首页 > 文章中心 > 开关电源原理及设计

开关电源原理及设计

开关电源原理及设计

开关电源原理及设计范文第1篇

【关键词】PWM;双闭环;检测仪器;开关电源

0 引言

随着我国科技不断稳步发展,越来越多的设备需要用到电源,如:稳压电源、直流电源、交流电源等等。但随着设备先进性的不断提高,设备的功能越来越强大,对电源的要求也越来越高,特别是检测仪器仪表,精度要求非常高,需要有非常稳定可靠的电源来确保测量精度。因此,开关电源取代普通的电源设备,广泛应用于检测仪器仪表中。本文设计一种基于PWM脉冲宽制调试的双闭环开关电源,采用国外先进的全波整流控制器,该控制器工作模式不仅可以是电流式也可以是电压式,还能够为谐振零电压开关提供高效、高频的解决方案,因此具有非常广阔的应用前景。本文采用全桥整流装置,利用双闭环负反馈的直流-直流变换控制系统,能太太提高开关电源的电压、电流等精度,符合检验检测仪表行业的要求。

1 检测仪器电源系统概况

随着信息时代的发展,便携式电子产品被越来越多的消费者亲睐。与此同时,解决能量消耗即电源管理问题成为重中之重。因此,具有高效节能特型的开关电源在近年来发展迅速,并在计算机通讯等领域的应用越来越广泛。而PWM型开关电源芯片就具备了此类特性,其核心技术集中在控制环节。此设计采用PWM控制电路,适用于开关电源芯片控制。对PWM调制电路为保证开关电源正常工作应具有的功能展开分析,得到设计要求。对PWM控制电路的组成模块、分类、基本原理及各项性能指标,进行细致深入的研究,最后得到调制电路的基本电路结构及满足性能指标的组成模块,对各个模块的功能和逻辑是电路设计的重点,最终该电路实现能产生一定脉冲驱动信号的功能。

2 系统控制原理图

双闭环负反馈PWM秒冲宽制调制系统中,有两级的反馈系统。串级系统即是电流双闭环反馈系统,而转速反馈构成外环系统,内环是电流反馈。本方案设计三处进行系统的电流取样反馈,取拥缌髦岛拖低成杓频牡缌髦迪啾冉希当取样电流值过大时,系统会自动调节降低工作电流;但取样的电流过小时,系统会自动调节提高工作电压,这是内环电流反馈的工作情况。外环的转速反馈系统,系统通过电压检测装置检测系统的电压情况,再与设计的电压值相对比进行电压高低的调节,达到稳定电压的效果。基于双闭环的设计思想,图1中的各个部分相互独立工作、互不影响,如果某一部分出现故障,不影响另一部分系统的工作,系统内部由电流形成负反馈,外部由电压形成负反馈系统。电流电压负反馈一起运作,能太太的提高系统的稳定性和进度,满足检测仪器仪表的使用要求,达到良好的效果。双闭环反馈系统原理如图1所示。

图1所示虚线框中的1#.2#.…….N#是各个高频开关电源,其稳压或稳流精度很高,原因在于该内部自动控制原理图最终可以简化为一阶系统比例积分环节,图中它们工作在稳流状态下。

3 硬件电路设计

图2为开关电源的硬件电路组成部分,设计采用国外先进的放大器作为本设计的核心器件。芯片的1脚与3脚相连接,构成差分放大,能有效的减小误差,提高设计的精度。

图2所示输出法人取样电压通过R5和R6设置,电压输出端与电阻5和6形成零点电位,电阻1/2/3与电容1/2/3形成效应,与PI构成补偿系统,电阻1和7在电路中形成增益作用。在电流内环中加入斜坡补偿以保证系统的稳定性。硬件电路通常容易出现不对称信号的问题,本设计利用电压负反馈补偿信号的作用,将电阻8作为上拉电阻提供直流电压,与RC构成的多谢震荡器作用,提供反馈电压,从而解决波形的不对称性。图中电流检测信号Is经过I-V变换电路转换成电压信号。芯片741是一个PWM脉冲宽制比较器,根据比较器原理,依据三极管放大电路原理,在芯片3脚接地,芯片的2脚相当于一个反相输入端,对信号进行比较。其内部的过流及限流比较器实现逐周期过流及限流保护。当2 V2.5 V时,执行过流保护模式。

4 结语

本设计依据3895芯片,利用双闭环负反馈的原理,引入电流负反馈和电压负反馈,提高了开关电源的精度,利用PWM脉冲宽制调制技术,提高了电源变换的效率和稳定了。开关电源系统设计之后,对该系统多次进行调试测,反馈结果稳定良好,系统稳定性好,动态响应快,证明本方案是可行的。

