首页 > 文章中心 > 功能材料论文

功能材料论文

功能材料论文

功能材料论文范文第1篇

关键词:梯度功能材料,复合材料,研究进展

Abstract:Thispaperintroducestheconcept,types,capability,preparationmethodsoffunctionallygradedmaterials.Baseduponanalysisofthepresentapplicationsituationsandprospectofthiskindofmaterialssomeproblemsexistedarepresented.ThecurrentstatusoftheresearchofFGMarediscussedandananticipationofitsfuturedevelopmentisalsopresent.

Keywords:FGM;composite;theAdvance

0引言

信息、能源、材料是现代科学技术和社会发展的三大支柱。现代高科技的竞争在很大程度上依赖于材料科学的发展。对材料,特别是对高性能材料的认识水平、掌握和应用能力,直接体现国家的科学技术水平和经济实力,也是一个国家综合国力和社会文明进步速度的标志。因此,新材料的开发与研究是材料科学发展的先导,是21世纪高科技领域的基石。

近年来,材料科学获得了突飞猛进的发展[1]。究其原因,一方面是各个学科的交叉渗透引入了新理论、新方法及新的实验技术;另一方面是实际应用的迫切需要对材料提出了新的要求。而FGM即是为解决实际生产应用问题而产生的一种新型复合材料,这种材料对新一代航天飞行器突破“小型化”,“轻质化”,“高性能化”和“多功能化”具有举足轻重的作用[2],并且它也可广泛用于其它领域,所以它是近年来在材料科学中涌现出的研究热点之一。

1FGM概念的提出

当代航天飞机等高新技术的发展,对材料性能的要求越来越苛刻。例如:当航天飞机往返大气层,飞行速度超过25个马赫数,其表面温度高达2000℃。而其燃烧室内燃烧气体温度可超过2000℃,燃烧室的热流量大于5MW/m2,其空气入口的前端热通量达5MW/m2.对于如此大的热量必须采取冷却措施,一般将用作燃料的液氢作为强制冷却的冷却剂,此时燃烧室内外要承受高达1000K以上的温差,传统的单相均匀材料已无能为力[1]。若采用多相复合材料,如金属基陶瓷涂层材料,由于各相的热胀系数和热应力的差别较大,很容易在相界处出现涂层剥落[3]或龟裂[1]现象,其关键在于基底和涂层间存在有一个物理性能突变的界面。为解决此类极端条件下常规耐热材料的不足,日本学者新野正之、平井敏雄和渡边龙三人于1987年首次提出了梯度功能材料的概念[1],即以连续变化的组分梯度来代替突变界面,消除物理性能的突变,使热应力降至最小[3]。

随着研究的不断深入,梯度功能材料的概念也得到了发展。目前梯度功能材料(FGM)是指以计算机辅助材料设计为基础,采用先进复合技术,使构成材料的要素(组成、结构)沿厚度方向有一侧向另一侧成连续变化,从而使材料的性质和功能呈梯度变化的新型材料[4]。

2FGM的特性和分类

2.1FGM的特殊性能

由于FGM的材料组分是在一定的空间方向上连续变化的特点如图2,因此它能有效地克服传统复合材料的不足[5]。正如Erdogan在其论文[6]中指出的与传统复合材料相比FGM有如下优势:

1)将FGM用作界面层来连接不相容的两种材料,可以大大地提高粘结强度;

2)将FGM用作涂层和界面层可以减小残余应力和热应力;

3)将FGM用作涂层和界面层可以消除连接材料中界面交叉点以及应力自由端点的应力奇异性;

4)用FGM代替传统的均匀材料涂层,既可以增强连接强度也可以减小裂纹驱动力。

2.2FGM的分类

根据不同的分类标准FGM有多种分类方式。根据材料的组合方式,FGM分为金属/陶瓷,陶瓷/陶瓷,陶瓷/塑料等多种组合方式的材料[1];根据其组成变化FGM分为梯度功能整体型(组成从一侧到另一侧呈梯度渐变的结构材料),梯度功能涂敷型(在基体材料上形成组成渐变的涂层),梯度功能连接型(连接两个基体间的界面层呈梯度变化)[1];根据不同的梯度性质变化分为密度FGM,成分FGM,光学FGM,精细FGM等[4];根据不同的应用领域有可分为耐热FGM,生物、化学工程FGM,电子工程FGM等[7]。

3FGM的应用

FGM最初是从航天领域发展起来的。随着FGM研究的不断深入,人们发现利用组分、结构、性能梯度的变化,可制备出具有声、光、电、磁等特性的FGM,并可望应用于许多领域。

功能

应用领域材料组合

缓和热应

力功能及

结合功能

航天飞机的超耐热材料

陶瓷引擎

耐磨耗损性机械部件

耐热性机械部件

耐蚀性机械部件

加工工具

运动用具:建材陶瓷金属

陶瓷金属

塑料金属

异种金属

异种陶瓷

金刚石金属

碳纤维金属塑料

核功能

原子炉构造材料

核融合炉内壁材料

放射性遮避材料轻元素高强度材料

耐热材料遮避材料

耐热材料遮避材料

生物相溶性

及医学功能

人工牙齿牙根

人工骨

人工关节

人工内脏器官:人工血管

补助感觉器官

生命科学磷灰石氧化铝

磷灰石金属

磷灰石塑料

异种塑料

硅芯片塑料

电磁功能

电磁功能陶瓷过滤器

超声波振动子

IC

磁盘

磁头

电磁铁

长寿命加热器

超导材料

电磁屏避材料

高密度封装基板压电陶瓷塑料

压电陶瓷塑料

硅化合物半导体

多层磁性薄膜

金属铁磁体

金属铁磁体

金属陶瓷

金属超导陶瓷

塑料导电性材料

陶瓷陶瓷

光学功能防反射膜

光纤;透镜;波选择器

多色发光元件

玻璃激光透明材料玻璃

折射率不同的材料

不同的化合物半导体

稀土类元素玻璃

能源转化功能

MHD发电

电极;池内壁

热电变换发电

燃料电池

地热发电

太阳电池陶瓷高熔点金属

金属陶瓷

金属硅化物

陶瓷固体电解质

金属陶瓷

电池硅、锗及其化合物

4FGM的研究

FGM研究内容包括材料设计、材料制备和材料性能评价。

4.1FGM设计

FGM设计是一个逆向设计过程[7]。

首先确定材料的最终结构和应用条件,然后从FGM设计数据库中选择满足使用条件的材料组合、过渡组份的性能及微观结构,以及制备和评价方法,最后基于上述结构和材料组合选择,根据假定的组成成份分布函数,计算出体系的温度分布和热应力分布。如果调整假定的组成成份分布函数,就有可能计算出FGM体系中最佳的温度分布和热应力分布,此时的组成分布函数即最佳设计参数。

