首页 > 文章中心 > 土壤修复

土壤修复

土壤修复

土壤修复范文第1篇

1.引言

我国矿产资源丰富,为国家经济建设做出了巨大的贡献,是工业经济的重要支柱,促进了社会进步,但在矿产开采和冶炼过程中也存在一系列严重的环境问题。首先,矿产开采会占用大片土地,并可能造成地质灾害。在采矿的过程中产生大量的矿渣,包括选矿渣、尾矿渣及生活垃圾等。据统计,中国铁矿石开采经选矿后68%以上为尾矿,黄金矿开采选矿后几乎100%为尾矿[1]。超过90%的矿区废弃物采取堆放处理,占用了大片的土地。我国矿山多为地下开采,常常导致地表裂缝与塌陷,严重危及到地表的人类活动。其次,矿山开采过程破坏生态环境,造成环境污染。矿区大片植被遭到破坏,表土剥离,加剧了水土流失,引起了土壤退化,导致生态失衡。矿产开采中产生的废弃物成分复杂,含有大量的酸性、碱性或有毒的物质,这些物质能对周边地区造成严重的影响。许多矿物有重金属伴生,矿物开采过程中常产生重金属污染。重金属具有长期性,稳定性和隐蔽性的特征,同时重金属元素会在植物体内积累,并通过食物链富集到动物和人体中,诱发癌变或其他疾病[2],危害人类健康。如铅中毒会影响人的神经系统、造血系统和消化系统等,镉中毒则会引起骨痛病。矿区土壤重金属污染已不容忽视,到了亟待解决的地步。矿区固体废弃物和矿山酸性废水是矿区土壤中重金属的主要来源。尤其是在Pb/Zn矿、Fe/S矿的开采过程中,尾矿废石中的Pb、Cd、Zn、Cr、Cu、As等在地表水的冲洗和雨水的淋滤下进入土壤并累积起来。而酸性废水则使矿区中的重金属元素活化,以离子形态迁移到矿区周边的农田土壤或河流中,导致土壤和河流中重金属含量远远超过背景值[3],影响农产品品质和饮水健康。另外,在矿石采矿、运输及排土过程中,尘埃污染也是矿区周边土壤中重金属的一个来源。在发达国家和地区,矿区废弃地治理已达50%以上[4],而我国还不到10%。近年来,我国开始重视矿区重金属污染的治理,如中国污染场地修复科技创新与产业发展论坛中来自全国各地的重金属污染场地修复专家一起商议湖南重金属污染矿区的治理措施,并对各方法的实用性做了分析。土壤重金属的各个修复方法可以降低重金属的浓度或生物可利用度,降低对生态环境及人类健康的危害。重金属污染土壤的修复中,方法的选择至关重要。本文在阐述了重金属污染土壤的基本修复原理后,着重分析了土壤重金属污染的物理修复法、化学修复法和生物修复法,为土壤中重金属的去除、固化及钝化提供了理论依据。

2.重金属污染土壤的修复技术

国内外用来修复土壤污染的方法较多,在具体的应用过程中多为交叉使用,一般分为三大类,即物理修复方法、化学修复方法和生物修复方法[5]。其修复原理如下:(1)加入化学改良剂转化重金属在土壤中的存在化学价态和存在形态,使其固化或钝化。或者采用物理修复等方法,使重金属在土壤中稳定化,降低其对植物和人体的毒性;(2)利用重金属累积植物、动物、微生物吸收土壤中的重金属,然后处理该生物或者回收重金属;(3)将重金属变为可溶态、游离态,然后进行淋洗并收集淋洗液中的重金属,达到降低土壤中重金属含量的目的[5]。

3.物理修复法

物理修复法是基于机械物理的工程方法,它主要包括客土、换土和翻土法、电动修复法和热处理法三种。

3.1客土、换土和翻土

客土法是指向被重金属污染的土壤中加入大量干净土壤,覆盖在土壤表层或混匀,使重金属浓度降低至低于临界危害浓度,从而达到减轻污染的目的[6]。对移动性较差的重金属污染物(如铅)采用客土法时,相对较少的客土量也能满足要求,可减少工程量。换土法是指把受重金属污染的土壤取走,代之以干净的土壤。该方法适用于小面积严重污染的地区,以迅速地解决问题,并防止污染扩大化。此方法要求对换出的受污染土壤进行妥善处理,以防止二次污染[7]。翻土法是指深翻土壤,使表层的重金属污染物分散到更深的土层,达到减少表层土壤污染物的目的。在矿区重金属治理的过程中,换土法治理较为彻底,而客土法和翻土法并未根除土壤中的重金属污染物,相反把重金属继续留在土壤中,因此这两种方法只适用于移动性差的重金属污染物,以免土壤中重金属污染物对地下水造成污染。