【参考文献】

开关电源原理及设计范文第2篇

关键词:开关电源及其软开关技术;SIMetrix仿真;UC3842;反激电路

作者简介:张冬梅(1983-),女,广东湛江人,华南理工大学广州学院电气工程学院,讲师。(广东 广州 510800)

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)28-0080-02

为了完善专业的知识结构、配合学校培养应用型人才的办学思路,华南理工大学广州学院电气工程学院为本科生开设了“开关电源及其软开关技术”这门课程。该课程是“电力电子技术”的后续课程,系统地介绍了开关电源电路的结构组成、工作原理、设计方法和开发过程,其综合性、工程性和实用性很强。目前,课程在教学中存在的主要问题:第一,虽然在课堂教学中使用了多媒体课件,但依然需要花费大量精力对电路工作原理及其波形进行描述和分析,学生仅凭听讲还是很难深入理解。第二,在本科生中开设该课程的高校较少,在市场上很难找到针对该课程的实验装置,学生学习的理论知识得不到很好的验证。第三,开关电源的硬件开发是一项知识面要求宽、难度大又危险的复杂技术工作,受时间、空间、物质条件等因素限制,在这方面不能做过多要求,因此学生动手能力得不到真正的锻炼。

为了弥补以上不足,本文提出在课程教学中引入SIMetrix仿真工具。借助该仿真软件,学生更容易理解理论知识,还可以在课堂外对所学的知识加以验证以及进行一些设计应用,从而激发学习的兴趣并增强实践能力。

一、SIMetrix仿真软件介绍

SIMetrix/SIMPLIS是一款用于优化设计电力电子电路的高级仿真工具,是由美国Transim公司开发的软件包,具有优秀的收敛性能和仿真速度,小信号分析方面独具优势,非常适合于开关电源产品的验证、分析、设计和开发。其内部提供了两种仿真模式——SIMetrix和SIMPLIS,其中SIMetrix包含了一个增强型SPICE仿真器、原理图编辑器和波形显示器,与其它通用仿真软件相比,SIMetrix具有以下特点:[1,2]

特点一:包含丰富的器件模型。模型库不仅包含了理想的电路元件,同时还提供了比较通用的、常见的半导体器件和各类应用广泛的集成电路控制芯片,在此基础上足以构建完整的开关电源系统。

特点二:先进的测量功能。波形可通过选择检测器然后点击原理图生成,或在原理图上放入固定的检测器生成,可在仿真后甚至仿真时查看波形,非常方便。

特点三:强大的波形处理功能。为波形分析提供RMS、frequency、-3dB、FFT等40多种函数,选择这些函数可获得计算结果并显示在波形旁边。

特点四:具有多种分析功能。包括瞬态分析、交流分析、直流分析、噪声分析、传输函数分析等,每种分析功能下又提供多种扫描模式,如频率扫描、器件扫描、参数扫描、模型参数扫描、温度扫描、蒙特卡罗扫描等等。

此外,SIMetrix仿真软件的仿真结果与实际非常接近,用户图形界面友好,仿真直观,使用者容易掌握。

二、基于UC3842的反激电路仿真实例分析

反激变换器具有高可靠性、高效率、电路拓扑简洁、输入输出电气隔离、升/降压范围宽、易于多路输出等优点,是小功率开关电源的理想电路拓扑。UC3842是SIMetrix仿真工具模型库自带的集成芯片,其器件少、性能良好、价格低廉。综上所述,以UC3842控制的反激电源为仿真实例,电路简单且具有代表性,满足初学者的基本学习要求,具体的仿真电路如图1所示。

1.仿真电路原理

(1)主电路原理。交流输入电压经D1-D4组成的桥式整流及电解电容C1滤波后变成脉动直流电压。该直流电压由功率开关管Q1以很高的工作频率通断,将直流电变换成高频脉冲施加在变压器TX1的初级绕组上,然后由次级绕组输出。当开关管Q1导通时,变压器初级绕组有电流通过并且线性增加,施加在初级绕组上的电压为上正下负,使次级绕组产生下正上负的感应电动势,二极管D5承受反向偏压截止,次级绕组电流为零,变压器储能,这时负载由电容C2放电提供能量。当开关管Q1关断时,初级绕组的磁通量减小,为了维持电流不变而产生下正上负的感应电动势,次级绕组变成上正下负,D5导通,存储在变压器中的能量给C2充电并向负载供电。辅助绕组工作过程与次级绕组相同,一方面经过D6整流、C3滤波后为UC3842供电,另一方面经D7整流、C4滤波后为其提供反馈信号。由于反激变换器不可以空载,所以辅助绕组接假负载 R3。最后,在次级绕组和辅助绕组对应输出稳定的12V和15V直流电压。