FGM设计主要构成要素有三:

1)确定结构形状,热—力学边界条件和成分分布函数;

2)确定各种物性数据和复合材料热物性参数模型;

3)采用适当的数学—力学计算方法,包括有限元方法计算FGM的应力分布,采用通用的和自行开发的软件进行计算机辅助设计。

FGM设计的特点是与材料的制备工艺紧密结合,借助于计算机辅助设计系统,得出最优的设计方案。

4.2FGM的制备

FGM制备研究的主要目标是通过合适的手段,实现FGM组成成份、微观结构能够按设计分布,从而实现FGM的设计性能。可分为粉末致密法:如粉末冶金法(PM),自蔓延高温合成法(SHS);涂层法:如等离子喷涂法,激光熔覆法,电沉积法,气相沉积包含物理气相沉积(PVD)和化学相沉积(CVD);形变与马氏体相变[10、14]。

4.2.1粉末冶金法(PM)

PM法是先将原料粉末按设计的梯度成分成形,然后烧结。通过控制和调节原料粉末的粒度分布和烧结收缩的均匀性,可获得热应力缓和的FGM。粉末冶金法可靠性高,适用于制造形状比较简单的FGM部件,但工艺比较复杂,制备的FGM有一定的孔隙率,尺寸受模具限制[7]。常用的烧结法有常压烧结、热压烧结、热等静压烧结及反应烧结等。这种工艺比较适合制备大体积的材料。PM法具有设备简单、易于操作和成本低等优点,但要对保温温度、保温时间和冷却速度进行严格控制。国内外利用粉末冶金方法已制备出的FGM有:MgC/Ni、ZrO2/W、Al2O3/ZrO2[8]、Al2O3-W-Ni-Cr、WC-Co、WC-Ni等[7]。

4.2.2自蔓延燃烧高温合成法(Self-propagatingHigh-temperatureSynthesis简称SHS或CombustionSynthesis)

SHS法是前苏联科学家Merzhanov等在1967年研究Ti和B的燃烧反应时,发现的一种合成材料的新技术。其原理是利用外部能量加热局部粉体引燃化学反应,此后化学反应在自身放热的支持下,自动持续地蔓延下去,利用反应热将粉末烧结成材,最后合成新的化合物。其反应示意图如图6所示[16]:

SHS法具有产物纯度高、效率高、成本低、工艺相对简单的特点。并且适合制造大尺寸和形状复杂的FGM。但SHS法仅适合存在高放热反应的材料体系,金属与陶瓷的发热量差异大,烧结程度不同,较难控制,因而影响材料的致密度,孔隙率较大,机械强度较低。目前利用SHS法己制备出Al/TiB2,Cu/TiB2、Ni/TiC[8]、Nb-N、Ti-Al等系功能梯度材料[7、11]。

4.2.3喷涂法

喷涂法主要是指等离子体喷涂工艺,适用于形状复杂的材料和部件的制备。通常,将金属和陶瓷的原料粉末分别通过不同的管道输送到等离子喷枪内,并在熔化的状态下将它喷镀在基体的表面上形成梯度功能材料涂层。可以通过计算机程序控制粉料的输送速度和流量来得到设计所要求的梯度分布函数。这种工艺已经被广泛地用来制备耐热合金发动机叶片的热障涂层上,其成分是部分稳定氧化锆(PSZ)陶瓷和NiCrAlY合金[9]。

4.2.3.1等离子喷涂法(PS)

PS法的原理是等离子气体被电子加热离解成电子和离子的平衡混合物,形成等离子体,其温度高达1500K,同时处于高度压缩状态,所具有的能量极大。等离子体通过喷嘴时急剧膨胀形成亚音速或超音速的等离子流,速度可高达1.5km/s。原料粉末送至等离子射流中,粉末颗粒被加热熔化,有时还会与等离子体发生复杂的冶金化学反应,随后被雾化成细小的熔滴,喷射在基底上,快速冷却固结,形成沉积层。喷涂过程中改变陶瓷与金属的送粉比例,调节等离子射流的温度及流速,即可调整成分与组织,获得梯度涂层[8、11]。该法的优点是可以方便的控制粉末成分的组成,沉积效率高,无需烧结,不受基体面积大小的限制,比较容易得到大面积的块材[10],但梯度涂层与基体间的结合强度不高,并存在涂层组织不均匀,空洞疏松,表面粗糙等缺陷。采用此法己制备出TiB2-Ni、TiC-Ni、TiB2-Cu、Ti-Al[7]、NiCrAl/MgO-ZrO2、NiCrAl/Al2O3/ZrO2、NiCrAlY/ZrO2[10]系功能梯度材料

4.2.3.2激光熔覆法

激光熔覆法是将预先设计好组分配比的混合粉末A放置在基底B上,然后以高功率的激光入射至A并使之熔化,便会产生用B合金化的A薄涂层,并焊接到B基底表面上,形成第一包覆层。改变注入粉末的组成配比,在上述覆层熔覆的同时注入,在垂直覆层方向上形成组分的变化。重复以上过程,就可以获得任意多层的FGM。用Ti-A1合金熔覆Ti用颗粒陶瓷增强剂熔覆金属获得了梯度多层结构。梯度的变化可以通过控制初始涂层A的数量和厚度,以及熔区的深度来获得,熔区的深度本身由激光的功率和移动速度来控制。该工艺可以显著改善基体材料表面的耐磨、耐蚀、耐热及电气特性和生物活性等性能,但由于激光温度过高,涂层表面有时会出现裂纹或孔洞,并且陶瓷颗粒与金属往往发生化学反应[10]。采用此法可制备Ti-Al、WC-Ni、Al-SiC系梯度功能材料[7]。