3.2电动修复

电动修复法是由美国路易斯安那州立大学研究出的一种治理土壤污染的原位修复方法,该方法近年来在一些欧美发达国家发展很快。它适合修复低渗透粘土和淤泥土,可以控制污染物流向[8]。在电动修复过程中,利用天然导电性土壤加载电流形成的电场梯度使土壤中的重金属离子(如铅、镉、锌、镍、钼、铜、铀等)以电迁移和电透渗的方式向电极移动,然后在电极部位进行集中处理。郑喜坤等[9]在沙土上的实验表明,土壤中Pb2+、Cr3+等重金属离子的除去率可达90%以上。该方法不搅动土层,且修复时间较短[10],是一种可行的修复技术。

3.3热处理

热处理法是利用高频电压释放电磁波产生的热能对土壤进行加热,使一些易挥发性有毒重金属从土壤颗粒内解吸并分离,从而达到修复的目的[11]。该技术可以修复被Hg和As等重金属污染的土壤。虽然物理修复方法取得了一定的成果,但其还存在局限性。客土、换土和翻土法操作起来花费具大,破坏土壤结构,使土壤肥力下降,同时还依然需要对换土进行堆放或处理;电动修复法在实际运用中受其他多种因素影响,可控性差;热处理法对气体汞不易回收。

4.化学修复法

4.1化学改良剂

该方法是指向重金属污染土壤中添加化学改良剂,通过对重金属的吸附、氧化还原、拮抗或沉淀作用,改变其在土壤中的存在形态,使其钝化后减少向土壤深层和地下水迁移,从而降低其生物有效性。常用的化学改良剂有石灰、碳酸钙、沸石、硅酸盐、磷酸盐等,不同改良剂对重金属的作用机理不同。如施用石灰或碳酸钙主要是提高土壤pH值,促使土壤中镉、铜、汞、锌等元素形成氢氧化物或碳酸盐等结合态盐类沉淀。如当土壤pH>6.5时,Hg就能形成氢氧化物或碳酸盐沉淀[12]。沸石是一种碱土金属矿物,通过吸附、离子交换等降低土壤中的重金属生物有效性。黄占斌等指出对于铅、镉复合污染土壤,环境材料腐殖酸对铅有显著固定作用,而高分子材料SAP及材料组合(腐殖酸、高分子材料SAP和沸石)对镉起到明显固定作用。A.Chlopecka等发现沸石、磷石灰等能降低重金属Pb、Cd的移动性,且能够减少玉米和大麦对重金属Pb、Cd的吸收量。

4.2化学淋洗

化学淋洗修复法是指在重力或外压下向污染土壤中加入化学溶剂,使重金属溶解在溶剂中,从固相转移至液相,然后再把溶解有重金属的溶液从土层中抽提出来,进行溶液中重金属的处理过程[15]。利用此方法开展修复工作时,既可以在原位进行,也可采用异位修复[16]。原位化学淋洗修复法要在污染地进行全部过程,包括清洗液投加、土壤淋出液收集和淋出液处理等。由于原位化学淋洗过程形成了可迁移态污染物,因此要把处理区域封闭起来避免污染扩大化;异位化学淋洗修复法则要把重金属污染土壤挖掘出来,用化学试剂清洗,以去除重金属,再处理含有重金属的废液,最后清洁后的土壤可以回填或作其他用途。化学淋洗法的关键在于试剂的选择,可用来淋洗土壤重金属的试剂主要有盐酸、硝酸、磷酸、硫酸、草酸、氢氧化钠、EDTA等。现已证明EDTA是针对重金属污染最有效的提取剂,但其价格昂贵,且对EDTA的回收还存在技术问题[17]。

