首页 > 文章中心 > 开关电源工作原理

开关电源工作原理

开关电源工作原理

开关电源工作原理范文第1篇

1.开关电源的基本工作原理

开关电源的结构框图如图1。由对输出电压“取样”,并对基准源进行“比较”后控制“调整管”或“开关管”,此时开关电源的“开关管”相当于一个开关,开通时间由比较结果而定;当开关电源输出的电压太低时,通过“比较放大”控制“开关时间控制电路”使“开关管”开通时间变长,从而使输出的电压提升。

开关电源的核心部分是“开关管”和“变换器”组成的开关式直流-直流变换器。它把直流电压Ui(一般由输入市电经整流、滤波后获得)经开关管后变为有一定占空比的脉冲电压Ua,然后经整流滤波后得到输出的电压Uo。

2.大宇DVD的开关电源电路

图2所示是大宇DVD电源电路的实物图。图中右上角输入220V交流市电,先经电源滤波电路后用右下角的二极管进行整流,再经大电容滤波后输出直流。由于是对220V交流信号进行整流滤波,所以二极管的耐压值要高,而电容的容量也要大,所以实物图中右下角的电容体积很大。整流滤波后得到的直流信号再经右边居中的开关电源IC转换成高频的交流信号,再经变压器耦合输出各路低电压的交流信号。由于变压器是工作在高频状态,所以其体积较小。耦合输出的各组交流信号经左边的二极管整流、电容滤波和三极管稳压或三端稳压电源稳压后输出各部分电路工作所需的直流电压。此电路由于采用了变压器并联耦合,而且比较放大电路反馈回脉冲调宽电路是利用光耦器件,即用光信号来传递信息,输入端与输出之间实现绝缘,是冷底盘机,其防触电的警告标志仅在电路板的右边。光耦跨接在有警告标志和无警告标志部分,起到传递信号而又能隔离前后级地线的作用。这种机型在维修主电路板时,由于主电路板与大地不相连,通常比较安全。但在测量后级电压时,不能使用前级的地线,否则所测电压将全部为0V。

图3所示是大宇DVD的电源电路原理图。大宇DVD所用的电源IC为专用开关电源集成电路VIPER22A,图4是其外引脚图,图中,第1、2脚SOURCE是内部场效应管源极的表示,在使用中通常接地,3脚FB是取样电压输入端,4脚VDD是供电电压端,第5、6、7、8脚的DRAIN表示接通内部场效应管的栅极。图5是其内部结构图。

220V的交流电源经开关输入后,经四个二极管构成的桥式整流电路整流、C1滤波后输出一个300V左右的直流信号。由于VIPER22A处于工作状态,在其内部场效应管截止时,会在变压器初级(L左1)两端产生大于300V的电压,利用R1、C2和D5构成防冲激电路,使其电压有一个释放回路,以免激穿VIPER22A内部场效应管。

从图5所示VIPER22A的内部结构可知,它与其它开关电源存在一些不同。开机后,300V的直流电压从DRAIN(漏极)脚进入集成电路,经整流和稳压后供给开关电源IC工作,从而使这个电路工作时不需要外接启动电阻。即使Vdd供电电路不正常,电源电路的振荡电路仍能起振,而且电路有输出电压。用这种专用电源IC的DVD机电源有故障时,故障现象和其他开关电源的故障有所不同,其他开关电源通常无Vdd时,电源电路中的振荡电路不起振,会出现无输出的故障现象。

电路工作正常时,开机后,在Vdd正常前,由芯片内部自身供电,经过很短时间后,Vdd供电电源正常,此时,利用门电路控制开关电路(ON/OFF)断开从栅极输入的供电回路。VIPER22A有过热、过压保护功能。Vdd从4脚输入后,首先送入比较器,一旦输入Vdd大于42V,则触发器(FF1)输出一个置位信号1使控制振荡电路工作的触发器(FF2)输出为0,锁住U2,振荡信号无法输出,即开关管不工作。当输入电压小于14.5V时,U3也将输出一个复位脉冲,使开关管不工作。当电路过热时,R1为1,将FF2置0,开关管不工作。当供电电压Vdd在正常范围时,FB所得的取样电压与基准电压0.23V相比较,用其比较结果去控制FF2的转换频率,从而控制开关管的状态转换,实现控制输出电压,达到稳压的功能。该集成电路芯片内部包含60kHz的振荡电路,其电路相当简单。