4.2.3.3热喷射沉积[10]

与等离子喷涂有些相关的一种工艺是热喷涂。用这种工艺把先前熔化的金属射流雾化,并喷涂到基底上凝固,因此,建立起一层快速凝固的材料。通过将增强粒子注射到金属流束中,这种工艺已被推广到制造复合材料中。陶瓷增强颗粒,典型的如SiC或Al2O3,一般保持固态,混入金属液滴而被涂覆在基底,形成近致密的复合材料。在喷涂沉积过程中,通过连续地改变增强颗粒的馈送速率,热喷涂沉积已被推广产生梯度6061铝合金/SiC复合材料。可以使用热等静压工序以消除梯度复合材料中的孔隙。

4.2.3.4电沉积法

电沉积法是一种低温下制备FGM的化学方法。该法利用电镀的原理,将所选材料的悬浮液置于两电极间的外场中,通过注入另一相的悬浮液使之混合,并通过控制镀液流速、电流密度或粒子浓度,在电场作用下电荷的悬浮颗粒在电极上沉积下来,最后得到FGM膜或材料[8]。所用的基体材料可以是金属、塑料、陶瓷或玻璃,涂层的主要材料为TiO2-Ni,Cu-Ni,SiC-Cu,Cu-Al2O3等。此法可以在固体基体材料的表面获得金属、合金或陶瓷的沉积层,以改变固体材料的表面特性,提高材料表面的耐磨损性、耐腐蚀性或使材料表面具有特殊的电磁功能、光学功能、热物理性能,该工艺由于对镀层材料的物理力学性能破坏小、设备简单、操作方便、成型压力和温度低,精度易控制,生产成本低廉等显著优点而备受材料研究者的关注。但该法只适合于制造薄箔型功能梯度材料。[8、10]

4.2.3.5气相沉积法

气相沉积是利用具有活性的气态物质在基体表面成膜的技术。通过控制弥散相浓度,在厚度方向上实现组分的梯度化,适合于制备薄膜型及平板型FGM[8]。该法可以制备大尺寸的功能梯度材料,但合成速度低,一般不能制备出大厚度的梯度膜,与基体结合强度低、设备比较复杂。采用此法己制备出Si-C、Ti-C、Cr-CrN、Si-C-TiC、Ti-TiN、Ti-TiC、Cr-CrN系功能梯度材料。气相沉积按机理的不同分为物理气相沉积(PVD)和化学气相沉积(CVD)两类。

化学气相沉积法(CVD)是将两相气相均质源输送到反应器中进行均匀混合,在热基板上发生化学反应并使反映产物沉积在基板上。通过控制反应气体的压力、组成及反应温度,精确地控制材料的组成、结构和形态,并能使其组成、结构和形态从一种组分到另一种组分连续变化,可得到按设计要求的FGM。另外,该法无须烧结即可制备出致密而性能优异的FGM,因而受到人们的重视。主要使用的材料是C-C、C-SiC、Ti-C等系[8、10]。CVD的制备过程包括:气相反应物的形成;气相反应物传输到沉积区域;固体产物从气相中沉积与衬底[12]。

物理气相沉积法(PVD)是通过加热固相源物质,使其蒸发为气相,然后沉积于基材上,形成约100μm厚度的致密薄膜。加热金属的方法有电阻加热、电子束轰击、离子溅射等。PVD法的特点是沉积温度低,对基体热影响小,但沉积速度慢。日本科技厅金属材料研究所用该法制备出Ti/TiN、Ti/TiC、Cr/CrN系的FGM[7~8、10~11]

4.2.4形变与马氏体相变[8]

通过伴随的应变变化,马氏体相变能在所选择的材料中提供一个附加的被称作“相变塑性”的变形机制。借助这种机制在恒温下形成的马氏体量随材料中的应力和变形量的增加而增加。因此,在合适的温度范围内,可以通过施加应变(或等价应力)梯度,在这种材料中产生应力诱发马氏体体积分数梯度。这一方法在顺磁奥氏体18-8不锈钢(Fe-18%,Cr-8%Ni)试样内部获得了铁磁马氏体α体积分数的连续变化。这种工艺虽然明显局限于一定的材料范围,但能提供一个简单的方法,可以一步生产含有饱和磁化强度连续变化的材料,这种材料对于位置测量装置的制造有潜在的应用前景。

4.3FGM的特性评价

功能梯度材料的特征评价是为了进一步优化成分设计,为成分设计数据库提供实验数据,目前已开发出局部热应力试验评价、热屏蔽性能评价和热性能测定、机械强度测定等四个方面。这些评价技术还停留在功能梯度材料物性值试验测定等基础性的工作上[7]。目前,对热压力缓和型的FGM主要就其隔热性能、热疲劳功能、耐热冲击特性、热压力缓和性能以及机械性能进行评价[8]。目前,日本、美国正致力于建立统一的标准特征评价体系[7~8]。

5FGM的研究发展方向

5.1存在的问题

作为一种新型功能材料,梯度功能材料范围广泛,性能特殊,用途各异。尚存在一些问题需要进一步的研究和解决,主要表现在以下一些方面[5、13]:

1)梯度材料设计的数据库(包括材料体系、物性参数、材料制备和性能评价等)还需要补充、收集、归纳、整理和完善;

2)尚需要进一步研究和探索统一的、准确的材料物理性质模型,揭示出梯度材料物理性能与成分分布,微观结构以及制备条件的定量关系,为准确、可靠地预测梯度材料物理性能奠定基础;

3)随着梯度材料除热应力缓和以外用途的日益增加,必须研究更多的物性模型和设计体系,为梯度材料在多方面研究和应用开辟道路;