5.生物修复法

生物修复法是通过植物、微生物或者动物的代谢活动,降低土壤中重金属含量方法。它主要包括植物修复法、微生物修复法、动物修复法和菌根修复法四种。

5.1植物修复

植物修复是将对重金属有超累积能力的植物种植在污染土壤上,待植物成熟后收获并进行妥善处理(如灰分回收)。通过该种植物可将重金属移出土壤,达到治理污染的目的。对于修复重金属污染土壤,植物修复法主要有植物钝化、植物提取和植物挥发三种。植物钝化是指利用植物根系分泌物降低重金属的活性,从而减少重金属的生物毒性和有效性,并防止其进入地下水和食物链,减少对人类健康的威胁。如植物分泌的磷酸盐与土壤中的铅结合成难溶的磷酸铅,使铅得到固化。除直接与重金属发生作用外,根系分泌物导致的根际环境pH值和Eh值的变化也可转变重金属的化学形态,使重金属固化在土壤中。但是这种方法并未将重金属去除,因此环境条件的改变仍有可能活化重金属。植物提取是指利用重金属超累积植物从污染土壤中吸收重金属,并将其转移、储存在植物地上部分(茎或叶),随后收割地上部分并集中处理其中的重金属,从而达到降低土壤重金属含量的目的。蒋先军等发现,印度芥菜对铜、锌、铅污染的土壤有良好修复效果。夏星辉[22]指出蕨类植物对镉的富集能力很强,杨柳科能大量富集镉,十字花科的芸苔能富集铅,芥子草能富集铅、锡、锌、铜等。在英国和澳大利亚等国家,一些对重金属有高耐受性的植物的培育已经商业化。植物挥发是指植物将其吸收的重金属转化为可挥发态,并挥发出植物的过程。如植物可以吸收土壤中的Hg2+,然后使之转化成气态HgO后,通过蒸腾作用从叶片蒸发出来。这种方法只适用于具有挥发性的重金属污染物,应用范围较小。同时,该方法将污染物转移到大气中,对大气环境造成一定影响。

5.2微生物修复

微生物修复法是利用微生物对重金属的亲和吸附作用将其转化为低毒产物,从而降低污染程度。虽然微生物不能直接降解重金属,但其可改变重金属的物理或化学特性,进而影响重金属的迁移与转化。微生物修复重金属污染土壤的机理包括生物吸附、生物转化、胞外沉淀、生物累积等。通过这些过程,微生物便可降低土壤中重金属的生物毒性[23]。由于细胞表面带有电荷,土壤中的微生物可吸附重金属离子或通过摄取将重金属离子富集在细胞内部。微生物与重金属离子的氧化还原反应也可降低重金属的生物毒性,如在好气或厌气的条件下,异养微生物可将Cr6+还原为Cr3+,降低其毒性。杜立栋等[24]从铅污染矿区土壤中筛选出一株青霉菌,对人工培养基中有效铅的去除率达96.54%,且富集效果比较稳定,可应用于铅污染矿区土壤的生物修复。

5.3动物修复

土壤重金属污染的动物修复是指利用土壤动物在自然条件或人工控制下,在污染土壤中生长、繁殖等活动过程中对污染物进行富集和钝化等作用,从而使污染物降低或消除的一种修复技术。在评价污染物的生态学危害研究中,科研工作者对土壤动物并未给予足够的重视,所以与微生物修复相比,国内外的相关报道还不多。而在众多土壤动物中,普遍认为蚯蚓是改良土壤的能手,并且对土壤污染具有指示作用,具有巨大的修复污染土壤潜力。朱永恒等[25]研究得出蚯蚓对重金属的富集量随着污染浓度的增加而增加,蚯蚓体内的Pb、Cd和As的含量和土壤中这三项元素的含量具有良好的相关性。且蚯蚓体内的金属硫蛋白和溶酶体机制可以解毒重金属。除蚯蚓外,腐生波豆虫及梅氏扁豆虫等动物对重金属也有明显的富集作用[27]。土壤动物不仅直接富集重金属,还和微生物、植物协同富集重金属,改变重金属的形态,使重金属钝化而失去毒性。

5.4菌根修复

菌根是指土壤中真菌菌丝与植物根系形成的联合体。成熟的菌根是一个复杂的群体,包括真菌、固氮菌和放线菌,这些菌类有一定的修复重金属污染的能力。菌根真菌可通过分泌特殊的分泌物改变植物根际环境,从而使重金属转变为无毒或低毒的形态,降低其毒性,起到促进重金属的植物钝化作用。申鸿等[28]通过对菌根的研究发现,菌根玉米地上部铜浓度降低24.3%,根系铜浓度降低24.1%,表明菌根植物对铜污染土壤具有一定的生物修复作用。黄艺等[29]采用根垫法和连续形态分析技术,分析了生长在重金属污染土壤中有菌根小麦和无菌根小麦根际铜、锌、铅、镉的形态分布和变化趋势,发现菌根可调节根际中土壤重金属形态降低重金属的生物有效性。此外,菌根还能使菌根植物体中重金属积累量增加,强化植物提取的效果。