(2)控制电路原理。[3]交流输入经过整流滤波得到直流电压,通过电阻R1降压后给电容C3充电,当Vp端电压达到启动电压门槛值16V时,UC3842开始工作并提供驱动脉冲,由Vout端输出推动开关管Q1工作。芯片启动后,工作电压由辅助绕组提供。同时,辅助绕组的输出经过R8和R9分压反馈到Vfb端。当电源电压或负载变化引起输出电压变低时,Vfb端的反馈电压减小,UC3842输出的PWM波的占空比增加,开关管Q1的导通时间变长,输出电压升高;反之,当输出电压升高时,占空比减小,Q1的导通时间变短,输出电压降低,从而使输出电压保持恒定,实现稳压。电阻R4用于电流检测,将初级绕组的电流转换为电压信号送入UC3842的Sense端,形成电流反馈。当由于某种原因产生过流时,开关管Q1的漏极电流将大大增加,电阻R4两端的电压上升,Sense端的电压也上升,当该端的电压超过正常值达到1V时,Vout端无输出,Q1截止,从而保护电路。Ref端和Osc端外接定时电阻R6和定时电容C6,确定工作频率。Vfb端与Comp端之间接R7和C7补偿电路,用于改善增益和频率特性。R5和C5构成RC滤波电路,削弱电流检测信号中的尖峰脉冲干扰,保证电源正常工作。

2.仿真电路参数设计

本仿真电路的主要技术指标:输入电压Vin:220(1±10%)VAC;输出电压Vo:12V,输出电流Io:2.5A;辅助绕组的输出电压VF:15V,开关频率fs:100kHz;效率η:80%。对应图1的仿真电路,完成所有元件参数的计算和电路的设计。

(1)主电路设计和参数计算。根据文献[4]和[5],已知交流输入电压的范围,可以计算出经过整流滤波电路输出的直流电压范围是238V~342V,然后计算最大占空比为0.37,由此可得高频变压器的次级绕组和初级绕组的变比为0.09。又根据辅助绕组与次级绕组的电压、变比的关系,可计算得辅助绕组与初级绕组的变比为0.11。由前面的计算值结合电源的功率、效率参数,分别得到初级绕组电流峰值为0.67A,电感值为1.3mH。开关管Q1工作于最大输入电压342V的同时还承受了高频变压器的反向电动势,一般为135V,因此Q1的最大漏极电压约500V,最大漏极电流由上可知为0.67A。由文献[5]和[6]可计算,输入整流桥二极管D1-D4的额定电压应大于427V,额定电流有效值应大于0.76A,输出整流二极管D5的最大反向峰值电压为42.8V,同理可得D6、D7的最大反向峰值电压为53.5V。根据文献[7],输入滤波电容C1的经验值可用输出功率值瓦特数乘以1uF计算,约等30uF。输出滤波电容C2经计算应大于185uF,为了使滤波效果更好,在此取470uF,同理,C3和C4分别取1uF、10uF。假负载 R3的功率按额定功率的5%来设计,其值为150Ω。

(2)控制电路设计和参数计算。[7,8]已知开关频率100kHz,通过UC3842的工作频率计算公式:f=1.72/(RT×CT),可选取定时电阻R6=15kΩ,并计算定时电容C6=1nF。电流检测电阻R4=1/Ipk,其中Ipk为初级绕组电流的峰值,由上可知是0.67A,因此R4=1.5Ω。反馈电路的分压电阻R8和R9可通过公式VF×R8/(R8+R9)=2.5V确定,选取R8=20kΩ,R9=4kΩ。UC3842的启动电流在lmA左右,考虑到启动时间及R1上消耗的功率,实际设计中R1取30kΩ。R5和C5取典型值,分别为1kΩ、470pF。R7和C7的值以电源的闭环传递函数经过补偿后,截止频率位于工作频率的1/5处并且相位裕量约60°为宜,在此分别取15kΩ、1nF。

3.仿真电路搭建步骤

根据以上计算结果,仿真模型的搭建过程及各种参数设置如下:

(1)点击Place\Passives,选择理想变压器(Ideal Transformers)和电路全部的电阻(Resistor[Box Shape])、电容(Capacitor)。变压器的初、次级绕组数分别选择1和2,定义次级绕组、辅助绕组与初级绕组的比值分别为0.09和0.11,设置初级绕组的电感值为1.3mH,其他参数采用默认值。电阻、电容值可根据前面的计算结果设置。