4)尚需完善连续介质理论、量子(离散)理论、渗流理论及微观结构模型,并借助计算机模拟对材料性能进行理论预测,尤其需要研究材料的晶面(或界面)。

5)已制备的梯度功能材料样品的体积小、结构简单,还不具有较多的实用价值;

6)成本高。

5.2FGM制备技术总的研究趋势[13、15、19-20]

1)开发的低成本、自动化程度高、操作简便的制备技术;

2)开发大尺寸和复杂形状的FGM制备技术;

3)开发更精确控制梯度组成的制备技术(高性能材料复合技术);

4)深入研究各种先进的制备工艺机理,特别是其中的光、电、磁特性。

5.3对FGM的性能评价进行研究[2、13]

有必要从以下5个方面进行研究:

1)热稳定性,即在温度梯度下成分分布随时间变化关系问题;

2)热绝缘性能;

3)热疲劳、热冲击和抗震性;

4)抗极端环境变化能力;

5)其他性能评价,如热电性能、压电性能、光学性能和磁学性能等

功能材料论文范文第2篇

功能材料课程涉及范围广、教学内容多、更新速度快,传统的教学方法难以满足本课程的教学需求。根据功能材料课程的特点,我们提出了专题教学与主题探讨相结合、学生讲授与教师总结相结合、理论教学与实验教学相结合、生活认知与教学内容相结合、基础知识与最新进展相结合等“五个结合”教学方法,以促进本课程教学质量的提高。

关键词:

功能材料;教学方法;教学探索

材料是具有一定性能,可以用来制作器件、构件、工具、装置等物品的物质,是人类一切生产和生活活动的物质基础。一种新材料的出现,常常引起生产力大发展,推动社会进步。材料科学是一门研究领域十分宽广的学科,涉及结构材料和功能材料两大类。功能材料是指具有特定的电、磁、声、光、热、湿、气、生物等特性的一大类材料,涉及的面宽、用途广,主要用于制造信息、能源、电工、电子、通讯、计算机、仪器、仪表、航空航天、生物医疗等领域的功能元器件,可以实现对能量和信号的吸收、存储、传感、控制、处理、转换、传送和发射等功能[1]。《功能材料》是我校金属材料工程专业发展平台重要课程。学生通过该课程的学习,开阔视野、拓展思路,同时,本课程突破了传统专业教学内容的局限。但由于该课程理论难度大、覆盖范围广、课时量有限,教学的方式方法面临挑战,本文结合教学实际,提出“五个结合”的教学方法,并进行了有益的探索与实践。

一功能材料课程的教学思路

功能材料课程是学生已经学习了《材料科学基础》等专业基础课的基础上开设的,学生已经对材料的组成、结构、制备、性能和应用及其相互之间的关系有了一定的认识,本门课程调动学生的学习积极性应该从知识活、内容新上下功夫,以此认识功能材料功能应用的机理,阐明材料组成、结构与性能之间的关系,挖掘功能材料在生产、生活中的应用,甚至反过来,从应用中的功能材料的功能性的表象进行总结,测试分析其成分、组织和结构,再对其功能性进行解释和探讨。随着时代的进步及科学技术的发展,功能材料已经被应用到各行各业中,功能材料种类繁多,且在不断完善和更新,功能材料的授课,必须关注生活、关注学术前沿,将生活中见到的新产品、科研上的新方法、研究获得的新成果扩展到教学内容中,才能激起学生的学习共鸣[2]。功能材料课程信息量大、系统性不强、更新速度快,由于学时有限,不可能面面俱到。在保证完成基础理论知识教学的情况下,开拓学生视野、扩大学生知识面,根据我校金属材料工程专业面向地方培养应用技术人才的目标及专业前期课程开设情况,我们重点选取超导材料、储氢合金、形状记忆合金、磁性材料、非晶态合金、半导体材料、微电子器件材料、光学材料、精细功能陶瓷、纳米材料、功能转换材料等专题的内容进行讲述。为改善教学效果,从功能材料的角度培养学生提出分析、分析问题和解决问题的能力,我们提出将专题教学与主题探讨相结合、学生讲授与教师总结相结合、基础理论与实验教学相结合、生活认知与教学内容相结合、基础知识与最新进展相结合。

二功能材料课程的教学探索

(一)专题教学与主题探讨相结合

功能材料课程最适合专题讲座式教学,每一类功能材料均可以做一个专题进行讲解,从该功能材料的机理、分类、结构、应用及进展等进行阐述,层次清楚、脉络清晰,学生很容易从宏观上把握该种功能材料,但是核心内容却容易忽略。由于本课程涉及的功能材料在我们的日常生活中、影视资料中或多或少都能接触到,结合教材提供的资料,基本上所有的同学都能参与到讨论中。如:在学习“超导材料”一章时,一个班42名学生,分成6组,每组7人,分别讨论了“什么样的材料是超导材料?”、“为什么这些材料具有超导电性?”“超导材料有用吗?”,同学之间、师生之间通过一节课的讨论和探究,相互启发、相互帮助、相互影响和相互补充,答案已经十分清楚,教师再加以梳理,并对学生理解不透的地方进行系统阐述,完全可以让学生对超导材料有深入的认识。

(二)学生讲授与教师总结相结合

学生通过小组组队自学学习自己感兴趣的专题或其中的小节,然后将自己所学、理解的内容讲授给其他同学,这是一种有效的学习方式。学习功能材料课程的学生为大三学生,已经具备材料科学相关基础的知识,并具有一定的自学能力,能够通过查找、阅读文献创造性地将当前研究的热点、出现的新材料或自己感兴趣的方向进行总结,在教师指导下制作成演示文稿,小组选出一人在课堂上为其他同学做报告。从而使学生达到在亲身体验中对外部信息的收集、整理、加工、反馈、调整和内化,加深学生对所学知识、理论的理解,搭建合理有效的认知结构,且学生通过自己的努力了解了该领域的最新发展动态和国际前沿,得到教师和同学的肯定了激发学生的兴趣。此外,学生参与讲授的教学方法有利于学生解开思维定势、条条框框的枷锁,能够比较自由的进行思维和表达,为学生提供了培养创新意识的环境和机会,《功能材料》这门课程涉及知识面广,学生发挥空间大,能有效的满足学生的好奇心、表现欲和成就感。最后,学生参与讲授的教学方法丰富了学生的情感、精神体验,教学过程容易形成师生共鸣的局面,通过讲授后对其他同学问题的解答、讨论及教师的补充和总结,有利于激起学习的热情,在民主、平等的氛围中学生更愿意提出自己的想法和观点,能从学习中体验到兴奋和快乐,容易使其他学生受到感染,能够增强参与意识,体会到合作的乐趣,增加师生、生生之间的友情。