土壤修复范文第2篇

何谓土壤修复

不同于水和大气,土壤是90%污染物的最终归宿,比如大气污染造成的污染物沉降,污水的灌溉和下渗,固体废弃物的填埋,其“受害者”都是土壤,且这些危害隐藏于无形。土壤修复是指利用物理、化学和生物的方法转移、吸收、降解和转化土壤中的污染物,使其浓度降低到可接受水平,或将有毒有害的污染物转化为无害的物质。从根本上说,修复已被污染土壤的技术原理可概括为:(1)改变污染物在土壤中的存在形态或同土壤的结合方式,降低其在环境中的可迁移性与生物可利用性;(2)降低土壤中有害物质的浓度。

不同技术各显神通

目前土壤及地下水污染的修复技术很多,但经济又实用的很少,归纳起来常用的有:热力学修复、热解吸附修复、焚烧法、土地填埋法、化学淋洗、堆肥法、植物修复、渗透反应墙、微生物修复等。这里主要介绍以下三种。

微生物修复是治理污染土壤较有效的方法,它主要利用土壤中的土著微生物,或向污染环境补充经过驯化的高效微生物,在优化的操作条件下,加速分解污染物,修复被污染的土壤。这种技术的优点是:成本低于热力学修复及化学淋洗,不破坏植物生长所需的土壤环境;污染物降解较完全,不产生二次污染;对低分子量的污染物去除率可达99%以上。

渗透反应墙是一种原位处理技术,它在浅层土壤和地下水之间构筑一个具有渗透性、含有反应材料的墙体,污染水体经过墙体时,其中的污染物与墙内反应材料发生物理、化学反应而被除去。

热解吸附修复技术则是目前世界上最先进的污染废弃物处理技术之一,它将受有机物污染的土壤加热至有机物沸点以上,使吸附在土壤中的有机物挥发成气态后再分离处理。其作业原理为利用污染废弃物中有机物的热不稳定性,通过非焚烧的间接加热方式实现污染物与土壤的分离。该技术可将废弃物中绝大部分的固相、油相、水相、气相回收利用,从根本上实现无害化处理。

对于污染我们不必谈虎色变,只要从自身做起,消除污染源,保护环境,积极地寻找科学的方法,污染终究会得到治理。

试一试

1. 为避免城市环境被污染,某市决定将一化工厂迁到郊区。右上图为该市待开发地区的地图:一条河流自西向东流;气候干燥,常刮西北风;现有5个厂址待选。如果你是决策者,请选出合理的厂址,并简述理由。

2. 当土壤中的污染物质数量超过土壤的容量和自净能力时,土壤的情况必然恶化。被污染的土壤对农作物生长不利。请根据右下图完成以下任务:

(1)设计实验测定本地区土壤的酸碱性(简要写出操作步骤、现象和结论)。

(2)据你所学到的化学知识提出防止土壤污染的措施(至少三种)。

活动馆

自制酸碱指示剂

取约250克紫色卷心菜,洗净后切碎,放入不锈钢锅内,加水至浸没一半,加热煮沸10分钟,并不断搅拌菜叶。把煮后的菜汁滤入容器中,冷却至室温后装瓶,得到的紫色卷心菜滤汁即可用作酸碱指示剂。也可以把滤纸剪成条状,浸在紫色卷心菜汁内,浸透后取出晾干,再次浸泡、晾干,这样操作1~2遍后,即得到自制的pH试纸。可用这种自制的酸碱指示剂或pH试纸来检测当地自来水和土壤的酸碱性。

自制酸碱指示剂或pH试纸的显色情况如下:pH值小于3时显红色,在3~5时显浅紫色,在6~7时显蓝色,在8~9时显青绿色,在10~12时显绿色,大于13时显黄色。

启示窗

化 学 污 染

化学污染是指化学物质进入环境所造成的污染,即由化学污染物引起的环境污染。

土壤修复范文第3篇

关键词:危害 重金属污染 土壤修复

土壤是地球表面的疏松表层,它是人类赖以生存的重要自然资源,并且在生态环境中占有重要地位。而近年来,随着工业的快速发展和乡镇城市化,土壤重金属污染日益严重,由此会破坏人类生态环境,从而影响人们的健康,因此,土壤重金属污染的修复技术已成为一个研究热点。

一、土壤重金属污染的危害

随着工农业的快速发展,多种工业如采矿、冶炼、电镀、废电池处理、金属加工等的排放以及农业中各种农药,化肥的施用均是土壤重金属污染的来源。据报道,全世界平均每年排放Hg约1.5万吨,Cu 340万吨,Mn 1500万吨,Pb 500万吨,Ni 100万吨[1]。土壤重金属污染具有污染面积达、积累时间长、不易被微生物降解、有明显的生物富集作用等特点,被重金属污染的土壤会严重影响到农作物的生长和发育,从而导致农作物的减产并污染农作物。安志装等人[2]研究发现镉与巯基氨基酸和蛋白质的结合会引起氨基酸蛋白质的失活,甚至使植物死亡。另外,土壤中的重金属会被农作物吸收并在农作物体内富集,通过食物链进入人体,从而严重危害人体健康。

