首页 > 文章中心 > 激光焊接技术

激光焊接技术

激光焊接技术

激光焊接技术范文第1篇

关键词:激光焊接;焊接性能

中图分类号:TB756 文献标识码:A 文章编号:1006-8937(2014)32-0016-03

传统的焊接方法一般都有焊接温度高、工艺过程复杂、焊接条件苛刻等特点,特别是高的焊接温度,容易带来许多问题,如对材料的物理性能(如热膨胀系数)的不匹配更为敏感,或者可能引起工件变形甚至材料的有些性质(如光学性质)丧失或改变。对于非金属材料的连接,传统的方法有钎焊、热压扩散焊等。现在又发展了许多新技术,包括摩擦焊、电子束焊接、超声波焊接、中性原子照射法等。比如对玻璃与金属的封接,传统的方法采用熔接或者胶接。熔接温度高、接头应力高,而胶接连接强度不高、不耐腐蚀、容易老化等。

现代激光焊接技术已经有了较大的发展,激光焊接是一种利用激光束与材料相互作用的原理来实现材料固态连接的一种焊接方法,在某种程度上可以克服一些传统方法存在的问题。

1 激光器

1960年,世界上的第一个激光束利用闪光灯泡激发红宝石晶粒所产生,因受限于晶体的热容量,只能产生很短暂的脉冲光束且频率很低。虽然瞬间脉冲峰值能量可高达10~6瓦,但仍属于低能量输出。使用钕(Nd)为激发元素的钇铝石榴石晶棒(Nd:YAG)可产生1~8 kW的连续单一波长光束。YAG激光波长为1.06 um,可以通过柔性光纤连接到激光加工头,设备布局灵活,适用焊接厚度0.5~6 mm的焊接件。使用CO2为激发物的CO2激光(波长10.6 um),输出能量可达25 kW,可做出2 mm板厚单道全渗透焊接,工业界已广泛用于金属的加工上。

激光焊接属于熔融焊接,以激光束为能源,冲击在焊件接头上。激光束可由平面光学元件(如镜子)导引,随后再以反射聚焦镜片或元件将光束投射在焊缝上。激光焊接属于非接触式焊接,作业过程不需加压,但需使用惰性气体以防止熔池被空气氧化,填料金属偶有使用。激光焊可以与MIG焊组成激光MIG复合焊,实现大熔深焊接,同时热输入量比MIG焊大为减小。

Nd:YAG激光器的结构由全反射镜、工作物质、玻璃套管、部分反射镜、聚光镜、氙灯、电源等组成。当电源打开后,氙灯为工作物质提供光能,玻璃套管滤去氙灯发出的紫外线,聚光镜将氙灯发出的光能聚集在工作物质上。激光在谐振腔内来回反射共振,激光能量得到加强和改善。当激光能量密度达到部分反射镜界限时,透过部分反射镜发射出激光。其中工作物质是激光器的核心,将氙灯中部分光能转换为相干光。固体激光器的结构示意图如图1所示。

2 激光同金属材料间的相互作用

金属材料中存在着大量的自由电子,这些自由电子在受到光频电磁波的作用时,会被强迫振动而产生次波。而这些次波又会形成较弱的透射波和强烈的反射波。透射波部分在很薄的金属表层被吸收,造成激光在金属表面具有较高的反射比。而特别对红外光而言,其光子的能量较相对较低,光频电磁波仅只能对金属中的自由电子起作用。对光子的能量较高的紫外光或可见光来说,由于金属中的束缚电子的固有频率处在紫外光或可见光频段,因而能对金属中的束缚电子发生作用。对束缚电子的作用,使金属的反射能量降低、透射能力加强,增强了金属对激光的吸收,使金属呈现出某非金属的光学性质。

对于波长为10.6 μm的红外波和波长为0.25 μm的紫外波的测量结果表明:光波在各种大多数金属中穿透的深度能达到10 nm的数量级。其吸收系数大约为105~106 cm-1。

在激光光束的作用下,大多数金属的光学性质会发生改变。辐射作用下,可以得到在通常情况下它们的反射系数会相应减小的结果。实质上这是一种热效应,正是这种热效应使的金属对热损耗变得很敏感。在红外波段,当反射系数较大时,热损耗更是如此。一般情况下,材料的吸收特性是通过计算发射率来进行推导的,这是因为材料的发射率?着?姿?姿(T)通常是由下式给出的:

?着?姿(T)=1-R(T)(1)

式(1)中,λ为波长;Rλ为反射率;T指的是材料表面温度数值。一般来说,?着?姿(T)是随λ和T的变化而改变。

假设有一种表面没有氧化金属材料,若将其且置于真空中,则可通过公式计算其发射率。垂直入射时,材料的发射率为:

?着?姿(T)=(2)

式(2)中,K2为消光系数;n1为复发射率的实部。对该金属材料来说,K2和n1均是λ和T的函数。

一般来说,电子与晶格的相互碰撞时间很短。所以,整体上金属的反射系数存在随温度升高而减小规律。另外,热金属相对冷金属较活跃,由于金属表面存在的化学反应(如氧化等),容易发生反射率不可逆的变化规律,但在高真空环境下,除此规律不可应用。