(三)理论教学与实验教学相结合

《功能材料》是一门理论性与实践性都很强的课程,每一种功能材料的功能特性都基于自身的理论基础,学习功能材料的基础理论困难且不易理解。结合理论课程的学习,穿插实验教学环节,可以让学生从现象出发,逐步深入认识功能材料其功能应用的机理。我们结合现有的仪器设备,根据课程内容、学生认识的需要,有针对性的进行了实验项目的开发设计。开发的实验项目,如:储氢合金的吸释氢性能实验、新型合金材料的设计与制备实验、活性氧化铝对溶液中氟离子的选择性吸附实验、材料成型及热电材料的温度检测等实验项目。另外,对于没有条件开设的实验项目,采用观看视频的形式观看实验过程及现象。通过实验教学,学生加深了对基础理论的理解和认识。

(四)生活认知与教学内容相结合

功能材料是物理、化学、电子、生物等科学的交叉学科,涉及范围广,教学内容多。按材料成分分类,包括:金属材料、无机非金属材料、高分子材料及复合功能材料;按功能特性分类,包括:物理功能材料(如:光学材料、电子材料、磁性材料、声光材料、热电材料等)、化学功能材料(如:感光材料、催化材料、储能材料、可降解材料等)、生物材料(如:生物医药材料、仿生材料等)和核功能材料等。虽然课程内容多,但是每一种功能材料几乎都能在实际生活中找到相应的应用实例,例如:学习光学材料时,以日常生活中经常见到的日光灯、眼镜、光纤、荧光粉、液晶等学生经常看到的材料来进行讲解,而学习磁性材料时,则以硅钢片、磁盘、磁带等为突破口着手进行学习[3]。将课程中每类功能材料的“制备—结构—性能—应用”等各个方面的学习,融入到对日常生活材料的认识、解释及设计,不仅能有效提高学生的学习兴趣,同时改变学生对学习课程知识无用的观念。

(五)基础知识与最新进展相结合

到目前为止,功能材料层出不穷,已经得到了突破性的进展,而且功能材料一直材料科学与工程领域最为活跃的部分,教材更新的速度远远跟不上功能材料发展的速度。因此,在学习某类功能材料时,这就要求将这类功能材料的基础知识与目前的最新的前沿动态紧密结合起来,把最新的科研成果带到课堂中,让学生第一时间了解本课程的进展情况,提高学生的学习兴趣。例如,在储氢合金研究方面,我校教师在稀土系AB3~3.5型无镁合金、金属铝氢化物贮氢材料动力学及电化学性能方面的研究成果比较突出,相关结果成果已经发表在“JournalofRareEarths”等期刊上,将这些内容带入课堂,使学生零距离接触科研最新前沿动态。此外,功能材料的研究并非一帆风顺、一蹴而就的,这是一个逐渐被认识和完善的过程,例如,在学习储氢材料时,从对“单壁碳纳米管储氢”的提出、实验、分析、讨论、再实验、理论否认等历史事件中认识功能材料研究的历程。

三结语

功能材料课程教学过程中,需要教师自身及时补充新知识,准确把握该领域的研究前沿,提升自身素质。根据课程特点进行教学方法的改革是高等教育教学改革的重要组成部分,而提高学生的课堂参与性、互动性是教学方法改革的主要方向。充分发挥以上“五个结合”的教学方法,不仅可以顺利完成本课程规定的教学要求,而且能使学生充分的参与到课程的教学过程中,形成正确的学习态度,实现良好的教学效果。

参考文献

[1] 殷景华,王雅珍,鞠刚等.功能材料概论.哈尔滨工业大学出版社,2009.

[2] 雷艳秋,赵文芝,田福利等.功能材料课程教学探索与实践.广州化工,2013,41(22):174-175,184.

功能材料论文范文第3篇

关键词:新型建筑材料,发展状况

 

1.引言

新型建筑材料是相对于传统建筑材料而言的,它主要包括新型墙体材料、保温隔热材料、防水密封材料和装饰装修材料,具有传统建筑材料无法比拟的功能。

建筑材料费用在基本建设总费用中占50%以上,具有相当大的比例;而且建筑材料的品种和质量水平制约着建筑与结构形式和施工方法。此外,建筑材料直接影响土木和建筑工程的安全可靠性、耐久性及适用性(经济适用、美观、节能)等各种性能。因此,新型建筑材料的开发、生产和使用,对于促进社会进步、发展国民经济具有重要意义。

2.新型建筑材料概述

新型建筑材料及其制品工业是建立在技术进步、保护环境和资源综合利用基础上的新兴产业。一般来说,新型建筑材料应具有一下特点:

(1)复合化。随着现代科学技术的发展,人们对材料的要求越来越高,单一材料往往难以满足要求。因此,利用符合技术制备的复合材料应运而生。论文参考,新型建筑材料。论文参考,新型建筑材料。所为复合技术是将有机与有机。有机与无机、无机与无机材料,在一定条件下,按适当的比例复合。然后,经过一定的工艺条件有效地将集中材料的优良性能结合起来,从而得到性能优良的复合材料。据专家预测,21世纪复合材料的比例将达到50%以上。

(2)多功能化。随着人民生活水平的提高和建筑技术的发展,对材料功能的要求将越来越高,要求新型材料从单一功能向多功能方向发展。即要求材料不仅要满足一般的使用要求,还要求兼具呼吸、电磁屏蔽、防菌、灭菌、抗静电、防射线、防水、防霉、防火、自洁、智能等功能。