下面,为分析方便,把电源变压器左边的两组线圈从上到下定义为L左1、L左2。右边的线圈从上到下定义为L右1、L右2、L右3。

图3中,L左2互感产生的交流脉冲电压经D6整流、R2限流和C3和C6滤波后作为开关芯片的供电电压。由于VIPER22A的特殊结构,如无Vdd时可实现内部供电,所以R2即使击穿开路,仍有电压输出,但不正常,故障表现为开机后开关指示灯和出/入盘指示灯闪烁。

同时,Vdd也为取样回路中的光耦的接收部分供电。L右3感应到的脉冲电压经D8整流,电感L6、电容C12、C13、C14滤波后,输出+5V电压供解压板、DSP处理及其它小信号处理芯片使用。+5V电压同时经稳压管Z2后给光耦电路发射部分供电,通过光耦的接收部分接收到的光作为取样信号,从VIPER22的3脚FB输入到芯片,从而去控制开关管的开关频率,控制电源电压的稳定,起到稳压的作用。该种电源电路由于前后级是通过光耦进行互相控制,前后级不共地,称为冷底盘机,这种机器由于后级主电路板与市电不相连,维修时比较安全。维修时测量后级的电压,一定不能用前级的接地点,否则所测电压始终为0V。

同时,变压器电感线圈L右3另一端经D7整流C10滤波后输出+12V的电压供电机驱动和音频功率放大电路使用。这组电源的故障,主要表现为DVD机有图像无声音,或者是进给电机、主轴电机或出入盘电机不工作。

开关电源工作原理范文第2篇

关键词:医疗器械;开关电源;故障;维修

进行医疗器械维修是医院管理工作中的一项重要内容,通常情况下,维修方式主要有两种,一是承包给生产厂家进行维修,一是承包给其他的维修公司。医院的相关管理人员很少自主进行维修,出现这种现象的原因主要可以从以下两个方面来进行分析:第一,医院的设备维修人员对于医疗设备的基本特点和性能熟悉程度不够,即使想进行维修也没有能力。第二,医疗设备在运行的过程中,由于对于电源的选择没有符合相关的标准,因此,相关的维修人员无从下手,面对医疗机械故障无能为力。可见,电源在医疗器械的维修过程中的重要性不言而喻。

1 电源概述

随着科学技术的飞速发展,在医院治疗工作中,越来越多的高新、精密、尖端的医疗器械被广泛的使用。但是不论是如何高端和先进的医疗机械,或者是它的功能有多么的强大、构成是多么的复杂,其在工作中都离不开电源这一基础原件,电源的存在可谓是任何一个医疗器械中都不可缺少的。现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。

1.1电源的概念

所谓的电源就是使得医疗器械得以正常运行的最重要器件,其作用和人体的大脑同等重要。而且电源作用的发挥与机械设备的类别、功能以及作用等毫无关系。通常情况下,电源设备以220V交流电为主,可以为各种机械设备以及电子电气设备提供电能的重要装置。在医疗机械设备维修的过程中,电源也是较为关键的因素,因此,相关的维修人员应该对电源的形态以及基本工作原理进行掌握。

1.2电源的作用

电源是各类电气设备得以正常运行的基础和前提,同时也是保证设备运行安全的关键因素。在具体的机械运行工作中,电源的主导性地位不可动摇。电源质量的高低直接影响着机械设备运行的效率,尤其是医院的医疗器械等设备。为了促进医疗事业的发展,对于医疗器械的要求也相对较高,同时期先进性和尖端性也相对较为突出,主要是应用先进的计算机技术来对其进行控制和调节。因此,在具体的应用中,所用的电源主要为DC/DC开关电源。这种电源在工作中会出现波动的现象,因此,相关的工作人员需要将其控制在可接受的范围内,另外通过对导通的长度进行调整以及开关的切换方式来对保证正常电压的输出。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在安防监控,节约能源、节约资源及保护环境方面都具有重要的意义。

2 电源在医疗器械中的应用分析

随着现如今社会经济的不断发展,我国的医疗事业也得到了较快的发展,其中医疗器械是较为关键的因素。同时,医疗器械的更新和完善也对电源提出了较高的要求,在各种医疗器械运行的过程中,电源的应用情况可以从以下几个方面来进行具体地分析:

2.1开关电源的工作原理

第一,开关电源方框图。单端即控制芯片1DP227Y,只有1个脉宽调信号功率输出端。TOP227Y是美国PI公司推出的TOPSwicth-Ⅱ系列芯片。它集脉冲信号控制电路和功率开关器件MOSEFT于一体。该开关电源具有高集成度、最简电路、最佳性能指标、输入电压和频率范围宽、功耗低、电源效率高、低电磁干扰(EMI)、无须调试、无工频变压器等特点。交流电源在220V的时候经过电源全齐整流波率其电路之后分为两路输出,其中一路经高频变压器部分变换后,经两个二次整流滤波器分别送到光耦合器隔离部分和输出直流24v电压给负载;另一路送到TOP227Y控制开关。