当前,可靠的实验数据相对还比较少见,特别是在热金属的反射系数方面。但在红外波段,我们可以获得如下述描述,即认为金属的总吸收系数可由三大部分组成:自由电子(fe),带间跃迁(ib)和表面效应(surf),亦即:

1-R≈(1-R)(fe)+(1-R)ib+(1-R)(surf)(3)

但是,关于式中后两项同温度间的依赖关系,这里并没有系统而全面地论述,它们赖于能带所处的能态、能带精细结构、表面金属的反应能力。然而,在假设自由电子的密度与温度无关的条件下,我们可以将自由电子项与直流电导率σ0的温度关系联系在一起,而后者常是已知的。

金属材料的发射率与温度、金属电阻率有关,可用下式进行计算:

?着?姿(T)=0.365[r20(1+?酌T)/?姿]1/2-0.0667[r20(1+?酌T)/?姿]1/2+-0.006[r20(1+?酌T)/?姿]1/2(4)

式(4)中,r20为20 ℃时的电阻率;?酌为电阻率随温度变化的系数;T为温度。

工件对激光束能量的利用率决定于吸收率,金属对光束的吸收率越大,激光钎焊越易进行。材料对激光束的吸收主要取决于激光的波长、材料电阻系数和材料的表面状态。

研究表明,在金属熔化以前,吸收率随温度的增加而增加;当温度达到熔点时,吸收率急剧增加。多数金属在熔化时其导电率急剧减小,减小到常温时的1/2~1/3,这必然会导致反射率与导热率的突变。

3 激光同非金属材料间的相互作用

3.1 非金属材料吸收激光时的反应

非金属与金属大为不同,它对激光有较低的反射比,相反对应的吸收比相对较高。对应不同结构特征非金属,对不同波长激光具有强烈的选择性。

在没有收到激发时,半导体与绝缘体仅存在束缚电子,其中束缚电子不仅具有一定的固有频率v0,同时其值由电子跃迁时的能量变化E决定,且有:

v0=E/h,

其中h为普朗克常量。但是当材料内束缚电子的固有频率等于或约等于入射光波频率时,内部束缚电子会发生强烈谐振,辐射出次波,形成较强的透射波和较弱的反射波。但在该谐振频率周围,材料的反射比和吸收系数都是增加的,出现反射峰值和吸收值峰;而在其它频率下,如果是均匀的半导体或绝缘体,按其本性应该是透明的,且具有较低的反射比,较小的吸收系数。

一般情况下,半导体具有多个谐振频率,并以其中价带电子向导带跃迁产生的谐振最为重要。这种跃迁常叫做本征吸收或本征电离,又称为电子的带间跃迁。受激光照射时的半导体中,处于价带的电离会因吸收光子而受激跃迁到导带。电子跃迁时,根据有无声子的带间跃迁,可将跃迁分为间接跃迁和直接跃迁。这两种要求最小光子能量应均等于禁带宽度的能量。然而,当带间跃迁产生足够多的载流子对时,他们会反过来影响被照射材料物质对激光的吸收。其中,半导体的的禁带宽度应对于可见光或红外光光谱,而绝缘体的禁带宽度应于对紫外光光谱。此外,在热或光的作用下,浓度较高的半导体自由载流子,会呈现出某种金属的光学性质。

除电子跃迁外,大多数非金属当然也可以通过有机物分子间的相对振动或者晶体点阵来进行能量耦合。

3.2 激光与透明固体的作用

光束能够引起得固体光学的性质的所有变化,可以将其归结为三种,可从按照辐照度增大的排列顺度。它们分别是:

①热的产生导致材料的电子性质或密度发生改变,其中有关的效应是:透明介质中间的热自聚焦,以及金属和半导体中的“热逃逸”现象。

②绝缘体和半导体中发生的自由载流的光学现象,是由碰撞电离或带间跃迁引起的,导致明显增大吸收系数,甚至会有可能引起严重的爆炸性的材料损伤。

③强光束的电场使整个分子或电子轨道发生非线性畸变自聚焦和多光子吸收等许多非线性光学现象,都是由电场效应而引起的自聚焦。而仅只有滞后部分的脉冲能经历自聚焦,能有效地抑制短脉冲自聚焦出现的方法是驰豫效应。

另外,自聚焦并不仅只局限于窄的高斯光束,如果能够调制足够好的光束横截面,则任意一种直径的高斯光束都会产生自聚焦,使众多够强的峰值功率,可以彼此独立地产生自聚焦而导致宽的强光束,并会在非线性介质中,形成许许多多细小的丝状路径。

在激光同材料相互间作用时,激光引起的冲击力和吸收能量的材料都将使受作用的材料部分向外膨胀。若每一部分材料都能够自由膨胀,则虽有变形,材料也不会出现破坏或应力。若各个部分的材料都不能自由膨胀,则各部分之间会产生应力或爆炸破坏,因为他们之间相互制约。

激光同透明固体材料间相互作用的过程,是部分材料受激光辐射的过程,而本身材料是连续体,因而激光的作用将使材料内部产生力学效应,诸如应力波、自聚焦或爆炸破坏等。

4 激光参数对焊接性能的影响

影响激光焊接过程中焊接性能的因素,主要有激光功率密度、激光光速直径、材料本性、焊接速度等。

激光的功率密度必须在104~106 W/cm2范围内方能进行激光焊接。

激光的光束直径应根据焊缝的宽度进行调整,选择同钎料宽度相差不大的光斑直径,以尽量减小焊接热影响区的大小。

材料对光能量的吸收决定了激光深熔焊的效率,影响材料对激光吸收的因素有两个方面:一是材料的电阻系数。研究发现,激光对材料的吸收率与电阻系数的平方根成正比。二是材料的表面状态。有时材料对激光的吸收率较低,可采用表面处理的方法改变材料表面性能,提升对材料的吸收率。