(3)节能化、绿色化。随着我国墙体材料革新和建筑节能力度的逐步加大,建筑保温、防水、装饰装修标准的提高及居住条件的改善,对新型建筑材料的需求不仅仅是数量的增加,更重要的是质量的提高,即参评质量与档次的提高及产品的更新换代。随着人们生活水平和文化素质的提高,以及自我保护意识的增强,人们对材料功能的要求日益提高,要求材料不但具有良好的使用功能,还要求材料无毒、对人体健康无害、对环境不会产生不良影响,即新型建筑材料应是所谓的“生态建筑材料”或“绿色建筑材料”。

(4)轻质高强化。轻质主要是指材料多孔、体积密度小。如空心砖、加气混凝土砌块轻质材料的使用,可大大减轻建筑物的自重,满足建筑向空间发展的要求。高强主要是指材料的强度不小于60MPa。高强材料在承重结构中的应用,可以减小材料截面面积提高建筑物的稳定性及灵活性。

(5)工业化生产。工业化生产主要是指应用先进施工技术,采用工业化生产方式,产品规范化、系列化。论文参考,新型建筑材料。这样,材料才能具有巨大市场潜力和良好发展情景,如涂料、防水卷材、塑料地板等建筑材料的生产。

3.国内外新型建筑材料发展状况

我国新型建筑材料工业是伴随着改革开放的不断深入而发展起来的,我国新型建筑材料工业基本完成了从无到有、从小到大的发展过程,在全国范围内形成了一个新兴的行业,成为建筑材料工业中重要产品门类和新的经济增长点。

1) 新型墙体材料

墙体材料是指在建筑中起承重、围护或分隔作用的材料。新型墙体材料品种较多,主要包括各种空心砖、新型实心砖、砌块、墙板等,如黏土空心砖、掺废料的粘土砖、非粘土砖、建筑砌块、加气混凝土、轻质板材、复合板材等,其主要特点是节能、利废、省土、环保、减轻劳动强度和提高施工效率。我国墙体材料改革“十五”规划和2015年发展规划中明确提出,重点开发和推广全煤矸石空心砖、高掺量粉煤灰空心砖生态建筑材料产品。但目前在总的墙体材料中所占比例仍然偏小,因此很难满足当前对环境资源保护的要求。只有促使各种新型墙体材料因地制宜快速发展,才能改变墙体材料不合理的产品结构,达到节能、保护耕地、利用工业废渣、促进建筑技术的目的。

2) 新型建筑涂料

新型建筑涂料是指涂敷于物体表面能形成连续性涂膜,装饰、保护或使物体具有某种特殊功能的材料。近年来,无机高分子涂料受到各国重视,日本将其列为低公害产品加以发展,欧美国家也大力推广。新型高档涂料不断出现,如氟树脂涂料等,国外还相继出现了抗菌涂料、抗静电涂料及防海水侵蚀等功能涂料。

3) 新型建筑塑料

建筑塑料是以高分子材料为主要成分,添加各种改性剂及助剂,为适合建筑工程各部位的特点和要求而生产出用于各类建筑工程的塑料制品。论文参考,新型建筑材料。近几年来,在建筑工程中,塑料制品将不断取代金属制品。主要体现在塑料管道、覆面材料和门窗,以及室外装修、防水保温材料的产量和需求量日益增大。我国塑料建筑材料行业加快了研发和推广应用步伐,行业生产规模不断扩大,技术水平稳步提高,尤其是塑料型材、管材已经进入稳定成熟的增长时期,是塑料建筑材料中最成熟的品种,目前生产仍在稳定增长中,并成为应用最好的塑料建筑材料。论文参考,新型建筑材料。

4) 新型装饰材料

装饰材料是指建筑物内外墙面、地面、顶棚的饰面材料。我国建筑装饰装修材料的发展,起步较晚,与国外相比,我国装饰材料的生产企业规模偏小,产品质量不稳定,款色旧,档次低,配套性差,市场竞争能力弱;科研开发力量不足,产品更新换代能力弱,不能适应市场需求;产品结构不合理,中、低档产品比例大,高档材料比重低。不能满足高档建筑装饰装修的需求。由于装修材料的应用,使民用建筑室内环境污染问题日益突出,有专家认为继“煤烟型污染”和“光化学烟雾型污染”之后,人们已经进入以“室内空气污染”为标志的第三污染时期。所以,必须对装饰装修材料有害物质进行限量;对建筑室内污染进行控制等,降低室内污染,大力发展绿色建筑材料。论文参考,新型建筑材料。

5) 新型防水、密封材料

防水材料是指有效防止雨水或地下水向建筑物内部渗漏的防水薄膜材料,是建筑业及其他有关行业所需要的重要功能材料。我国建筑防水、密封材料经过几十多年的努力,获得了较大发展,到目前为止已基本上发展成为门类较为齐全、产品规格档次多样、工艺装备开发已初具规模的防水材料工业体系。

参考文献:

[1]梁美.浅析新型建筑材料的趋势与发展[J].文学与艺术,2009(12):233-233

[2]张光磊.新型建筑材料[M].北京:中国电力出版社,2008

[3]迟建生.浅谈新型建筑材料的使用与发展趋势[J].林业科技情报,2009(3):144-145

功能材料论文范文第4篇

关键词:功能高分子设计;双语教学;探究式教学

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)26-0210-02

“十二五”规划指出,目前我国新材料产业正处于强劲发展阶段,新材料产业约占国内生产总值的15%,预计年增长速度保持在20%以上。而其中的高分子材料由于独特的结构和易改性、易加工的特点,使其拥有其他材料不可比拟、不可取代的优异性能,从而被广泛应用于科学技术、国防建设和国民经济各个领域,并已成为现代社会生活中衣食住行用各个方面不可缺少的材料。而其中功能高分子材料兴起于上个世纪60年代,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料,指在其原有优异力学性能基础上,还具备化学反应活性、导电性、光敏性、生物相容性、选择分离性、仿生性、磁性等特定功能的高分子及其复合材料,近年来在高分子材料领域占主导地位。