(2)点击Place\From Model library,在NMOS中,为功率开关管Q1选择高频特性较好的MOS管IRF840,其电压、电流定额为500V/8A。在Diode中,为输入整流桥二极管D1-D4选择快恢复二极管BY233-600,其电压、电流定额为600V/10A;为输出整流二极管D5选择快恢复二极管mur110,其电压、电流定额为100V/1A;为D6和D7选择快速开关二极管D1N4148,其电压、电流定额为75V/150mA。在PSU Controllers中,选择UC3842。

(3)点击Place\Source,选择多功能电源(Universal Source),设置波形为正弦波,频率50Hz,峰峰值为622V,其他参数采用默认值。

(4)点击Simulator\Choose Analysis,选择暂态分析(Transient)仿真模式,设置停止时间为20ms,其他参数采用默认值。

三、仿真结果分析

在额定交流输入220V/50Hz、满载的情况下,得到仿真波形如图2所示。6个波形自上而下分别为PWM控制信号、初级绕组电压、直流输出电压、开关管电压、初级绕组电流和次级绕组电流。由波形可知,PWM控制信号的频率约95kHz,占空比为0.32,初级绕组电压范围为-145V~297V,开关管承受最大电压445V,直流输出电压12V,纹波电压约25mV,初、次级绕组电流峰值分别为747mA和8.2A。另外从初、次级绕组电流的关系可知,电源工作在不连续模式。结果表明,本仿真电路参数设计合理,器件选择满足要求,仿真结果与理论基本一致。

四、结论

通过以上简单的仿真实例分析可知,SIMetrix仿真开关电源方便、简单、快捷且仿真模型和与电源实物非常接近。教师在课堂讲授的过程中演示仿真,可使讲解变得生动、形象、直观。与实验相比,仿真不受时间、空间、物质条件限制的同时也更安全,教师应鼓励学生在课后使用,不仅加深对原理知识的掌握,锻炼了实践动手能力,还可以提高他们学习的兴趣和积极性,培养创造能力。因此,SIMetrix仿真软件对该课程教学具有很好的应用价值。

参考文献:

[1]傅文珍.基于SIMetrix的“电力电子技术”仿真辅助教学研究[J].嘉兴学院学报,2013,25(3):1-5.

[2]杨浩东,王伟.电力电子教学中常用仿真软件对比[J].中国电力教育,2012,(3):112-113.

[3]陈纯锴.开关电源原理、设计及实例[M].北京:电子工业出版社,2012.

[4]李定宣,丁增敏.开关稳定电源设计与应用[M].第二版.北京:中国电力出版社,2011.

[5]程何小,何卫彬.基于TOP224YN的反激式开关电源设计[J].声学与电子工程,2011,(2):37-39,45.

[6]张维.单端反激式开关电源研究与设计[D].西安:西安电子科技大学,2011.

开关电源原理及设计范文第3篇

关键词:声光控制;照明;电路;设计

近些年来,节能减排是我国倡导的发展观念。而避免资源浪费不仅是我国各行业企业需要做的工作,还应该落实及贯彻到各类生活场景中。过去阶段,我国学校、工厂、小区等场所因为夜晚照明灯常亮造成大量电能损失。而手控照明灯的引用虽然有效降低了夜晚照明灯使用的电能,但存在一定的不变。随着科学技术的不断发展,现如今已经研发出一种声光控制照明电路,该电路的设计突破了传统的照明控制方法,并带来了质的飞跃。

1声光控制照明电路设计意义

过去阶段,我国公共照明灯一般都采用手动式的开关方式。如在住宅小区的楼梯过道中,夜晚居民想要打开灯光还需触碰开关装置,这样就会给夜晚视力不好的居民带来一些困扰。还有在一些厂区、学校等地,夜晚路灯彻夜不关,这就会带来能源上的浪费。再到后来,出现了声控灯,这种照明电路的设计虽然为夜晚行人带来了方便,但其存在一个弊端,就是白天时候也受声音影响而开灯。人们为解决这一问题只好定时定点的开关总电源,这样一来,虽然起到了节能目的,但为加大了管理负担。而声光控制照明电路的设计,可有效改善上述所有问题。通过声源和光源的双重控制,为照明设备的使用和管理带来很大便捷。同时,该照明电路应用范围也很广泛,只要不是封闭场所,大多都可以使用。

