒子的物理特性、以及“量子效应”一个粒子的改变会牵引另一个粒子无论多远都会发生改变等的发展、远程通信技术,以及隐形传输的发展,都带来了量子通信传输研究领域的技术飞跃发展。

 

2.量子通信技术在各个信息化领域的广泛应用

 

2.1量子通信技术在发射卫星上天中的应用

 

量子通信传输不仅被应用到通信、多媒体、人工智能当中,也被各个领域运用,在日常生活中比较常见的是发射卫星上天网络的建立、以及利用卫星建立的网络平台实现中转,在较之非量子通信上有着不可替代的优势。量子通信技术虽然刚刚研究起步,但是确实研究的前景最为看好的通信传输技术,量子通信传输提供的零距离实现可以说是为其无空间受制最为成功的跨越,传输效率也因为量子通信传输的量子态处理,所以在传输中对完美传输要求精准这样严格的条件下,而量子信息技术恰恰满足了对于这样捕捉能力的需求,利用红外单光子探测器就实现了很好的捕捉。

 

2.2量子通信加密原理在国防、军事领域中的运用

 

利用量子效应,利用量子态的粒子携带密码信息,就不会有被窃听的风险,这样的应用到具有安全机密要求极高的军事领域中,保护通信密码的通信传输是量子通信的运用是对安全最完全的实现。以往通信传输受安全系数不高、传输距离的制约,不能对军事机密安全保证、空间距离大大制约了军事领域的发展。实现了“绝对安全‘这便直接决定了量子信息传输选择中量子理论的重要地位。[1]而且由于是信息仅仅是“黏着”在一个光子或者电子上,可以达到保证“窃听” 时信息的改变,这样的量子应用无疑是保证了内容绝对保密的关键的因素,这样加密方法是很难破译的、绝对安全以及突破传统数学加密方法,可以说,任何的“窃听”的活动以及信息的“拦截”都会改变量子状态。根据调查显示,大部分的军事领域将量子密钥为自己所用,已满足现在竞争的需求,而且80%以上的军事、国防需要安全保证、远距离、高效率的传输信息技术。使量子密钥在安全性、距离的传输以及量子态等转换得到保证,量子密码代替了传统数学密码可以破解的方法,在运用量子密码之后,保证了信息的绝对安全的保证。

 

2.3量子通信技术在空间信息传输中的应用

 

现如今信息时代传输高效安全是关键因素,信息传输的关注焦点主要集中在信息化安全、高效、远距离的传输上面,就是能安全、大容量的传输信息,且事实证明在传输上,因为距离原因上面,对于稳定性的传输技术还是需要由理论上升为研究实践的提高。

 

3.量子通信技术的发展前景展望

 

3.1网络密钥会有更大的“新”突破

 

网络密钥对于军事以及国防的安全性保证当之无愧对于安全系数高的领域能实现应用。但是还是没有被大规模的应用,这就是与量子纠缠有关,因为长距离的量子的稳定性还在创意研发阶段,不过,实现更远距离的有效的密钥的理论与实践能力都是会有更大的进展并且因为量子密码传输在全球都会实现安全的信息传输。

 

3.2满足更“大容量”方面的发展

 

数字信号处理技术打破了所受空间、距离以及安全等等的种种限制,同时对容量的需求给予了极大的满足,大容量可以实现高清晰图像,例如:可以实现超高速数据的传输。[2]目前,应用领域,80%以上的全球因特网络是以量子通信为基础的,预计以后全球化的通信技术的发展都要以此为基础。

 

3.3宇宙空间探索的更“快”进程

 

量子通信传输的信息技术,可以实现长距离且绝对安全的传输。不受空间等变化影响,可以并行执行多个操作,最可贵的是可以实现通信时常为零,甚至是超光速进行传输能力,将量子通信传输技术应用于宇宙探索中,这是当前发展的趋势能够加速我们在探索宇宙中的。

 

4.结论

 

在这样一个通信技术与交流、竞争并存的时代,通信技术的的如何更好的应用也是关键的问题,尤其是现在军事、经济等领域的竞争,空间拦截“窃听”技术研究国家的增多,量子力学与信息学的结合,如果不能不能很好的利用和很快将信息化时代的优势为自己所用,造成发展或者国家经济的发展出现被淘汰的境地。

 

综上所述,在信息化时代需要在一个较为大容量、安全的传输能力下,传输信息。而量子通信技术在实际的通信以及卫星、国防等领域的应用,因为远距离、高效、安全保证的能力的优点,促进了各个领域更好的发展,很好的结合信息学知识,向更好的方向发展的,因此,高效运用量子通信技术,将优点应用到各个领域,加速各个领域的发展同时也会使量子通信渗透进我们生活,量子通信技术的也使我们人类发展的进程的加快。