第二,工作原理分析。通过相关的调查可知,在各大医院中,医疗设备所运用的电源主要是以高频变压器为主,同时要在进行设备安装之前,要对所用变压器的最大存储量以及其隔离功能等进行分析和研究,主要是为了保证电源能够进行顺利地工作。在对变压器进行研究的过程中,要对初级绕组和刺激绕组以及反馈绕组等进行严格地控制。之后需要做好归纳工作,实现现有技术和缘由的技术形成相反的状态,保证工作的科学性和可靠性。需要注意的是,当设备进行电力导通的时候,电能会发生转变,主要以磁场的形式进行存储。当设备停止工作时,电能就会从初级绕组传递到次级绕组中。在这一过程中,这一技术和电流之间都出现了明显的变化。这就是电源的整个工作原理,相关的工作人员需要对这一过程进行了解,才能在维修的过程中做到胸有成竹。

2.2 电源故障及检修实例

2.2.1故障显现

电源在运行的过程中出现故障的问题较为常见,因此需要对其加强重视。通常情况下,在设备开启的时候,电源的供电状态以及电压电流的运行状态都处于正常状态。此时,对液晶屏的背光系统进行检测,得到相应的电压值的数据信息为+18V左右,属于正常状态。但是,在机械设备工作30分钟左后之后,机械就会出现不断重启的现象,在这一过程中,工作人员无法对其进行维修和处理,大约20分钟之后,液晶屏会暗下来。这就是电源出现故障问题的最要现象。

2.2.2故障排查

测得电源供电+12v降为+1.9v,+5V降为0.2V、-12v降为-2v,而升压板开关信号端电压降为0v。且发现升压板,温度很高.仔细检查主板等电路和元件未发现明显损坏现象,据此判断是液晶屏背光系统升压板的问题。此升压板是一个塑封模块,维修时,采用国产的SF-02S02双灯升压板替换电路图,然后用绝缘强度较高的材料把接线包扎好,再把升压板固定在原机直流电池盒里,开机工作正常。

3 结论

总之,电源在医疗器械中有着不可动摇的地位,在医疗器械的维修工作中也发挥着至关重要的作用。因此,在工作中,我们必须要充分了解电源的工作原理,特别是对开关电源进行深入分析。与此同时,在工作中更不能忽视平时的保养和维护工作,在实际工作中要做好故障的检修,遵循看、听、闻、摸的工作要求,精心和仔细的检查设备故障问题,保证设备的正常、良好运行。

参考文献

[1]范开洲.医疗设备开关电源维修技术的探讨[J].中国医疗设备,2011(7).

开关电源工作原理范文第3篇

【关键词】户户通设备;SD3842P开关电源;电路改进;元件代换

户户通神州机顶盒在社会上有一定拥有量,为我县2012-2013年户户通工程选定机型。根据维修情况统计,该机故障约有60%以上出自开关电源部分。由于该机未附电原理图,本人根据该机开关电源实物PCB板测绘还原出电原理图,并对电路易损元件及致损原因进行分析,对电源开关电路进行了改进,供大家维修时参考。

该机开关电源采用SD4842内置高压MOSFET电流模式PWM控制器,该电路具有待机功耗低,保护功能完善等特点。

图1

原理图如图1所示,交流220V通过插座P1输入,开关电源输入电路部分主要由保险管F1、热敏电阻R3、滤波线圈L1和由D1~D4组成的整流桥及滤波电容C1组成;热敏电阻R1是一个为阻值6Ω的负温度特性(NTC)电阻,主要作用是限制电路启动时的电流峰值,当冲击电流过后,该电阻的阻值会降得很小;压敏电阻MOV1用于过压保护,标称值电压为600V;滤波线圈L1和电容CX1、电阻R1、R2构成电源共模抑制滤波器,可将电源和电网的噪声进行隔离,防止电网污染;电容CX1用于滤除电网输电线之间的差模干扰,而CY1用于滤除初次级耦合产生的共模干扰。

电路中,市电通过噪声滤波器抑制电路后整流滤波获得约300V平滑直流电压,再经R7与R8串联后为C6充电,同时为IC1(SD4842P)3脚提供工作电压Vcc。当该电压充到12V,电路开始工作,电路正常工作以后或电路发生保护时,SD4842的供电由开关变压器辅助绕组通过R9和D6提供,Vcc开始降低,当Vcc低于8伏,控制电路整体关断,电路消耗的电流变小,又开始对Vcc脚的电容充电,启动电路重新工作,该方式可以有效地降低待机功耗。R4、R5、C3、D5组成缓冲保护电路,该电路又称尖峰吸收回路,主要用于吸收高频开关变压器T1漏感引起的尖峰电压,保护IC1内部功率输出电路。Z1为12V稳压管,用于保护IC1不会因误差信号输入端过载而损坏。