二、土壤重金污染修复技术

1.物理化学修复技术

1.1化学固化

化学固化法指的是通过在土壤中加入土壤固化剂来改变土壤的有机质含量、矿物组成、pH值和Eh值等理化性质,再经重金属的吸附或共沉淀作用来调节其在土壤中的移动性,从而降低其共生物有效性。固化剂将污染土壤中的重金属固定后,不仅可以减少重金属通过径流和淋洗作用对地表水和地下水的污染,而且被污染的土壤还有可能重建植被[3]。虽然化学固化法可以固化土壤中的重金属,但固化剂只是改变重金属在土壤中的存在形态,重金属仍留在土壤中,因而该方法还有待进一步的研究探讨。

1.2电动修复

电动修复是近年来快速发展的技术,其作用机理是将电极对插入被污染的土壤中,在通入微弱电流形成电场,使土壤中的重金属在电场形成的各种电动力学效应下定向移动,在电极区附近富集,从而将重金属处理或分离。

对于低渗透的粘土和淤泥土的修复,电动修复是常用的技术。郑喜坤等人[4]研究了电动修复技术对沙土中Pb2+、Cu3+等重金属离子的去除效果,结果表明,重金属离子的去除率达99%以上。电动修复技术是一种原位修复技术,它可以有效的去除土壤中的重金属离子,并且经济效益好,是一种可行的修复技术。

1.3土壤淋洗

土壤淋洗是一种适用于治理大面积重废污染土壤的方法。所谓淋洗,是指利用提取剂(包括有机或无机酸、碱、盐、表面活性剂和聚合剂等)将土壤中的固相重金属转化为液相,土壤在经水淋洗处理后可归回原位利用,而对于富含重金属的废水也可进行回收处理,从而达到修复土壤的目的[5]。吴华龙等人[6]研究了被铜污染土壤修复的有机调控机理,研究结果表明,外加EDTA对降低红壤对铜的吸收率与加入的EDTA量的对数量显著负相关。土壤淋洗法虽然处理量大,处理效率高,但会造成二次污染,因此,寻找一种既能提取各种形态重金属又不破坏土壤结构的提取剂将成为土壤淋洗法的研究热点。

2.植物修复

植物修复是指在被重金属污染的土壤中,种植某种特定的植物,利用该植物对重金属的耐性和超富集作用将重金属移出土壤,使土壤中的重金属降低到可接受的浓度,达到重金属污染修复的目的。

根据其修复过程和作用机理可将植物修复技术分为4种:①植物萃取技术,即利用超富集植物将重金属从土壤提取出来,并将其转移,贮存到地上部分,然后通过植物收割来对重金属进行集中处理的过程[7]。韦朝阳等人[8]研究发现了一种大叶井口草,它对As的富集有明显的效果,其地上部分最大含量可达694mg/Kg。②植物固化技术,即利用耐金属植物及其根系微生物的一些生物化学作用降低重金属的活性,使其固化,从而减少对土壤的危害。该方法主要适用于有机质含量的矿区污染土壤的修复。③根圈生物技术,即利用植物根际分泌物和根际脱落物刺激细菌和真菌的生长,通过细菌和真菌对重金属的吸附固定作用,是重金属矿化的过程。④植物挥发技术,即利用植物根系的吸收、积累和挥发作用减少土壤中一些挥发性污染物,及植物将污染物吸收到体内后将其转化为气态物质释放到大气中[9]。

3.工程措施

工程措施是比较经典和传统的修复土壤重金属污染的方法,主要包括客土、换土及深耕翻土等方法。通过客土、换土或者将深耕翻土与污土混合,使土壤中重金属的含量降低,减少重金属对土壤植物的毒害,从而使农产品达到食品卫生标准[10]。

客土法是将干净的土壤覆盖在已受污染的土壤上混匀,从而降低土壤中污染物的浓度;换土法是用干净的土壤代替受污染的的土壤,对于换出的土壤应进行处理,防止二次污染的发生;深耕翻土是将表层已受到污染的土壤翻至深层,从而使土壤中污染物的浓度降低。

三、结语

目前运用于修复土壤重金属污染的技术有很多,但每种修复技术对于土壤重金属污染修复均有一定的弊端,并且对于不同类型的土壤受重金属的污染的程度的不同,单一的使用某种技术并不能达到理想的效果,因此,在实际应用中,应综合多种修复技术的优点,互取优势,研究出新型的具有高效,低耗的修复技术。

参考文献

[1]周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态.1999,10(3):21-27.