在一定的激光功率下,提高焊接速度,激光的线能量下降,激光对材料作用的热量就相对减少;反之,激光对材料作用的热量增加。

5 结 语

激光焊接可将入热量降到最低的需要量,热影响区金相变化范围小,且因热传导所导致的变形亦最低。激光焊接焊接速度快,可降低厚板焊接所需的时间甚至可省掉填料金属的使用。激光焊接不需使用电极,没有电极污染或受损的顾虑,且因不属于接触式焊接制程,机具的耗损及变形接可降至最低。激光束易于聚焦、对准及受光学仪器所导引,可放置在离工件适当之距离,且可在工件周围的机具或障碍间再导引,其他焊接法则因受到上述的空间限制而无法发挥。激光束可聚焦在很小的区域,可焊接小型且间隔相近的部件。激光焊接可焊材质种类范围大,可焊接不同物性(如不同电阻)的两种金属,亦可相互接合各种异质材料。

参考文献:

[1] R E Collins,A C Fiseher-Cripps,J-2Tang.Transparent evacuated insulation[J].Solar Energy 1992,Vo49.

[2] 张瑞宏,马承伟,孔德军,等.“新型真空玻璃”项目中试方案的研究[J].玻璃与搪瓷,2003,(6).

[3] 关振中著.激光加工工艺手册[M].北京:中国计量出版社,1998.

[4] ZHANG R H,KONG D J,YANG C J,et al.Theoretical analysis and experimental research on the braced stress of vacuum glazing[J].Key Engineering Materials,2007,(353).

[5] 郑启光编著.激光先进制造技术[M].武汉:华中科技大学出版社,2002.

激光焊接技术范文第2篇

关键词:铝合金;激光焊接技术;优化研究

由于铝合金具有质地轻薄,比强度高,比高度高的优点,所以被广泛地应用于航空航天领域和舰船领域。焊接技术可以保障材料的利用率,减少总体机器质量,同时也大大降低了所需要注入的成本。和其他焊接技术相比,激光焊接技术对焊接环境要求较低,并不需要一定在真空环境下进行,且此技术焊接能量更高、焊接精度更准、焊接效率更好,整个焊接过程都能保障集中加热。目前,衡量一个国家工业加工水平的重要标志之一就是激光焊接技术在该国工业中所占的比重。在工业发展领先的国家中,铝合金激光焊接技术被广泛地应用到建造先进机器构造部件中。而随着经济的发展,各种高强度高韧性的铝合金被源源不断地研发出来,而这些多样式的新型铝合金对铝合金激光焊接技术也提出了更高的要求。所以综上所述,必须深入地对铝合金焊接技术优化方法进行研究[1]。

1铝合金的研究介绍

铝元素在元素周期表中位于第三周期,原子序数为13,原子量为26.9815。相比于其它有色金属、钢铁、塑料和木材,铝更富有延展性,质地柔软且易于成型,这些优秀特性使得铝材料广泛地应用于航空航天和汽车领域。可以说,铝合金是飞机结构的理想材料。丰富的资源量,低廉的使用成本以及良好的工作性能使得铝合金在飞机上的用量高达50%~80%。其中铝合金占军用飞机结构的45%~65%,而民用飞机使用量更是高达70%~80%。除了在飞机上铝合金用量广泛,其它航空业例如火箭铝合金也被大量利用,绝大多数火箭的运载壳体都是采用铝合金铸造炼制的。1924年德国发明了第一个含锂的铝合金,人们惊喜地发现铝锂合金相比于以往的铝合金,质量更轻,刚度更强,气动性更好,抗防腐能方面力更强,同时还具备可回收利用的优点,大大缩减了运行和维修成本,降低了总体风险。研究表明机器构件用铝锂合金取代常规的铝合金后,质量减轻10%~15%,刚度加强15%~20%,可以说是一种更加理想的航空航天材料。鉴于铝锂合金的这些优点,人们进一步地加以探索和研究,铝锂合金的研发取得了长足的进步。迄今为止,铝锂合金的研制发明已经进入到了第三代时期。铝锂合金的研发到目前为止已有七十余年历史,在西方国家,铝锂合金应用到航空航天领域已经有50多年的历史,而且还在不断发展优化系统成分。然而在我国对于铝锂合金的研发探索时间却并不长,早在上世纪六十年代,一些有见解的学者就有意识的想要加强铝锂合金这一领域的研究,然而由于国家提供的经费有限,我们的技术水平也无法与国外先进的技术水平相比,所以只取得了很小的成绩;“八五”之后,国家加强了投资力度,因此许多高校和研究所都开展了铝锂合金研究课题,这个阶段我们成功地研制出1420和2090铝锂合金,为我国铝锂合金的发展提供了很好的推动促进效果;“九五”期间,国家意识明显提高,为了接轨国际水平,更加重视铝锂合金项目的研发,在这个阶段,我国取得最明显的成绩就是2195铝锂合金的研制开发,并且独立地解决了退火工艺不均匀、热轧和冷轧及中间退火和大规格薄壁管材挤压这些问题;“十五”之后,我国进入工程应用阶段,我国对于铝锂合金不仅仅停留在研制开发阶段,更重视将铝锂合金应用到实际中,国产铝锂合金被逐渐地应用到航空航天领域,而我国自主研发的1420铝锂合金更是应用到运载火箭中[2]。经过多年的科技研究和实践应用,当前我国工业发展水平已经处于全国领先地位,航空航天领域对先进结构材料有着很大的需求。然而对于铝锂合金的研究,我国当前情况并不乐观,目前我国的铝锂合金发展水平与国外先进国家,例如美国、俄罗斯有超过20年的差距,这一数据不得不引起我们的注意,不断扩大领域、提升性能、开发研究新型技术已经成为亟待解决的问题。