2基于电子技术的声光控制照明电路总方案设计

声光照明电路总方案设计的原理:首先,在该电路接收到声信号时,会由声电装换装置把声信号改变为电信号。此时的电信号相对薄弱且频率不一致,所以会经过放大电路和处理电路的加工,使之成为频率一致且适用于控制电路的控制信号。其次,在这一过程中,当电路接收到的光信号相对薄弱时,该部分的控制会打开,且受光信号的影响一直处于恒定状态。此时,该电路的整体开关就受到声源的影响。反之,若处于白天时,电路接收到的光信号强烈,会关闭光控部分,此时声控部分则无法发挥控制作用。所以,该电路的原理是以光信号作为基础条件,以声信号来进行控制。声光控制照明电路的的设计刚好满足使用者对声光控制照明设备的使用需求.即在白天或太阳光较亮时,人们可视性较高,则不需要照明。这时,电路受光源影响处于限制状态,不会因为接受来的声音而亮灯。在夜晚太阳光微弱时,人们视力受黑暗的影响,看不清周围食物,所以这时需要照明设备。该电路在夜晚时处于可触发状态,受声音影响开关,人们只需要发出脚步声或其他声音,就可以打开照明设备。在没有声音时及开启一定时间之后,该设备自动关闭。

3各电路设计

3.1电源电路电流电路的设计需要保证电路正常工作及满足声光控制照明电路工作原理,同时还需要保证电流电路整体结构简单化,不可过于复杂。要满足以上条件,可从电流电路中降压器、稳压器、整流器以及滤波器这四个装置的选用着手。其中降压装置选用的是稳压二极管。在输出稳压直流后需要经过降压电容器(C1)、全桥整流器(QD)以及滤波电容(C2)后,在经过稳压二极管(DW)进行稳压,从而得到稳定的、满足照明电路需要的电压。电源电路的各类元器件及参数的选择需要结合电路的实际需求。首先,通过计算得出,全桥整流器(QD)应该选用型号为1A300V的二极管。其次稳压二极管的选用可根据声光控制照明电路稳压直流电源电压,该电压而+9V,所以可选用型号为2CW57的稳压二极管,这个型号的稳压二极管稳定电压为8.5V到9.5V,所以符合电路需求。再次,降压电容器(C1)的选用型号需要根据电源电压。合理情况下,降压电容器的耐压值应该是电源电压的两倍以上,如400V及400V以上耐压的电容器则可适用。最后,滤波器的型号选择可根据RC时间常数大于3到5倍电源半周期这一原理进行选择。3.2信号放大电路信号放大线路的设计可分为拾音器和放大器两个部分。在压电蜂鸣器(拾音装置)选择上,要保证内部压电陶瓷片灵敏性较高,并且价格不贵,从而保证整体电路的灵敏。拾音器可选用电压蜂鸣器HTD35A-1这个型号的装置,该型号装置采集到声音之后,会通过压电陶瓷片的绕曲变形产生微弱的电效应。这时,电信号在通过电路进入直藕式音频放大器,使这个电信号放大。同时,再经过T3时,对产生倒向放大,从而触发单稳态电路。3.3控制电路声光控制照明电路的控制电路图。555是时基电路,它的四角受到光敏三极管不同阻抗的改变来控制高低电平,而光敏三极管阻抗的变化受光源强弱的影响,具体可分为以下两种情况:(1)强制复位状态。在白天光敏三极管感受较大光照时,单稳态触发器会应较大阻抗的影响,造成输出低电平,这就就处于强制复位状态。在强制复位状态下,555不会产生翻转置位,所以声光控制照明不会发亮。(2)在夜晚光敏三极管感受光照小,则单稳态触发器受到的阻抗就小,则输出高电平,555处于单稳态触发状态。而如果此时拾音器接收到了声音,产生了声信号,通过加工形成极大电流,并触发单稳触发器,改变555状态,产生翻转置位,使可控硅触发倒通,这样一来声光控制照明就会亮,并保持一定时间段,即120S。在该电路中,各类元器件的选择要符合声光控制照明电路的特点,所以单稳态触发电路中的定时原件应该满足灯光持续120S这一需求。而三极管可选用型号3DK2。改电路电容为滤波电容,所以C9应按选用小电容,如0.01μ。3.4光电传感器电路光电传感器电路设计也要满足该照明电路的需求。如对光源的敏感程度、光谱响应范围灯,只有贴切实际选用最为合适的,才能使声光控制照明设备正常使用。如光敏三极管的选用型号可为3DU5,该型号的光敏三极管的光谱响应范围正好符合需求,电压工作范围也在6V到8V之间。

4总结

声光控制照明电路为人们夜间生活带来很大便捷,并发挥着节省电能源的作用。并且,声光控制照明电路可完全自动化开关,节省了人力。这种自动化的操作模式及节省能源的设计理念,正是二十一世纪时展的产物。该电路的设计过程需要结合声光控制原理及电路特性,各元器件的选择也要满足实际需求,只有这样,才能确保声光控制照明电路能够正常使用。

参考文献

[1]贺廉云.基于电子技术的声光控制照明电路设计[J].电子世界,2014,(21):27-27,32.