在开关变压器次级,IC2(TL431)为可调分流基准电压源,R17和R15为取样电阻,负责将输出电压取样(取自+5V电路)反馈到TL431,TL431将取样电压与内部2.5V带隙基准电压进行比较并在阴极上形成误差电压,使光耦合器件PC817中的LED工作电流产生相应的变化,再通过光耦合器件去改变PWM控制电路SD4872的 4脚FB控制端的电流大小,进而调节输出占空比,使输出电压保持不变,达到稳压目的。

电源次级共有三组电压输出,分别为:+24V经主板上的极化电路后为高频头供电,缺该组电压会出现“信号中断”;5V供主板解码电路及部分控制电路,缺该组电压则不能开机;+4V供定位模块和紧急喇叭功放,缺该组电压会出“定位模块异常1”。

维修过程中我们发现,因为电源机械开关损坏造成的故障占电源故障(不含雷击原因造成的电源损坏)的80%以上,究其原因,主要是该机电源开关+5V一路长期处在大电流工作状态,实测为600mA-820mA(+24V一路工作电流在110-120mA间),开关触点易发热变形,造成接触不良。从电路可知,该机电源初级未设开关,电源的通断是通过双刀单掷开关K1来分别通断+5V和+24V电压,而电源开关的损坏往往是因为+5V这路开关触点接触不良或簧片发生变形,造成开关电源不能正常工作,而产生的故障现象除了不能正常开机外,还有造成跳台,显示面板屏闪,甚至画面马赛克等奇特故障,皆因主板CPU受干扰或复位不正常造成工作紊乱所致。维护人员应急维修处理一般都是将两路电源直接用导线连通,但这样处理后用户只能通过插拨电源插头实现开关机,给用户造成使用不便,如简单地换同型开关,工作时间长后又容易“旧病复发”,不能从根本上解决此问题。

为此,在维修过程中,除了更换电源开关,本人还对电源开关电路进行了改进,主要是将双刀单掷改为单刀单掷,双刀变单刀,即将两路开关并联为一路,这样,让开关触点电流容量增加了一倍,延长了电源开关的使用寿命。改动时,在电原理路图中虚线框内打“×”处用美工刀将电路铜箔划断,再用导线(为防短路必要时可套上热缩管)将框内虚线部分连通,实物如图2。改动后,原机械开关对+5V电压实现通断,原24V极化电压则直接连通,由于+5V电压能正常开关,不影响原机功能。经用户实际使用,处理后的电源电路未再出现电源开关失灵故障。

图2

图3

由于保护功能完善,正常使用情况下,该机电源除了电源机械开关因为设计电流过小易出现损坏外,其他故障较少出现,但遇雷击损坏时,易造成保险管F1、热敏电阻R3、压敏电阻MOV1及整流管D1-D4击穿损坏,甚至电源控制电路IC1(SD4842P)及2脚(MOSFET地)限流电阻R6、光耦U1、保护稳压管Z1、误差取样电路IC2(TL431)也容易被击穿。原机使用的TL431为SOT-23贴片封装,如不易获得可用常见的TO-92封装TL431代换,对应脚见图3。若遇SD4842P损坏而手头无该元件,可用常见的VlPer22A代换,但元件应作相应改动,SD4842P③脚为供电端(Vcc),④脚为反馈端(FB),而VlPer22A 的③、④引脚正好与之相反,③、④脚电路也稍有差别,完全可以通过修改VlPer22A电路实现代换SD4842P。

参考文献

开关电源工作原理范文第4篇

关键词:LED电源 分段调光 原边反馈 单级反激 触发器

中图分类号:TN383 文献标识码:A 文章编号:1007-9416(2016)05-0000-00

LED光源具有光效高和寿命长的特点,因此被广泛应用在家用,商业和工业领域[1]。为了更好地发挥LED照明节能的优点,在LED驱动器中加入调光功能是大势所趋[2]。同时,调光技术也可改善灯光舒适度,延长灯具寿命。目前市面上的LED调光的方式主要有三种:线性调光,可控硅调光和PWM 调光。在低成本家居照明应用里,人们通常更倾向于可控硅调光技术,但可控硅调光需维持电流,且调光易出现闪烁。实际上,满额输出的一半作为调光等级也被认为是一种节能技术而大量采用。因此,分段调光在照明应用中也有相当的好处。