2铝合金的激光焊接技术优化研究

由于铝合金具有薄壁结构,所以在铝合金材料上使用焊接技术更加方便。焊接技术可以有效地减少成本、减轻质量、提高利用率,此种技术被广泛地应用到行业结构建造方面。而传统焊接技术,如:火焰焊接、电弧焊接、等离子体弧焊接,都具有热源发散,功率密度低,工作效率低,焊接结构变形量大的缺点,因此,引入新的焊接技术迫在眉睫。

2.1激光焊接特点

上世纪六十年代,激光焊接技术作为一种新的焊接技术出现,很快就因其智能化、柔软化、多样化、集成化、大深宽比、焊缝小、变形量小、焊接效率高、焊缝性能好和自动化易于实现等优点被广泛认可使用。如今激光焊接技术已经成为汽车制造业的标准焊接制造方法,而且也越来越多地被使用到航空航天行业中。激光焊接属于高能束流焊接方法,它的作用原理是“小孔效应”[3],简单说此原理就是指在熔池中产生小孔,通过孔壁获取能量,形成焊缝。高能束流焊接方法除了激光焊接技术,还有电子束焊技术,只是电子束焊技术所传递能量的介质是高能密度电子,此种介质必须在真空环境中才能完成传递工作。而激光焊接技术传递能量介质是电磁波,在大气下就可以进行,所需工作成本比电子束焊技术更低。在飞机制造行业中,人们通常用铆接工艺将铝合金材质壁板进行连接,然而铆接工艺需要在基础材料上打通大量工艺孔,紧密的工艺孔严重地影响了材料的美观性,更是破坏了结构的连接性和整体性,而且还会加大结构的重量。与传统工艺相比,激光焊接技术仅仅利用激光就能将铝合金材质壁板连接起来,不需要如此繁琐的工程,同时也保留了基础材料的完整性。因此,航空制造业越来越多地选择激光焊接技术进行铝合金材质壁板连接[4]。

2.2激光焊接技术难点以及问题

尽管激光焊接技术虽然有诸多优点,然而由于铝和铝合金本身对激光具有高反射率和高热导型,所以激光焊接技术也有许多难点和问题。铝对于激光具有高反射率,例如对YAG激光,铝的反射率接近80%,而对CO2激光,铝的反射率更是高达90%,高强的反射率使得母本材料对激光的吸收率极差,大大降低工作效率。激光焊接熔池通常建立的又深又窄,但是激光发光率极大,传送过程中产生大量蒸汽,如此强大的蒸汽流在通过熔池时就会使熔池中的溶液大量飞溅。激光焊接的熔池存在时间非常短,而激光焊接的焊缝冷却速度却很快,这样就会导致熔池中的气体无法排出,以气孔形式存在其中。由于激光焊接是一种精准的焊接技术,为避免产生焊接裂纹对接头间隙有着严格的要求,通常不许超过母材厚度的10%。铝合金本身具有低电离的特点,焊接过程会产生不稳定粒子,影响焊接过程的稳定性和焊缝形状[5]。

2.3激光焊接技术优化研究

激光焊接根据作用机制可以分为热导焊和深熔焊两种。二者在应用领域上各有不同,其中热导焊应用于精密仪器以及微小零件的焊接中;而深熔焊则是大型仪器的焊接手段,深熔焊所应用的激光有三种类型,其特点如下表1所示。如表1所示,CO2气体激光的工作介质为CO2,它的波长为10.6微米,输出功率很高,可是输出光束质量极差,因此并不适用于焊接;YAG固体激光的工作介质为红宝石、钕玻璃和掺钕钇铝石榴石等,它的输出波长为1.06微米,和CO2气体激光相比,YAG固体激光更容易被金属吸收,转化效率高且操作灵敏,因此被大量使用;光纤激光则是最新型研发的激光器,它的输出波长在1.08微米左右,虽然它的实践时间较短,但是具有运行成本低、光束质量高,获得的激光功率高的优点,是非常好的激光焊接技术。

3结语

与传统焊接技术相比,激光焊接技术具有明显突出的优点,因此近年来应用越来越广泛。但是由于铝合金自身的局限性,因此铝合金激光焊接技术仍然存在许多问题有待深入探讨与解决。本文通过对铝合金材料和目前激光焊接技术现状的分析,探讨一种新的激光焊接技术优化方法,希望通过本文的研究,对以后的激光焊接技术优化研究起到积极促进作用。

参考文献

[1]张大文,张宏,刘佳,等.铝合金连续-脉冲激光焊接工艺对比实验研究[J].激光技术,2012,36(4):453-458.