[2]李素平.声光控制延时开关电路系统设计[J].电子世界,2016,(13):197,199.

[3]李桂兰.声光控制路灯电路的设计[J].电子制作,2013,(7):17.

[4]黄程云,韩哲.智能照明节电控制新技术[J].节能技术,2013,31(6):572-574.

[5]李桂兰.声光控制路灯电路的设计[J].电子制作,2013,(6):23.

开关电源原理及设计范文第4篇

关键词:低功耗设计; 多电源多电压单元库的环境;统一功率格式

UPF-Compliant Library/Environment

in the Multi-Supply Multi-Voltage Era

Tsai Shi-Huei,Koan Huang, CHEN Hung-ming

(Faraday Technology China Corp.,Shanghai,200233 China)

Abstract:While various low power design techniques need to be employed to reduce device power consumption and increase battery lifetime, how to efficiently design and manage these complex low power schemes intertwined with chip design activities becomes a major concern. In this paper, we will review traditional MSMV library environment, then compare it with Unified Power Format-based methodology. Later, we will introduce specific library requirements and share some views on UPF-based methodology.

Keywords: Low Power Design; Multi-Supply Multi-Voltage;Unified Power Format

1传统的方法

传统上电源和地在设计RTL的阶段是不被考虑的。造成这个结果的原因在电源线和地线在布局布线的时候单元会自动地接合。因为相同的资料会经由每个使用过的单元与模块所携带,资料会被视为冗余,因此在逻辑设计的时候会被移除,以便使RTL设计人员能够更加专注于信号线的逻辑行为。

2过渡到多电压多电源设计

随着多电压多电源设计的流行,情况发生了很大变化。因为供应电压的不同,除非设计应用到多轨(multi-rail)单元,否则单元不再能被自动地接合。一个实际的实现方式是将这些单元集合成一组再供给相同的电压参考源,限制他们在一个特定分配的区域,然后给他们连接一个适当的电压源,这样,有效地构成了我们经常提到的“电压域”的概念。

电压域打开或关闭是按照正常模式或待机(Standby)模式的操作来设计,用以减少电源的浪费。电源线不再是静态的连接,而是和特定电压域的电源开或关等状态的行为有关。为了截取电源开关状态的差别,电源跟地连接的需求至少在门级仿真的时候,正确的电源开关行为要能够被确认。

对每个电压域基于模块的方法可能习惯于得到综合产生的电压域网表,然后在该电压域的网表加入传统电源与地的连接,并且在芯片整合的时候进行调整。

3改写传统的流程

所以利用现在的工具以及传统的流程来处理多电压多电源设计一般来说要牵涉到下列的工作:

将每个电压域以模块的方式来呈现

在门级网表的阶段接上电源线和地线

在电压域间连接适当的逻辑

将电源的开与关视为模块功能的一部分

经由仿真来做最后的确认

因此我们看到了在门级网表加入电源与地连接线的需求,所以经由这个流程接口也能达到一致,而相应的电源开关行为能够经由电力来源的状态被捕捉到,表1举一个例子来说明从单元的角度来看差别何在。

4会发生问题的地方

虽然上述的方式可行,但使用者必须注意避免在人工定制的过程里出现必定会发生的人为错误。有些在传统流程里常会发生问题的地方如下所列:

在网表级处理电源与地线

为了集合并且联接相同电压的组(cluster)所做的手工连接

芯片实现时所做的顶层整合

验证时对电源/地线行为的建模/仿真

因为数字仿真只有“0”或“1”两种状态的处理,并没有告诉我们逻辑“1”是指1.0 V或1.2 V电压,所以我们很难去利用传统的仿真来判别一个电平移位器(level shifter)已经被正确地用在两个不同的电压域之间。同样地,在仿真的时候,如果被连接到逻辑“1”,你将不知道这个电压源是1 V还是1.2 V。因此,除了仿真之外,需要大量的检查清单来帮忙解决潜在的人工错误以及在仿真过程的遗漏。

5需要解决的办法

从以上的探讨,我们了解到一旦电源和地的资料能被很清楚地定义,那么不同电压域就能够被分开来处理,每个电压域能够用传统流程来处理。然而,在整合的阶段,每个电压域的电源线与地线需要被显示正确连接到的供应电压,而信号跨过不同的电压域将需要做电平移位,隔离或不断电(always-on)逻辑的处理来确保每个连接的功能性与电性都没有受到损害。