[2]安志装,王校常.重金属与营养元素交互作用的植物生理效应[J].土壤与环境,2002,11(4):392-296.

[3]Vangronsveld J F. Asschc V and Clijsters H.1995.Reclamation of a bare industrial area contaminated by norrferrous metals: In situ metal immobilization and revegetation. Environ Poll ,87:51-59.

[4]郑喜坤,鲁安怀,等. 土壤重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.

[5]龙新宪,杨肖娥,倪吾钟. 重金属污染土壤修复技术研究的现状与展望[J].应用生态学报,2002,13(6):757-762.

[6]吴龙华,骆永明,黄焕忠. 铜污染土壤修复的有机调控研究I.可溶性有机物和EDTA对污染红壤的释放作用[J].土壤,2000,(2):62-66.

[7]丁华,吴景贵. 土壤重金属污染及修复研究现状[J].安徽农业科学。2011.39(13):7665-7666,7756.

[8]韦朝阳,陈同斌,黄泽春,等. 大叶井口边草—一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778.

土壤修复范文第4篇

关键词:污染土壤;修复治理;物化技术

1物理技术

1.1工程措施

工程措施主要是利用新鲜未受污染的土壤替换或部分替换污染的土壤,以稀释原污染物浓度,增加土壤环境容量,从而达到修复土壤污染的一种物理方法,包括客土、换土、深耕翻土等方法。其中,深耕翻土法适用于轻度污染的土壤,而客土法和换土法则适用于相对重污染的土壤。工程措施法是较为经典的重金属污染土壤治理手段,具有彻底、稳定的优点,但实施工程量大,投资费用高,破坏土体结构,易引起土壤肥力下降,并且还要对换出的污土进行堆放或进一步处理,因此不是一种理想的污染土壤修复方法。

1.2玻璃化玻璃化技术主要用于重金属污染土壤的修复过程中,通过对污染土壤固体组分施加高温高压处理,使之形成化学性质稳定、不渗水、坚硬的玻璃态物质,将重金属固定于其中,从而达到从根本上消除土壤重金属污染的目的。王贝贝等采用微波技术对土壤中Cd进行玻璃化固定处理,结果表明,当微波(539W)辐照5min时,Cd的固定率可达95%以上。玻璃化技术最大的特点是见效快,适用于对受到重金属污染严重的土壤进行抢救性修复工作,但该技术实施工程量大,费用偏高,限制了其推广应用。

1.3热修复

热处理技术是通过直接或间接热交换,将污染土壤及其所含的污染物质加热到足够的温度,使污染物挥发或分离,主要包括热脱附和微波热修复。该技术主要适用于处理土壤中的VOC和SVOC、农药、高沸点氯代化合物等,不适用于处理土壤中除Hg、As和Se外的大部分重金属、腐蚀性有机物、活性氧化剂和还原剂等。美国海军工程服务中心采用热处理技术在154℃条件下修复油类污染土壤,总石油烃浓度由4700mg/kg降至257mg/kg,去除率达到95%;Kunkel等采用原位热解吸技术修复受Hg污染土壤,研究表明在温度低于土壤沸点的条件下可以去除污染土壤中99.8%的Hg;此外,Navarro等还研究了利用太阳能来热解吸污染土壤中的Hg和As,以解决热解吸技术能源消耗的问题,取得了较好的处理效果。

与传统热处理技术由外至内的热传导不同,微波加热可使被加热的土壤介质内外同时加热升温,从而有效防止了由外至内的热传导造成的土壤外层易挥发性物质和水份的快速挥发而引起的土壤外层结构发生变化,以致阻碍土壤内层污染物挥发的问题。曹梦华等研究了微波对某实际有机氯农药污染场地的修复效果,结果表明,当微波功率为4kW、土壤量为1kg、辐照30min时,土壤中总DDT的去除率可达77.6%,较常规加热方式提高了27.4%;任大军等以MnO2作为微波吸收剂,研究微波辐照技术在密封体系中对受2,4-二氯酚污染的土壤的修复效果,结果表明,微波辐照10min即可使50mg/kg的2,4-二氯酚污染土壤得到较好的修复。目前,国内外学者对微波热修复的研究还集中在修复机理、修复效果等方面,尚缺少对修复技术的系统性及工业化的可操作性等的深入研究。