本文提出了一种新的分段调光电路设计,基于原边反馈单级反激拓扑,分析了分段调光控制电路的工作原理,利用墙壁开关触发LED驱动器,实现了LED亮度的分段调节。该方案成本低,不需要特殊调光器,操作简单。最后制作样机并测试,试验结果证明了该电路具有很高的实用价值。

1 原边反馈反激电路工作原理

图1为原边反馈单级反激的LED驱动电源电路图。次级省略的光偶和TL431电路,大大减少了元器件,缩小了电源空间,降低了成本。当开关管Q1导通时,整流二极管D6反向截止,输出电容C3给负载供电,此时变压器T1相当于一个纯电感Lp,流过原边绕组的电流线性增加,斜率为,直至达到峰值Lpp;当开关管Q1截止时,变压器所有绕组电压反向,此反向电压使输出二极管D6导通,原边绕组在开关管导通存储的能量 传送到辅助绕组,给输出电容C3供电,同时给负载供电[3-4]。

反激电路拓扑工作在DCM模式(不连续导通模式Discontinuous Conduction Mode)。Vo的采样主要是通过辅助线圈耦合副边线圈,在Tdis时间内,副边线圈上二极管正向导通,副边线圈电流下降,辅助线圈电压。当开关管Q1截止时,次级续流二极管D1将导通期间存储在变压器中的磁场能量传输到负载,根据电流比方程,有:

其中,Ipp为原边电流峰值,Isp为次级电流峰值,Np,Ns分别为反激变压器原边绕组的匝数和次级绕组的匝数。

输出电容在开关管导通时被充电,断开时给负载供电,其平均电流一直为零。因此平均二极管电流必须等于负载电流,有

其中为反激变压器释放能量的时间。

由式(1),(2)得输出电流ILED为

在图1的电路中,电源芯片的Vcs端口的参考电压恒定,Vcs=Ipp* Rcs ,故原边反馈反激电路的输出负载电流ILED为:

由上式可见,保持续流二极管导通时间和开关管周期的比值不变,变压器匝比Nps不变,输出负载电流可以通过改变原边采样电阻Rcs来调整实际输出。因此,低成本的分段调光功能可以通过改变采样电阻Rcs的大小来实现LED亮度的调节,对这部分功能实现的详细描述见一部分。

3基于原边反馈反激电路分段调光工作原理

原边反馈反激电路拓扑工作在DCM模式,实现了驱动电源的高功率因数、高效率。基于这种电路拓扑,设计并实现了LED灯具墙壁开关的分段调光功能。调光主要是通过调节流过LED负载的电流大小来改变LED的亮度,由本文的第三部分可知,增大原边采样电阻Rcs可以降低LED驱动电源的输出电流。图2中,并联在 R5端的两个采样电阻R6,R7分别接N沟道MOS管M2,M3。开关管M2,M3的驱动信号M1,M2可以改变原边采样电阻实际阻值的大小。

第一次闭合墙壁开关S1时刻前,Q1,Q2均为低电平,引脚DATA1,DATA2则均为高电平。闭合墙壁开关S1,辅助绕组线圈给双D触发器Vcc引脚供电,引脚SET1,SET2,RESET1,RESET2变为高电平,引脚CLOCK1 有上升沿信号,根据图3真值表,Q1输出为高电平,此时,引脚CLOCK2 出现上升沿信号, Q2输出为高电平。MOS管M2,M3导通,原边采样电阻R5,R6,R7并联,由公式(5),可知流过负载LED电流最大,亮度最高。

断开墙壁开关,引脚DATA1,DATA2保持为低电平,第二次闭合墙壁开关S1,引脚SET1,RESET1变为高电平,引脚CLOCK1 有上升沿信号,根据图3真值表,Q1输出为低电平,此时,引脚CLOCK2 出现下降沿信号, Q2输出保持为高电平。MOS管M2导通,M3关断,原边采样电阻R5,R6并联,由公式(6),可知流过负载LED电流变小,亮度变暗。

断开墙壁开关S1,引脚DATA2为低电平,DATA1为高电平, 第三次闭合墙壁开关S1,引脚SET1,RESET1变为高电平,引脚CLOCK1有上升沿信号,根据图3真值表,Q1输出为高电平,此时,引脚CLOCK2 出现上升沿信号, Q2输出为低电平,三极管M4导通,Q1变为低电平。MOS管M2,M3关断,原边采样电阻仅有R5,由公式(7),可知流过负载LED电流再次变小,亮度再次变暗。