而功能高分子设计课程就是面向功能高分子材料方向本科学生的概论性课程,是一门研究与功能高分子相关的分子设计与合成方法的学科,主要包括各种特殊的功能单体的设计与合成、各种活性聚合方法及当前高分子设计相关范畴的最新研究成果和方向。目的是使学生在已有的有机合成和高分子化学课程的基础上,进一步掌握功能高分子的单体设计与合成、活性聚合方法等理念与技能,培养学生初步具有设计功能单体和选择聚合方法的能力,并了解本学科方向前沿新动向,为今后学生在功能高分子材料领域就业或继续深造打下基础。如何让功能高分子设计课程的教学更适应时代的要求,满足和谐社会创新人才培养的需求,是我们必须研究和探索的问题。

如今,国内高校的功能高分子设计课程教学所存在的问题主要表现为两方面:(1)以汉语教学为主。功能高分子设计课程中,一部分重要内容为讲述先进功能高分子材料,需要紧跟该领域前沿性发展情况,而最新的研究成果基本都会以英文的形式出现在国际刊物、国际会议资料以及互联网上,查阅英文文献是获取这些最新信息的主要途径,并且国外已有许多原版教材可直接作为图书资料使用[1,2],导致学生仅被动依靠教师翻译讲述,无法自主获取该领域最新的研究成果,致使学生对学科发展前沿了解不足,固步自封,也不利于提高学生的专业英语水平。(2)以“注入式”教学方法为主[3,4]。通常由教师在讲台上讲授分析原理、目的、内容及测试实例,不利于激发学生兴趣,导致学生主观能动性发挥不够,不利于培养学生的综合能力和创新思维。综上所述,传统的汉语主讲,注入式教学为主的功能高分子设计课程教学无法保证高质量的教学效果和质量,不利于培养既具有扎实专业理论功底,又具有良好外语水平的创新型复合人才,所以,笔者在32课时的课堂实践基础上提出了采用双语教学和探究式教学相结合的方法,主要包括以下四阶段的探索。

一、专业英语的有效学习

功能高分子类专业课的双语教学旨在促使学生获取专业知识的同时提高英文运用能力。其中的教学核心是培养学生运用英文思考、求知、交流专业知识的能力,为学生今后在专业领域运用英文进行交流以及科学研究打下基础,不可舍本逐末过多地注重英文语法与词汇的讲解,所以称之为英语的“有效学习”。

选取化学工业出版社的《高分子材料专业英语》,进行常用高分子单体、有机试剂及实验器具单词的教学,从共有词头和词根出发,比如聚合“poly-”和烃“-ene”等,目的使学生在4个课时内可以做到看懂常用单词,但并不盲目追求拼写与语法。

二、团队合作的开放讨论

在完成初期的英语学习后,将学生分为6~8人小组,给出8~10个专题讲座方向,让学生进行小组内部讨论,找出本小组最感兴趣的方向,随后委派代表在课堂陈述,最终制定6个专题。目的是教授学生感兴趣的专题,而不是照本宣科地讲述功能高分子领域的“老三篇”。比如学生提出专题为“导电高分子材料在电子类产品上的应用”,既与传统专题“导电功能材料”相关,又与当今信息时代的大环境切合,可以有效提高学生的主观能动性,使学生思维碰撞,激发学生兴趣,促进创造思维的发展。

在此过程中,让学生充分表现、合作与竞争,使教师指导和学生自主探究相结合,传授知识和解决问题相结合,单一性思考和求异性思维相结合。要密切关注讨论的进程和存在的问题,及时进行调整和引导;充分调动学生讨论的积极性,及时发现优点,特别是善于捕捉后进生的“闪光点”,及时给予鼓励。

三、英文文献的小组pk

在确定专题以后,采取“2-1-1”的4课时讲座模式,即教师进行2课时的专题讲座,学生进行1课时的文献阅读与表述,最后进行1课时的课堂大讨论,要求小组学生分工将文献进行总结梳理,得出自己的结论和解释。不同的学生或者团队可以就同一问题提出不同的解释或看法。他们要能够将自己的结论清楚地表达出来,大家共同探讨,使大家思维相互碰撞,努力撞击出创造思维的火花。

以“感光功能高分子材料”为例,教师主要讲述感光类高分子材料的光作用机理、感光基团、常见感光高分子材料,并通过英文前沿文献的讲述让学生了解感光高分子材料的应用,随后布置小组分工英文文献阅读,在下次课堂上让各个小组代表进行文献讲述。文献讲述不需要全篇翻译,注重理解该感光材料的合成方法和过程,以及其制备的目的和意义,并能通过小组讨论与自主思考去试图提出该文献的创新点及不足之处,做到不迷信文献。讲述完成以后,教师带领所有小组对各小组的表现对进行点评与提问,模拟答辩模式,很好地锻炼学生的口头表述能力和心理素质。最后进行小组相互评分,评出感光功能高分子材料专题文献讲述的第一名,充分提升同学们的竞争意识,引爆课堂气氛。

四、功能设计的综合应用

最后4课时为考核课时,考核目的为让学生具备可以初步具备设计特定功能高分子材料的能力,比如选取“我身边的综合功能高分子材料设备”,让每小组选取生活中常用的物件,指出其所含有的两种或多种功能高分子材料,并通过小组讨论、课程复习及资料查阅指出如何设计新型的功能高分子材料来取代传统材料。例如,有小组围绕“手机”进行协作,指出手机的表观柔感涂层为感光功能高分子材料,具有快速、绿色、高效的特点,可采取无机填料与高分子复合的方法进行性能改进;而手机的内层电路板为导电高分子材料,可通过先进的印刷电子的方法快速制备一体化电路,降低制作成本。由此,让学生从更深层面上理解功能高分子材料拥有广泛应用性的特点,消除了学生“学而无以致用”的疑虑,显著提高了学生的主观能动性,有效培养了学生的综合能力和创新思维。

总之,在功能高分子设计课程中,开展双语教学与探究式教学相结合的方法对于人才培养是一项非常有意义的工程,在教学实施过程中,因材施教、循序渐进,从教学的准备、策略、方法和细节等各环节精心设计及有效实施,并不断探索与改进。培养出既具有深厚的专业知识基础,又具有良好专业外语的运用能力,同时洞悉学科前沿的创新性复合人才。

参考文献:

[1]徐丹,黎盛,李代明.包装材料学课程双语教学实践与探索[J].中国轻工教育,2012,(6),72-74.