[2]孙福娟,胡芳友,仝崇楼,等.消除铝合金激光焊接缺陷与提高焊缝强度研究[J].现代制造工程,2006(6):78-80.

[3]陶汪,陈彦宾,李俐群,等.铝合金激光点焊工艺特性研究[J].红外与激光工程,2011,40(4):659-663.

[4]张智慧,董世运,王玉江,等.7A52铝合金光纤激光焊接接头组织与性能研究[J].应用激光,2014,34(6):567-571.

激光焊接技术范文第3篇

自20世纪60年代以来激光加工的类型不断发展完善,现己形成激光加工的十几种自用工艺。由于激光加工技术与传统加工工艺相比有着许多无可比拟的优越性,所以敷光加工技术己得到了越来越广泛的应用。其独特的优点为:可局部加热,元件不易产生热损伤;非接触式加热;重复操作稳定性佳;加工灵活性好;易实现多工位装置自动化等。在微电子行业这一领域中己被成功应用。

从20世纪60年代第一台激光器问世以来,激光加工的类型不断发展完善,现己形成激光打标、激光切割、激光焊接、激光打孔、激光表面热处理、激光熔覆、激光快速成型、激光强化、激光微制造等十几种应用工艺。激光加工从电子芯片到轿车、飞机和船舶的生产制造都是不可或缺的重要工具。它与传统的加工方法相比,是无接触、无作用力、热影响小、清洁和可进一些面内加工的一种加工方法。利用电脑编程与激光加工设备紧密结合,很容易实现数字化控制,当之无愧被誉为“万能的加工工具”。现在一般的激光加工都采用了多项先进技术,多功能集成度高、实用性强、自动化程度高、操作简单、结果直观。可用于各种零件的激光表面处理、各种材料的激光切割、激光焊接、多种字体的汉字及西文字符的刻、切。加工过程中可实现动态同步跟踪显示。具有程序错误自动诊断、限位保护等功能。

激光加工是激光应用最有发展前途的领域,现在己开发出20多种激光加工技术。激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,己成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。目前己成熟的激光加工技术包括:激光切割技术、激光焊接技术、激光打标技术、激光快速成形技术、激光打孔技术、激光去重平衡技术、激光蚀刻技术、激光微调技术、激光存储技术、激光划线技术、激光清洗技术、激光热处理和表面处理技术。

二、激光加工技术在焊接领域的应用

激光焊接是激光材料加工技术应用的重要方面之一。20世纪70年代主要用于焊接,材料和低速焊接,焊接过程属热传导型,即激光辐射加热工件表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰值功率和重复频率等参数,使工件熔化,形成特定的熔池。由于其独特的优点,己成功应用于微、小型零件的精密焊接中。高功率C02及高功率YAG激光器的出现以及光纤传输技术的完善,开辟了激光焊接的新领域。其在机械、汽车、钢铁、微电子行业等领域的应用越来越广与其它焊接技术相比,激光焊接的主要优点是:

1、速度快、深度大、变形小。

2、能在室温或特殊条件下进行焊接,焊接设备装置简单。例如,激光通过电磁场,光束不会偏移;激光在真空、空气及某种气体环境中均能施焊,并能通过玻璃或对光束透明的材料进行焊接。

3、可焊接难熔材料如钦、石英等,并能对异性材料施焊,效果良好。

4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5: 1,最高可达10: 1。

5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。

6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。尤其是近几年来,在YAG激光加工技术中采用了光纤传输技术,使激光焊接技术获得了更为广泛的推广和应用。

三、激光焊接技术的发展现状

在国外,激光焊接的应用己极为普遍,几乎涉及到各个工业领域,仅以汽车工业为例,据国外专家预测,汽车零件中有50%以上可以用激光加工,除激光切割、打孔外,激光焊接占40%,80年代以来,国外激光焊接设备的年增长率为25%以上。

目前国内激光焊接工艺,正从实验室逐步应用于工业生产,在“七五”期间,又完成了许多联齿轮激光焊接、热轧硅钢片焊接、双金属锯条焊接及电容壳体激光焊接等一批具有较高水平的激光焊接工艺研究课题,使我国激光焊接的应用向前迈进了重要的一步。

四、激光技术的原理

激光加工全称:受激辐射的光放大,自发辐射是在没有任何外界作用下,激发态原子自发地从高能级向低能级跃迁,同时辐射出一光子。能够实现粒子数反转的介质称为激活介质。要造成粒子数反转分布,首先要求介质有适当的能级结构,其次还要有必要的能量输入系统。供给低能态的原子以能量,促使它们跃迁到高能态去的过程称为抽运过程。在激光器中利用光学谐振腔来形成所要求的强辐射场,使辐射场能量密度远远大于热平衡时的数值,从而使受激辐射概率远远大于自发辐射概率。