所以基本上我们需要一个对每一个电源域基于模块的设计方法,这方法看起来要求跟现在设计的代码风格几乎一致,还要能减少人工处理网表时容易发生错误的方式。考虑到现在SoC设计的规模跟复杂度,一个加速SoC设计协作的方法也是必须的。

6电子设计自动化(EDA)

产业给的回响

电子设计自动化产业看到了客户的需求自然是不会错过,他们的回答是使用额外的电源规格作为输入来促进设计自动化,不修改现有的设计以及编码风格,一个典型的流程建议如图1。

没有额外的电源规格输入,工具将如过去实现单一电源的设计,当输入额外的电源规格,工具将电源的需求考虑进去而实现出多电压多电源的设计。

7核心方法学

因为工具对多电压多电源的处理能力是由额外加入的电源规格所引发,这样有助于探索电源规格的内容而得到更多的领悟。尽管规格本身告诉我们设计本身电源要求的意图,但真正的物理实现是需要包括额外的单元来处理在不同电压域之间电气方面的安全保护。总的来说,我们看到新的方法学要求设计的电源规格,针对电源管理定制的单元库以及支持针对多电压多电源低功耗设计的工具三者协同来完成。

7.1单元库

因为我们已经知道由单电压设计转到多电压多电源的低功耗设计包含了电源与地作为信号线的连接,在设计里头单元与端口(Port)需要处理电源与地的管脚将不可避免。我们能预见在Liberty里面必须要有新的句法(Syntax)来描述PG管脚才能支持电源与地等管脚的建模,相关的构成(Construct)以及属性(attribute)也需要用来应付不同电压域间的接口以及控制与保持(retention)逻辑的信号。

对标准单元,我们必须在Liberty的句法上关注下列各方面在建模式的考量:

需要对电源与地的管脚明确的建模

需要对输出管脚电源关断功能建模

需要特别详述对输入输出管脚相关的电源与地管脚

表2扼要说明在Liberty针对电源与地管脚的属性新的句法。

表3扼要说明针对特殊的电源管理单元在Liberty库里相对的句法。

智原科技已经将上述的特殊电源管理单元打包到PowerSlashTM锦囊里提供给客户开发低功耗应用的设计,锦囊里一般的内容如图2所示。

7.2电源规格与工具

电源规格如电子设计自动化产业所定义的,以UPF为例,对于一个低功耗设计已经完整的定义如下:

电源域

供给电源的网络

电源状态

电源防护策略

下列的工作可以视为对工具经典的规格要求:

划分电源域

指派以及连接电源/地轨

塞入不断电,保持以及接口逻辑

实现设计并且验证

图3 说明能加入电源规格的EDA工具促使多电压多电源设计自动化完成,所见的版图是客户在65 nm工艺下的低功耗设计。

我们看到了为了支持综合、静态时序分析、测试、仿真、形式验证以及布局布线工具等各个阶段的设计流程,下列的资料是必须要提供的:

在域里特殊单元的功耗以及相关的时序

在域里不断电,保持单元的行为建模

在域里特殊单元的开关行为建模

在域里个别域的电源开关行为建模

对接口逻辑特殊单元的功耗以及相关的时序

对接口逻辑不断电,保持单元的行为建模

对接口逻辑特殊单元的开关行为建模

除了个别域的电源开关行为建模是跟RTL行为仿真有关外,其他的资料能够被以各种单元库的形式来建模,所以EDA工具能够提供相应的操作。

8总结

由以上的讨论,我们知道新的方法学能够利用引入电源规格来自动化的处理多电压多电源设计,但这需要IP供应商提供相对应的单元库, 设计者要提供电源规格,EDA供应商要提供功能强大的工具来促使整个设计的自动化得以实现。

作为一个专业的IP供应商, 除了提供符合UPF规格的库外,智原科技进一步开发了内部使用的工具来提高ASIC客户准备电源规格的效率,这个服务也作为标准交付的一部分。

此外,电源规格应该是设计规划的一部分而且在设计的初期阶段就该被广泛地讨论与检视。从建模的角度,一个用户定制化的机制来支持新的电源管理特殊单元也已经被工具提供商所认可。

参考文献

[1]Synopsys Low Power Verification Tools Suite User Guide Version 2008.12, January 2009

[2]Synopsys Low-Power Flow User Guide Version B-2008. 09, September 2008

[3]Library Compiler User Guide: Modeling Timing, Signal Integrity, and Power in Technology Libraries Version B-2008.09, September 2008