2化学技术

2.1光降解

光降解技术适用于VOC污染土壤的修复,主要有土壤表层直接光解、土壤悬浮液光解、光催化氧化等。其中,土壤表层直接光解应用较广泛,主要适用于处理水溶性低、具强光降解活性的化学物质。李智冬等利用模拟可见光照射石油污染的土壤样品,结果表明,在光降解50h后,石油的饱和烃组分中高碳数的烷烃相对含量降低,低碳数的烷烃相对含量提高;在光照60h后土壤萃取液中可能产生了羰基类化合物,说明石油在光降解过程中逐渐发生了氧化降解。

2.2化学淋洗

土壤淋洗技术是借助能促进土壤中污染物溶解或迁移作用的溶剂,通过水力压头推动淋洗液,将其注入被污染土层中,使吸附或固定在土壤颗粒上的污染物脱附、溶解,然后再将含有污染物的淋洗液从土层中抽提出来,进行分离和处理的技术。该技术的关键是淋洗液的选择,要既能高效提取污染物又不破坏土壤本身结构,常用淋洗液有水、酸/碱溶液、络合剂、表面活性剂、氧化剂和超临界CO2流体等。该技术的适用范围广,既可用于修复重金属污染土壤,也可用于修复有机物污染土壤。

Moutsatson等以2mol/LHCl淋洗多种重金属污染的土壤,结果表明,土壤中Fe、Cu、Zn、Mn和Pb的去除率分别为55%、42%、67%、70%和57%;可欣等以0.1mol/L的EDTA淋洗污染土壤,土壤中Cd、Zn、Pb和Cu的去除率分别达到89.1%、45.1%、34.8%和15%;甘文君等研究发现,草酸淋洗对土壤中Cu、Cr、Ni和Zn的去除率可达55.1%、24.8%、47.5%和29.3%;柠檬酸淋洗对土壤中Cu、Cr、Ni和Zn的去除率可达26.3%、25.7%、33.0%和21.6%;EDTA淋洗对土壤中Cu、Cr、Zn和Pb的去除率可达31.5%、28.9%、21.4%和30.6%。

于红艳等以黑腐酸为原料,制得改性黑腐酸MHA12、MHA16和MHA18,用于PAHs污染土壤中萘、菲、荧蒽、芘的洗脱,结果表明,黑腐酸经过改性后引入了烷基和磺甲基,具有较好的水溶性和表面活性,对萘、菲、荧蒽、芘都具有良好的洗脱能力;陈洁等研究发现,皂角苷对污染土壤中的菲、芘的洗脱率分别高达84.1%和81.4%;马满英等研究表明,由铜绿假单胞菌发酵产生的代表性生物表面活性剂鼠李糖脂对污染土壤中多氯联苯(PCBs)有较高洗脱效率;张景环等研究发现,月桂醇聚氧乙烯(4)醚(Brij30)和月桂醇聚氧乙烯(23)醚(Brij35)对土壤中柴油的解吸率分别为22.5%和58.1%。

土壤修复范文第5篇

随着污染物种类的增加,土壤污染表现出机理上的复杂性、形式的多样性和范围上的扩大化,土壤通过与大气、水的交换以及通过农作物等与人直接或间接的接触对人类的健康产生了极大的威胁。国内外环境工作者对此进行了大量的研究,逐渐认识到土壤中的污染物之间具有伴生性和综合性,即不同污染物之间产生联合作用,如:协同、相加、拮抗等,形成了复合污染。目前,无机-有机复合污染是我国污染土壤的基本特征之一,且土壤中重金属污染一般浓度相对较高,而有机污染物的浓度则比较低。

土壤复合污染研究已成为环境科学发展的重要方向之一,随着研究方法和技术手段的进步,以前研究中探讨不深的污染治理和修复研究也有了较大的进展。近年来,美国、德国、英国、荷兰等国家先后投入巨大的人力和财力,深入开展研究污染土壤修复,在物理、化学、化学和联合修复等方面均取得了相当显著的成果。

重金属污染的主要来源为冶炼业、电镀业,主要重金属污染物为:Pb、Cd、Cu、Cr、Zn,Ni和As。土壤重金属复合污染具有几个特点:①大多数金属的课移动性较差或迁移距离短;②重金属在土壤及生物体内蓄积;③重金属对植物造成的伤害具有潜伏性特征。从污染物的种类出发,土壤中重金属复合污染发生的主要类型有两种,分别是重金属元素之间构成的复合污染和重金属与有机污染物所构成的复合污染。

污染土壤修复是指利用物理、化学和生物手段,转移、吸收、降解和转化土壤中的危险污染物,使其浓度降低到可以接受的标准,或将有毒有害的污染物转化为无毒无害的物质。通过现有重金属污染土壤修复资料表明,对于重金属污染土壤的修复技术有物理修复、化学修复和生物修复、联合修复以及农业生态修复等。