光学谐振腔的主要部分是两个互相平行的并与激活介质轴线垂直的反射镜,有一个是全反射镜,另一个是部分反射镜。在外界通过光、热、电、化学或核能等各种方式的激励下,谐振腔内的激活介质将会在两个能级之间实现粒子数反转。这时产生受激辐射,在产生的受激辐射光中,沿轴向传播的光在两个反射镜之间来回反射、往复通过己实现了粒子数反转的激活介质,不断引起新的受激辐射,使轴向行进的该频率的光得到放大,这个过程称为光振荡。这是一种雪崩式的放大过程,使谐振腔内沿轴向的光骤然增强,所以辐射场能量密度大大增强,受激辐射远远超过自发辐射.这种受激的辐射光从部分反射镜输出,它就是激光。

五、激光器的种类与激光焊接工艺方法

按照激光产生的原理不同,激光器分为以下几种:C02气体激光器、固体激光器、半导体激光器、光纤激光器。

激光的焊接工艺有激光钎焊。激光钎焊是以激光作为加热源,辐射加热焊盘,通过焊料向基板传热,当温度达到钎焊温度时,焊料熔化,基板焊盘润湿,形成焊点。有些元件的连接不宜采用激光熔焊,但可利用激光作为热源,施行软钎焊与硬钎焊,同样具有激光熔焊的优点。采用钎焊的方式有多种,其中,激光软钎焊主要用于印刷电路板的焊接,尤其实用于片状元件组装技术。采用激光软钎焊与其它方式相比有以下优点:

1、由于是局部加热,元件不易产生热损伤,热影响区小,因此可在热敏元件附近施行软钎焊。

2、用非接触加热,熔化带宽,不需要任何辅助工具,可在双面印刷电路板上双面元件装备后加工。

3、重复操作稳定性好。焊剂对焊接工具污染小,且激光照射时间和输出功率易于控制,激光钎焊成品率。

4、激光束易于实现分光,可用半透镜、反射镜、棱镜、扫描镜等光学元件进行时间与空间分割,能实现多点同时对称焊。

5、激光钎焊多用波长1.06um的激光作为热源,可用光纤传输,因此可在常规方式不易焊接的部位进行加工,灵活性好。

激光焊接技术范文第4篇

关键词:汽车制造;激光焊接;趋势

汽车的出现改变了人们的出行方式,为人们节省了时间,同时也推进了社会的快速发展,大力发展汽车制造业成为当今世界各国的重要关注的对象。激光焊接科技凭借穿透深、适应性好、能量密度高、精度高等优势成为当前汽车行业最重要的技术之一。通过激光将几块具有一定性能、材质以及厚度差异的薄板拼焊在一起,然后进行冲压成形。不仅减少了材料的废弃,还减轻了整体重量,提升了综合力学性能。在汽车发展的80多年历程里面,激光焊接技术在汽车制造领域中的应用,受到激光焊接技术本身的优越性与汽车制造行业的整体发展趋势以及市场需求的改变等多方面的影响。因此,发展激光焊接技术对推动汽车行业有着十分积极的意义。

1激光焊接技术的特点

享有“最快的刀”、“最准的尺”、“最亮的光”等美誉的激光是指受激光发射的辐射光放大。激光焊接指将具有高功率聚焦的激光束为热源,把材料融化并形成高质量的焊接接头,这种焊接方法不仅效率高,而且精度非常精确[1]。在汽车制造行业中,根据激光焊接技术的差异,可以把激光焊机分为两大类:YAG激光焊机与CO2激光焊机。在制造汽车过程中的主打标工序一般由YAG激光焊机操作的,而表面处理、切割、打孔、焊接等处理过程一般是采用CO2激光焊机完成。由于YAG激光器技术的改善,也会在焊接和切割方面有所运用。激光焊接具备下列特点:(1)应用范围比较广。(2)可用来对那些加工材料非常脆弱、硬度极大、高熔点或者相对薄的高效率加工。(3)热影响区与热变形都很小,焊接缝质量高。(4)加工速度快,节省材料,污染少,噪音低,劳动强度低。(5)其设备功能齐全,操作非常简便;具备计算机数控系统,可以进行高精度的立体加工。

2激光焊接技术在汽车制造方面的应用现状

一汽大众企业是最先使用激光焊接技术的企业之一。大约是90年代的时候,一汽大众企业就在300多台汽车使用了激光焊接技术,大多应用在底盘与车体的焊接上面。激光焊接技术在汽车制造领域的运用根据焊接方法的差异大致可以分为下列几种:

2.1激光焊接

齿轮在汽车制造占较大的比重,用激光焊接对变速器齿轮的焊接的运用开启了激光焊机在汽车制造领域运用的先河。变速器对齿轮质量以及转速的要求十分严格,不仅需要高效率的焊接,而且由于考虑到不准给齿轮增添过多的负载,必须采用高净度焊接方法[2]。因此最先把高效精准激光焊接运用到焊接变速器的齿轮上。1980年期间,以克莱斯勒为首的美国三大汽车制造公司相继把该焊接方式运用于汽车的制造行业。激光焊接技术在提升对传动部件的焊接的性能,同时大大节约了生产原料,为世界节能环保事业做出了贡献。近些年,随着汽车制造材质的不断演进,目前,由于材料的性能不够完善以及不能提升整车的美观等因素,限制了汽车制造业前进的步伐。多大数汽车制造公司引进环保节能的新型材料,例如,新型镁、铝等质量轻的材料。该型材料引进意味着需要更高水准的焊接类型,常规的点焊技术造成镁、铝材料生成了金属键化合物,它们缩短了焊接材料的使用寿命以及削弱了使用效果,而激光焊接的出现很好地避免了常规焊接技术引起的麻烦,因此激光焊接很快成为当今世界汽车制造行业中比较盛行的焊接技术。