此调光过程满足三段分段式调光,合理设计原边采样电阻R5,R6,R7,可满足100%,50%,25%循环调节模式。

4系统样机的设计与实验结果

为了验证新型分段调光方案的可行性,设计了一款功率为41W的LED驱动电源,工作范围为100Vac~240Vac,满载输出电流为1080mA。原边反馈反激拓扑的电源控制芯片采用矽力杰的电源芯片SYPH83A,分段调光控制电路中的双D触发器采用恩智浦的74HC74。

LED驱动器性能参数的详细测试结果见表1,驱动器满载工作在五个不同的输入电压下,电源的输出电流恒流率保持在1%以内,且功率因数和系统效率分别达到0.97和91%。

LED驱动器工作在满载工作时的效率为90.5%,在调光轻载输出电流时,效率会降低。但在50%额定LED电流输出时效率仍为83.7%。图4所示曲线为LED驱动器工作在全电压100~240V下,不同输出电流时的效率。

另外,LED驱动电源还满足输出开路,短路保护功能设计。当使电源负载处于开路或短路状态时,电源系统进入保护模式,没有输出。

5结语

本文详细分析了原边恒流控制的原理,提出了一种新的分段调光电路设计思路,最后应用芯片SYPH83A和双D触发器74HC74制作了一款41W的LED驱动器。实验结果表明电源的各项参数都达到了设计要求,并且具有高效率和高功率因数。此外,可兼容原边反馈反激拓扑的电源芯片的使用,可以缩短研发时间,节约成本,节约能源,在照明产品应用中有很大的实用性。在灯具安装时,无需特定的调光器,在固有的家居墙壁开关的操作下,即可实现三段式调光。

参考文献

[1] 廖志凌,阮新波.半导体照明工程的现状与发展趋势[J].电工技术学报,2006,21(9):106-111.

[2]陈浩,席光,刘胜 等.一种精确调光的LED电源设计[J].电源技术,2011,35(2):218-220.

开关电源工作原理范文第5篇

摘 要:以uc3842和fqp12n60c为基础设计了一款可编程序控制器专用电源。意在介绍通用开关电源的工作原理与设计过程,并且着重介绍高频变压器的设计以及整板调试过程,突出以理论为基础,工程设计为主导的设计方法。该电源经过实际测试,符合可编程序控制器专用电源的标准。

关键词:变频器;开关电源;uc3842

引言

现应用uc3842芯片设计了一款可编程序控制器用的开关电源,经过大量实验。在输入有很大波动的时候,该电源也能稳定工作。其中为cpu供电的+5v电源误差范围在0.1v,达到了设计目标。而且本开关电源也可作为其它电力电子控制设备的电源,可移植性能好。

1 设计要求

本电源利用pwm控制技术实现dc-dc转换,通过fqp12n60c的电流检测端口与控制电路要求精度最高的电源相连,当输入有干扰的情况下,通过调节占空比来稳定对多路电源的输出。

具体指标如下:输入:直流250v±40%,输出:直流+24v、6a;+5v、2a。输出全部采用共地方式,控制系统对电源输出的纹波电压小于5%。

2 原理图功能分析与设计过程

基于uc3842和fqp12n60c所组成的开关电源的电路原理图。包括整流、滤波、pwm控制器等结构。电源内部采用单端反激式拓扑结构,具有输入欠电压保护、过电压保护、外部设定极限电流、降低最大占空比等功能。

2.1输入侧整流、滤波、保护电路设计。从ac(l)线路进线串联保险丝(f1),起到过流保护作用。从ac(n)线路进线串联热敏电阻(rt110d-9),对接通ac电源时产生的浪涌电流起限制作用。在熔断器与热敏电阻的出线端并联压敏电阻(vr1),对接通ac电源时产生的浪涌电压起限制作用。之后并联安规电容cx1,泄流电阻r5。防止大电容失效后漏电,危及用电人员安全。之后串联电感,出线端并联x2电容。然后经过整流桥d1整流,在直流侧并联电解电容c10滤除整流后的交流分量以及谐波成份。

2.2功率管参数调整与电路设计。电阻r1提供电压前馈信号,使电流可随电压而降低,从而限定在高输入电压时的最大过载功率。电阻r2实现线电压检测。由电阻r6,电容c30,开关管zd1,二极管d88组成简单的rcd箝位电路。达到保护开关管的目的。因而t1可以使用较高的初次级匝数比,以降低次级整流管d3上的峰值反向电压。电路采用简单的齐纳检测电路来降低成本。输出电压稳压由齐纳二极管(ic2)电压及光耦合器(ic1)决定。电阻r9提供进入齐纳二极管的偏置电流,产生对+5v输出电平、过压过载和元件变化时±5%的稳定度。