[4]Unified Power Format (UPF) Standard Version 1.0, February 2007

作者简介

蔡旭回, IP技术部 经理 智原科技(上海)有限公司件。

开关电源原理及设计范文第5篇

    1实验平台的特点

    开放性设计平台具有通用性强、功能强大等优点,传统验证性实验箱具有成本低、性能稳定等优点,实验平台综合了两者的优点,具体特点如下。(1)通用性强,用途广泛。实验平台支持硬件电路及软件系统设计,同时满足开设传统电子电路实验及基于FPGA的大型综合设计性实验的要求。目前,该实验平台主要应用在通信原理、数字系统设计、数字电子设计、模拟电子设计等课程的实验教学中。同时,还广泛应用在学生课外创新实践活动中。(2)系统功能强大,支持二次开发。FPGA子板逻辑资源丰富,扩展接口众多,核心芯片全面支持NiosII处理器,不仅满足当前综合设计性实验的要求,而且基于FPGA的开放性可对实验平台进行二次开发,满足新技术、新实验的要求。(3)成本低,易于维护及升级。首先,当前商品化的通信实验平台价格昂贵,基本在万元价格,而该实验平台的成本大概为600元左右,大大节约了实验经费。其次,该实验平台的面板结构采用母板和子板相结合的形式,当核心处理芯片损坏或者需要升级换代时只需更换子板即可,避免了传统实验箱更换微处理器必须更换整个实验箱的弊病。(4)性能稳定,安全可靠,便于携带。实验平台采用220V标准电源供电,且配备箱式外壳,在实验室资源配置紧张时,学生可携带实验平台回宿舍等地实施实验,灵活方便。该实验平台已在本院实验教学中使用多年,故障率低,无安全事故发生。

    2实验平台的应用案例

    基于该实验平台设计了众多通信相关综合设计性实验,如“扩频通信收发系统设计”[12]、“DPSK调制解调系统设计”、“HDB3线路编译码系统设计”、“(7,4)汉明码编译码传输系统设计”等。基于扩频通信在移动通信中的重要地位,近年来常以“扩频通信收发系统设计”作为通信原理的课程设计题目。该实验不仅覆盖了通信原理众多重要的基础知识点,而且重在锻炼学生的电路分析设计及硬件系统软件化设计等实用的工程应用能力,是基于该实验平台典型的应用案例。下面以该实验为例,讲述实验的设计以及实验平台在实验过程中的应用。

    2.1扩频通信收发系统设计

    “扩频通信收发系统设计”实验的功能及实现要求如下(见图4):在实验平台上设计实现扩频通信收发系统,发送端将多路信息源信号复接后通过扩频调制、DPSK数字调制处理后发送出去,接收端从接收信号中准确提取位时钟信号和帧同步信号,经过扩频解调并拆分出多路信号,还原出与发送端信息源一致的数字信号。实验要求DPSK解调在实验平台母板上以硬件的方式实现,发送端以及接收端中的数字信号处理部分功能采用软件设计并分别固化到FPGA子板的收发子系统上,最后通过整机联调完成实验任务。

    2.2实验平台在扩频通信收发系统设计实验中的应用及效果

    实验的基本流程如图5所示。在实验准备阶段,给学生发放实验指导书及提供实验平台,学生通过查阅相关资料,熟悉软硬件平台并根据实验要求确定可行的实验方案。在实验设计阶段,强调学生的自主创新设计及实验动手能力锻炼。学生在ALTERA公司提供的QUARTUSII设计平台上,应用原理图的方法或者采用VHDL等硬件描述语言按实验要求编程设计扩频通信收发系统发送端及接收端的信号处理部分功能,或者利用MATLAB中提供的动态系统模拟、交互式仿真分析软件Simulink对扩频通信收发系统进行建模设计。软件设计完毕并仿真通过后,通过FPGA子板上的JTAG接口把设计程序下载到实验平台的收发子系统中,配合BPSK解调电路及自行设计的归零码电路进行软硬件综合调试以验证整个扩频通信收发系统是否满足实验要求。调试完毕后,通过FPGA子板上的AS接口固化设计程序。在实验验收阶段,采取现场实物验收方法,验收通过后撰写相关实验报告,实验完毕。“扩频通信收发系统设计”作为通信原理的课程设计题目实施多年,教学效果显着。学生普遍反映,该实验平台性能稳定,接口齐全,使用方便;利用该实验平台完成“扩频通信收发系统设计”实验的过程中,不仅系统地掌握了扩频通信相关知识和FPGA设计技术,学习了电路设计、故障定位及排查的方法,而且培养了发现问题、解决问题和综合运用知识的能力,提高了创新设计及实验动手能力。