物理修复方法主要有溶液淋洗法、物理工程措施、冻融法、固化稳定法和电动力法。溶液淋洗法是把土壤固相的重金属转移到土壤溶液中,在运用当中,常配合使用表面活性剂以提高淋洗效果。物理工程措施可以用于土壤重金属污染严重的地区,一些发达国家试行了固化技术和挖土深埋包装技术,但这种方法工程量大,并伴有污土的处理问题。电动力法主要是用于重金属污染土壤,在欧美一些国家发展很快,已经进入商业化阶段。其基本方法是将电极插入受污染的土壤场地或地下水区域,通过施加微弱电流,从而形成电场,利用电场产生的各种电动力学效应(包括电渗析、电迁移和电泳等)驱动土壤污染物沿电场方向定向迁移,从而将污染物富集到电极区,然后再进行集中处理或分离。作为一种新兴的原位修复技术,在污染土壤尤其是重金属污染土壤的修复中,电动力学已经显示了其高效性,尤其在传统方法难以治理的细粒致密的低渗性异质土壤以及不能改变地上环境的区域(如受污染区域上部有重要建筑物)修复中有独特的优势,且成本低于传统方法,适和无机/有机污染的饱和或非饱和土壤。

化学修复的原理与物理修复相比,利用了污染物的化学性质达到去除的目的。化学方法主要包括氧化法、还原法、溶剂萃取法和土壤改良剂投加技术等。表面活性剂增效修复(SER)是利用其的增溶-洗脱作用,提高土壤中污染物的溶液浓度,改善其生物可利用性,以达到修复的目的,在修复土壤有机物方面已经有所研究并取得了一定的效果,但是表面活性剂的二次污染和生态安全问题限制了它的广泛使用。

生物修复是指利用土壤中的植物、动物、微生物以及植物与微生物的综合体,吸收、富集或转化土壤中的污染物质,从而最终达到清除土壤中污染物的一类技术总称。生物修复是污染土壤修复方法的主体,其中应用最为广泛的是微生物和植物修复。同物理、化学方法相比,生物修复具有土壤理化特性破坏小、污染物降解高、二次污染小、处理成本低、应用广泛等特点,随着土壤修复要求的逐步提高,生物修复技术的推广得到了迅猛发展。

生物修复技术分为植物修复、动物修复和微生物修复。目前,用于修复的生物主要是植物和微生物,另外还有少量的原生动物。植物修复方法主要是利用了植物对污染物的吸收、降解、转化和挥发等。微生物修复机理包括生物吸附、细胞代谢、表面生物大分子吸收转运、生物吞饮、沉淀和氧化还原等。现在在实际应用中,最常见的是根际修复。根际修复是利用土壤中的微生物、植物、菌根真菌及其相互作用的根际和菌(丝)际环境,有效地降解土壤中的污染物。它克服了微生物修复和植物修复污染土壤的不足,是污染物植物修复的纵深研究,是一种复合的生物修复技术。根际修复具有经济、有效、实用、美观、原位非破坏型、无二次污染、可大面积应用等独特优点而越来越受到人们的重视,是目前最具潜力的土壤生物修复技术之一。

菌根修复是根际修复中的一种,与其它生物修复方法相比,菌根修复的优点有,通过外延菌丝显著增加了菌根与土体的接触面积。据报道外延菌丝与土体的接触面积可超过300m2;菌根和菌丝周围特殊的土体条件,为微生物生长和繁殖提供了良好环境,树木每克外生菌根可分别支持106个好氧细菌和102个酵母;在生物数量方面,菌根际微比周围土体高1000倍。菌根条件下,菌根与土体接触面积的扩大和微生物数量的增多为其修复污染土壤提供了良好基础。丛枝菌根(AM)是丛枝菌根真菌(AMF)与植物根系相互作用的互惠共生体,在自然界中分布最广的一类菌根,AM真菌能与陆地上绝大多数的高等植物共生。

联合修复就是共用多种修复技术或以一种修复技术为主,辅以其他方法将土壤中的污染物去除。目前土壤污染大多属于复合污染,单一修复方法难以解决复合污染土壤修复问题,所以通过不同修复方法的组合可以满足污染土壤修复的实际需求。物理和化学联合修复弥补了某些修复方法存在的不足,提高了污染物降解速率,降低了修复费用;生物修复与物理化学修复联合的方法主要是以一种修复技术为主,其他的为辅来完善修复技术,如微生物进一步降解物理修复中的污染物使其去除效率更高;化学和生物联合修复也是为克服其不足而创造的,它常常利用某些化学物质加快生物降解过程或强化植物对污染物的吸收降解能力等。