2.3高频变压器磁路设计。由于反激变换器对多组输出的应用特别有效。即单个输入电源使用同一磁路有效地提供多个稳定输出。因此本文设计的开关电源采用反激式变换结构。高频变压器的设计过程主要包括:磁芯大小的选择、最低直流输入电压的计算、工作时的磁通密度值的选择等。

(1)设计参数。设计使其工作在132khz模式下。输入:直流250v±40%,输出:+24v、6a;+5v、2a。

(2)功率计算。

p=24×6×1+5×2×1=154w (1)

(3)磁芯选择。由公式(2)、(3)

sj=0.15■=2.01cm2 (2)

p1=■=■=181.18w (3)

再由实际中输出引脚个数等因素,查磁芯曲线可得选择磁芯eer40。

(4)工作时的磁通密度计算。对于eer40的磁芯,振幅取其一半bac=0.195t。

(5)原边感应电压的选择。这个值是由自己来设定的,但是这个值决定了电源的占空比。其中d为占空比,vs为原边输入电压,vor为原边感应电压。d=■本文选定占空比d=0.5。

(6)计算变压器的原边匝数:np=■=42匝。

(7)计算变压器的副边匝数。对于+5v,考虑到整流管的压降0.7v以及绕组压降0.6v。则副边+5v电压值:v2=(5+0.7+0.6)v=6.3v。

原边绕组每匝伏数=■=■=3.57伏/匝。

则+5v副边绕组匝数为:n5=■=1.76匝。由于副边低压大电流,应避免应用半匝线圈,考虑到e型磁芯磁路可能产生饱和的情况,使变压器调节性能变差,因此取1.76的整数值2匝。计算选定匝数下的占空比辅助输出绕组匝数,因为+5v副边匝数取整数2匝,反激电压小于正向电压,新的每匝的反激电压为6.3伏/匝。占空比必须以同样的比率变化来维持v-s值相等。由此可得:+24v副边绕组匝数为:n24=■=7.08匝。取整数值为7匝。

对于反馈线圈的匝数,反馈电压是反激的,其匝数比要和幅边对应。ns=■=1.76匝。取整数值为2匝。

(8)确定磁芯气隙的大小。首先求出原边电感量(mh),根据lp=vs■则全周期ts的平均输入电流is=■=■=1a。

相应的im=■=2a,ip1=■=1a。

ip2=3ip1=3a在ton期间电流变化量i=ip2-ip1=2a,lp=vs■=150×■=0.56mh。所以电感系数al=■=■=0.00049×■。根据所选磁芯的al=f(lg)曲线,可求得气隙

lg=■=■=0.45mm

(9)变压器设计合理性检验。首先利用磁感应强度与直流磁密相关的关系计算直流成分bdc。根据公式计算可以得到:bdc=?滋h=185mt

而交流和直流磁感应强度相加之和得到的磁感应强度最大值bmax=?滋h=■+bdc=282.5mt,而从磁性材料曲线可知bs=390mt,故工作时留有余量,设计通过。

(1、烟台德尔自控技术有限公司,山东 烟台 264006 2、沈阳工业大学,辽宁 沈阳 110178)

摘 要:以uc3842和fqp12n60c为基础设计了一款可编程序控制器专用电源。意在介绍通用开关电源的工作原理与设计过程,并且着重介绍高频变压器的设计以及整板调试过程,突出以理论为基础,工程设计为主导的设计方法。该电源经过实际测试,符合可编程序控制器专用电源的标准。

关键词:变频器;开关电源;uc3842

引言

现应用uc3842芯片设计了一款可编程序控制器用的开关电源,经过大量实验。在输入有很大波动的时候,该电源也能稳定工作。其中为cpu供电的+5v电源误差范围在0.1v,达到了设计目标。而且本开关电源也可作为其它电力电子控制设备的电源,可移植性能好。

1 设计要求

本电源利用pwm控制技术实现dc-dc转换,通过fqp12n60c的电流检测端口与控制电路要求精度最高的电源相连,当输入有干扰的情况下,通过调节占空比来稳定对多路电源的输出。

具体指标如下:输入:直流250v±40%,输出:直流+24v、6a;+5v、2a。输出全部采用共地方式,控制系统对电源输出的纹波电压小于5%。

2 原理图功能分析与设计过程

基于uc3842和fqp12n60c所组成的开关电源的电路原理图。包括整流、滤波、pwm控制器等结构。电源内部采用单端反激式拓扑结构,具有输入欠电压保护、过电压保护、外部设定极限电流、降低最大占空比等功能。