[2]张晖,张积家.双语水平和双语经验队大学生创造力态度的影响[J].现代教育论坛,2011,(4),26-30.

[3]吕明生,王淑军.食品分析课程教学实践与实践[J].科教文汇,2008,(1),44-47.

功能材料论文范文第5篇

关键词:计算机在材料科学中的应用 课程教学 教学质量 教学效果

中图分类号:G420 文献标识码:A 文章编号:1674-098X(2014)03(b)-0102-01

作为一种现代工具,计算机技术在材料科学中的应用日益广泛,并在很大程度上促进了材料科学研究的深入发展。《计算机在材料科学中的应用》作为我校材料成型及控制工程本科专业的一门专业课,在整个课程体系中占有重要地位。为培养学生利用计算机分析和解决材料科学领域相关实际问题的能力,笔者对该课程的教学内容与教学方法进行了初步探索与设计,力争提高该课程的教学质量与效果。

1 课程教学大纲要求

《计算机在材料科学中的应用》课程共32学时,其中,理论教学16学时,上机实践16学时。本课程教学大纲要求:通过理论与实践教学环节,使学生了解计算机技术在材料科学领域的应用现状,初步掌握利用计算机进行数据处理、材料设计、材料成型过程模拟以及利用计算机网络技术对材料科学领域相关资料进行检索等,以培养学生利用计算机分析和解决材料科学与工程领域相关实际问题的能力,以期到达本专业对学生的培养目标。

2 理论与实践教学内容设计

结合材料成型及控制工程本科专业的培养目标以及课程教学大纲要求,本课程的理论教学内容主要包括四大模块,即:计算机用于数据处理、计算机用于材料设计、计算机用于材料成型过程模拟、计算机用于文献检索。

根据理论教学内容,与之配套的上机实践内容同样包括四大模块,即:数据处理模块,主要包括Origin、Excel软件的操作与使用;材料设计模块,主要包括Thermal-Calc相图计算软件、Materials Studio材料计算软件的操作与使用;材料成型过程模拟模块,主要包括ProCast铸造模拟软件、Deform金属塑性变形模拟软件、Moldflow塑料注塑成型模拟软件的操作与使用;文献检索模块,主要包括中国知网、维普、万方、ScienceDirect、SpringerLINK等中外文数据库的操作与使用。

3 教学方法设计

由于本课程是一门实践性很强的课程,因此,在实际教学过程中,我们采取软件介绍与操练为主、理论知识讲解为辅的教学思路,具体教学方式如下。

(1)充分利用多媒体技术,立体展现计算机在材料科学领域的应用功能

《计算机在材料科学中的应用》课程涉及了较多的计算软件及其在材料科学领域应用的具体案例,如果以单纯的口头述说方式或者在黑板上简单地画些示意图,来给学生介绍这些软件及其功能,则会让学生感觉到抽象乏味,达不到学习的效果。我们应该充分利用集声、光、电于一体的多媒体辅助教学手段[1],尽可能多地搜集计算机技术在材料科学领域应用的相关图片、视频、动画等,尤其在上第一堂课的绪论部分时,让学生更为清楚地了解各种软件的具体功能及其应用,则有助于增学生的感性认识,提高学生对该课程的学习兴趣。

(2) 结合具体案例,介绍软件的使用功能及其操作步骤

在课堂教学中,教师除讲解基础知识外,应结合材料科学研究中的具体案例,对相关软件的使用功能及其具体操作步骤加以介绍。如针对数据处理模块,我们可将学生熟悉的应力―― 应变曲线、X射线衍射图谱等作为案例,利用Origin、Excel软件对其图形绘制、样式编辑、图形导出等功能进行详细介绍;针对材料设计模块,我们可将学生熟悉的铝合金强韧化设计作为案例,利用Materials Studio软件对铝合金及其强韧化理论模型的构建、计算参数的设置、计算运行及结果分析等进行详细介绍;针对材料成型过程模拟模块,我们可将学生日常生活中经常见到的肥皂盒、钢管等作为案例,结合学生此前学过的《塑料成型工艺及模具设计》[2]与《金属塑性成型原理与工艺》[3]课程理论知识,利用Moldflow、Deform软件分别对其成型过程进行模拟与分析;针对文献检索模块,我们可将“计算机在材料科学中的应用”作为主题,让学生在了解文献数据库的基础上,查阅与该主题相关的国内外文献。通过结合具体案例对软件及其功能加以介绍,一方面使学生更易于掌握软件的操作与使用功能,另一方面,将实际问题引入到理论教学中来,更有助于增强学生的创新思维与创新意识。

(3)注重上机操练,培养学生分析与解决问题的实践能力

学生仅凭课堂上倾听或观看教师的软件操作过程,显然达不到软件学习的效果,必须经过一定的上机操练。教师可根据每一堂理论课所讲的内容,给学生布置相应的上机任务,具体任务可以是理论课所讲的具体案例操练,也可以增加与之相近案例的操练,一方面可以使学生对课堂讲解内容加以掌握,另一方面还有助于培养学生独立思考问题、利用计算机分析和解决材料科学领域相关实际问题的能力。此外,教师还应注重学生上机任务完成情况的考核,将每堂上机课学生完成任务情况作为平时成绩,即可以及时了解学生对软件知识的掌握程度,还可以督促学生充分利用宝贵的上机操练时间,提高软件的学习效果。

4 结语

在材料科学领域,计算机技术的应用日益广泛。对《计算机在材料科学中的应用》课程的理论、实践教学内容及教学方法进行合理设计,将有助于培养学生利用计算机解决材料科学领域相关实际问题的能力,进而达到我校材料成型及控制工程本科专业的培养目标。

参考文献

[1] 张健,龙春光,华熳煜,等.多媒体技术在《金属塑性成型原理与工艺》课程教学中的应用与思考[J].中国科教创新导刊,2011(20):165.