2.2激光复合焊接技术

可以把激光复合焊接技术理解成在激光焊接技术基础上的改进——把电弧与激光的焊接技术进行合理的结合。一方面,激光复合焊接技术在焊接效率与速度方面均优于单一的焊接技术,而且具有较好的焊接稳定性。另一方面,单一的激光焊接技术在焊接时受热面积窄、焊缝深,这样对焊接材料多少有些损伤,而电弧焊接采用受热面大的导热焊接方式,不仅拥有较深的焊缝又保证了较为广泛的受热面,大幅度增加了焊接工作的质量与效率[3]。

2.3激光拼接

汽车车身制造的传统方法是先采用冲压技术再进行焊接。此类焊接技术的特点是在完成对每个部分冲压成型工作之后再逐一焊接在一起,以至于每个成型的部件难以较好地融合成一体,从而焊接成品不够完美。激光拼焊技术的研发很好地解决部件融合所存在的问题。激光拼焊改变了以往的车身制造顺序,可将厚度与材质相异或者经不同表面处理的钢板通过激光焊技术,焊接一个组件整体。

3激光焊接技术在汽车工业的发展趋势

与传统焊接组件相比激光焊接的组件费用略高,因此开发低成本、灵活、简便的激光焊接组件是汽车焊接领域的必经之路。目前,在汽车行业的焊接工艺中,对激光器的选择一般为大功率CO2激光器以及脉冲ZD:YAG激光器。在未来激光焊接技术的发展中,激光器的功力将达到1000W以上的有光纤激光器单光纤、单模光纤。在汽车制造业有贡献的将是二极管阵列激光焊接技术,运用其波长在近红以外区域的激光能量对汽车零件进行焊接[4]。此外,采用激光加热与其它热能相结合的方式为焊接过程提供多重热量的方式,弥补激光单热源在激光焊接技术方面的不足。近年来,广泛运用在汽车制造业方面的焊接技术的复合热源焊接技术有激光与电弧、感应热源复合焊接、双激光束焊接等技术。另外,焊接机器人得到了广泛的发展,行动灵活,变化多样,自动化水平高、都是焊接机器人所具备的优点。焊接质量优越、动作敏捷、反应迅速、机动性好,不存在安全问题等等。

4总结

现在激光焊接技术发展的程度已非常高端了,汽车工业已经步入到一个柔性化的生产链,对相应的技术要求也更高了,加大研发激光焊接技术和相关的激光加工技术对大力发展汽车行业尤为紧迫。近年来,中国制造业在激光焊接技术方面获得了重大突破,然而国内的激光焊接设备制造能力还十分有限,需要借助国外的力量。我国制造行业的首要任务是大力提升在焊接技术领域的研发能力,逐步完成对激光焊接技术设备的制造与生产。

参考文献:

[1]王广勇.车身焊接技术现状及发展趋势[J].汽车工艺与材料,2015(03):16-22,27.

激光焊接技术范文第5篇

关键词:现代;焊接;技术

0 前言

焊接技术和其它制造技术一样,对于我国工业和国防建设的影响是巨大的。焊接的分类有多种,各种焊接技术使用的能源和方式方法都不同,因此其每一种焊接技术的过程是千差万别的。为了发现焊接构件和焊缝中的焊接缺陷、避免或减少焊接缺陷的产生、保证焊接结构与产品质量及装备安全,应进行焊接检验,它是按照规范条例来控制焊接质量的关键手段。近年来,我国的经济发展很快,制造业发展突飞猛进。例如:2013年我国的辽宁号航空母舰正式列装海军了,其中新华网的一则报道引人深思:“监造航母过程中,有数千公里的焊缝需要检验。遇到狭小舱室和管路通道,军代表们需要钻进去爬行检验探伤,确保不留任何安全质量隐患”。这充分说明焊接技术和其它制造技术一样,对于我国工业和国防建设的影响是巨大的。现实要求我们认真学习、掌握先进的焊接技术,同时也要不断探索新的焊接方法、创新技术,更好地为国民经济服务。

1激光焊接的最新进展

1.1新型激光器

(1)直流板条式(DC Slab)CO2激光器、(2) 二极管泵浦的YAG激光器、(3)CO激光器、(4)半导体激光器、(5)准分子激光器。

1.2激光器功率的大型化、脉冲方式以及高质量的光束模式

以美国PRC公司为例,几年前,用于切割的CO2激光器功率主要是1500~2000W,而近期的主导产品是4000~6000W,6000W可切割的不锈钢厚度、碳钢厚度分别为35 mm和40 mm.