2.1输入侧整流、滤波、保护电路设计。从ac(l)线路进线串联保险丝(f1),起到过流保护作用。从ac(n)线路进线串联热敏电阻(rt110d-9),对接通ac电源时产生的浪涌电流起限制作用。在熔断器与热敏电阻的出线端并联压敏电阻(vr1),对接通ac电源时产生的浪涌电压起限制作用。之后并联安规电容cx1,泄流电阻r5。防止大电容失效后漏电,危及用电人员安全。之后串联电感,出线端并联x2电容。然后经过整流桥d1整流,在直流侧并联电解电容c10滤除整流后的交流分量以及谐波成份。

2.2功率管参数调整与电路设计。电阻r1提供电压前馈信号,使电流可随电压而降低,从而限定在高输入电压时的最大过载功率。电阻r2实现线电压检测。由电阻r6,电容c30,开关管zd1,二极管d88组成简单的rcd箝位电路。达到保护开关管的目的。因而t1可以使用较高的初次级匝数比,以降低次级整流管d3上的峰值反向电压。电路采用简单的齐纳检测电路来降低成本。输出电压稳压由齐纳二极管(ic2)电压及光耦合器(ic1)决定。电阻r9提供进入齐纳二极管的偏置电流,产生对+5v输出电平、过压过载和元件变化时±5%的稳定度。

2.3高频变压器磁路设计。由于反激变换器对多组输出的应用特别有效。即单个输入电源使用同一磁路有效地提供多个稳定输出。因此本文设计的开关电源采用反激式变换结构。高频变压器的设计过程主要包括:磁芯大小的选择、最低直流输入电压的计算、工作时的磁通密度值的选择等。

(1)设计参数。设计使其工作在132khz模式下。输入:直流250v±40%,输出:+24v、6a;+5v、2a。

(2)功率计算。

p=24×6×1+5×2×1=154w (1)

(3)磁芯选择。由公式(2)、(3)

sj=0.15■=2.01cm2 (2)

p1=■=■=181.18w (3)

再由实际中输出引脚个数等因素,查磁芯曲线可得选择磁芯eer40。

(4)工作时的磁通密度计算。对于eer40的磁芯,振幅取其一半bac=0.195t。

(5)原边感应电压的选择。这个值是由自己来设定的,但是这个值决定了电源的占空比。其中d为占空比,vs为原边输入电压,vor为原边感应电压。d=■本文选定占空比d=0.5。

(6)计算变压器的原边匝数:np=■=42匝。

(7)计算变压器的副边匝数。对于+5v,考虑到整流管的压降0.7v以及绕组压降0.6v。则副边+5v电压值:v2=(5+0.7+0.6)v=6.3v。

原边绕组每匝伏数=■=■=3.57伏/匝。

则+5v副边绕组匝数为:n5=■=1.76匝。由于副边低压大电流,应避免应用半匝线圈,考虑到e型磁芯磁路可能产生饱和的情况,使变压器调节性能变差,因此取1.76的整数值2匝。计算选定匝数下的占空比辅助输出绕组匝数,因为+5v副边匝数取整数2匝,反激电压小于正向电压,新的每匝的反激电压为6.3伏/匝。占空比必须以同样的比率变化来维持v-s值相等。由此可得:+24v副边绕组匝数为:n24=■=7.08匝。取整数值为7匝。

对于反馈线圈的匝数,反馈电压是反激的,其匝数比要和幅边对应。ns=■=1.76匝。取整数值为2匝。

(8)确定磁芯气隙的大小。首先求出原边电感量(mh),根据lp=vs■则全周期ts的平均输入电流is=■=■=1a。

相应的im=■=2a,ip1=■=1a。

ip2=3ip1=3a在ton期间电流变化量i=ip2-ip1=2a,lp=vs■=150×■=0.56mh。所以电感系数al=■=■=0.00049×■。根据所选磁芯的al=f(lg)曲线,可求得气隙

lg=■=■=0.45mm

(9)变压器设计合理性检验。首先利用磁感应强度与直流磁密相关的关系计算直流成分bdc。根据公式计算可以得到:bdc=?滋h=185mt

而交流和直流磁感应强度相加之和得到的磁感应强度最大值bmax=?滋h=■+bdc=282.5mt,而从磁性材料曲线可知bs=390mt,故工作时留有余量,设计通过。

3 结论

24v输出电压波形

参考文献

[1]张占松,蔡宣三.开关电源的原理与设计[m].第一版.北京:电子工业出版社,1999,7.

[2]赵书红,谢吉华,曹曦.一种基于top switch的变频器开关电源[j].电气传动,2007,26(9):76-80.3 结论

24v输出电压波形

参考文献