1.3设备的智能化及加工的柔性化

尤其是对YAG激光,由于可用光纤传输,给加工带来了极大的方便。其主要特点是:①一机多用。②采用一台激光机可进行多工位(可达6个)加工。③光纤长度最长可达60m.④开放式的控制接口。⑤具有远距离诊断功能。

1.4 束流的复合

最主要的是激光-电弧复合。深熔焊接时,熔池上方产生等离子体,复合加工时,激光产生的等离子体有利于电弧的稳定;复合加工可提高加工效率;可提高焊接性差的材料诸如铝合金、双相钢等的焊接性;可增加焊接的稳定性和可靠性;通常,激光加丝焊是很敏感的,通过与电弧的复合,则变的容易而可靠。

激光-电弧复合主要是激光与TIG、Plasma以及GMA.通过激光与电弧的相互影响,可克服每一种方法自身的不足,进而产生良好的复合效应。 从能量观点看,激光电弧复合对焊接效率的提高十分显著。这主要基于两种效应,一是较高的能量密度导致了较高的焊接速度;二是两热源相互作用的叠加效应。

GMA、激光加丝和激光电弧复合三种方法焊接时线能量、焊缝断面以及能量利用率的比较。Laser -TIG Hybrid可显著增加焊速,约为TIG焊接时的2倍;钨极烧损也大大减小,寿命增加;坡口夹角亦减小焊缝面积与激光焊时相近。阿亨大学弗朗和费激光技术学院研制了一种激光双弧复合焊接,与激光单弧复合焊相比,焊接速度可增加约1/3,线能量减小25%。英国Conventry大学现代连接中心亦有Laser-plasma复合焊接的报导。其优点是:提高焊接速度和熔深;由于电弧加热,金属温度升高,降低了金属对激光的反射率,增加了对光能的吸收。在小功率CO2激光试验基础上,还要在12 000W CO2 激光以及光纤传输的2kW YAG激光器上进行,并为机器人进行PALW打基础。

1.5铝合金的激光焊接

铝合金由于比强度高、抗腐蚀性好而得以广泛应用。CO2激光焊接铝合金的困难主要在于高的反射率以及导热性好,难以达到蒸发温度、难于诱导小孔的形成(尤其是对Mg含量比较小时)以及容易产生气孔。提高吸收率的措施除了表面化学改性(如阳极氧化)、表面镀层、表面涂层等外,也有用激光-TIG、激光-MIG的报道,其中MIG- DC electrode position方法由于表面的清理作用强和加丝的合金化作用效果为好。

2 我国高能束流焊接现状

国外电子束焊接发展可归结为:超高能密度装置研制、设备智能化柔性化、电子束流特性诊断、束流与物质作用机制研究以及非真空电子束焊设备及工艺的研究等。在国内,高能束流焊接越来越引起更多相关人士诸如焊接、物理、激光、材料、机床、计算机等工作者的关注。国内在设备水平上,与国外有一定差距,但在工艺研究上,水平则较为接近,甚至在某些方面还有自己的特色。

2.1 激光焊接

在设备生产与研究上,主要生产千瓦级的CO2激光设备和1千瓦以下的固体YAG激光设备。国内对激光焊接研究主要集中在激光焊接等离子体形成机理、特性分析、检测、控制、深熔激光焊接模拟、激光-电弧复合热源的应用、激光堆焊等。清华大学从声和电的角度,分析了熔透状态的声信号,提出了激光焊接等离子体的等效电路及电特性数学模型;在抑制等离子体的负面效应方面,清华大学张旭东、陈武柱等提出了侧吸法;国家产学研激光技术中心的肖荣诗、左铁钏提出了双层内外圆管吹送异种气体法;西北工业大学的刘金合提出了外加磁场法。

2.2电子束焊接

我国自行研制电子束焊机始于1960年代,至今已研制生产出不同类型和功能的电子束焊机上百台,并形成了一支研制生产的技术队伍,能为国内市场提供小功率的电子束焊机。近年来,出现了关键部件(电子枪,高压电源等)引进、其它部件国内配套的引进方式,这种方式的优点是:设备既保持了较高的技术水平,又能大大降低成本,同时还能对用户提供较完善的售后服务。目前,以科学院电工所的EBW系列为代表的汽车齿轮专用电子束焊机占据了国内汽车齿轮电子束焊接的主要市场份额;我国的中小功率电子束焊机已接近或赶上国外同类产品的先进水平,而价格仅为国外同类产品的1/4左右,有明显的性能价格比优势。

2.3等离子弧焊接

在等离子弧焊设备方面,西北工业大学开展了脉动等离子喷焊技术研究,通过在工件和喷枪阳极(喷嘴)间接入高频的IGBT无触点开关,成功地实现了转移弧和非转移弧的高频交替工作,实现了单一电源下的等离子喷焊。西安交通大学开展了适宜于Al、Mg 及其合金的变极性等离子弧焊设备的研究,主弧的正、负半波分别由两台直流电源供电,对工件(铝)实现了变极性焊接,它不仅使电弧稳定,而且还有可靠的阴极清理作用。北京航空工艺研究所开展了脉冲等离子弧焊的“一脉一孔”的工艺研究;在穿孔等离子弧焊小孔特征及行为检测方面,哈尔滨工业大学、北京航空工艺研究所以及清华大学分别通过光谱信息、电弧电压和电流的频谱分析,检测小孔的建立、闭合以及小孔尺寸;天津大学的王惜宝、张文钺分析了等离子弧粉末堆焊时粉末在转移弧中的输运行为及其主要影响因素,计算了铁基合金粉末和碳化硼粉末、不同参数下在弧柱中的输运速度分布及沿弧柱横截面上的粉通量分布。在重要的应用方面,西安航空发动机公司利用自制的电源设备配以进口的等离子焊枪,实现了某航空发动机工艺的改进。