首页 > 文章中心 > 机器人的机械设计

机器人的机械设计

机器人的机械设计

机器人的机械设计范文第1篇

关键词:双足步行机器人;步进电动推杆;步态设计;步行机理

注:福建省中青年教师教育科研项目(编号JA15589)

双足步行机器人配置了多个自由度,其运动的灵活性大为增强。可以通过摆动关节调节机器人的下肢高度来调节重心,所以其稳定性很高,不容易跌倒。双步行机器人还可在颠簸或有障碍的路面行走作业,特别是对泥土、沙子、石头地形的适应性较强,因此机器人行走时不用去考虑地形的好坏和腿部的放置位置是否合适,相比其他移动式的机器人在灵活性和机动性方面更胜一筹。

1 步态设计

机器人合适的步态连续步行运动的关键。以下两种是最为常用的步态设计方法:

基于仿生的步态设计:由于人造的双足步行机器人不可能做到百分之百模仿人类的行为举止,所以不能将仿生步态直接用于步行机器人。目前主要解决方法是将人的步行运动数据记录进行修正,然后再用于双足步行机器人。

基于分析、构造的步态设计:这种方法是有条件限制的,只有在满足步行稳定性的前提下,根据步行参数和机器人自身结构,确定双足步行机器人各个关节的运动轨迹。

2 自由度的配置

本文的双足步行机器人仅实现直线行走、静态转弯,最终决定骸关节配置2个自由度,包括俯仰和偏转自由度,膝关节配置1个俯仰自由度,踝关节配置有俯仰和偏转2个自由度,每条腿配置5个自由度,两条腿共12个自由度。骸关节、膝关节和踝关节的俯仰自由度共同协调动作可完成机器人的在径向平面内的直线行走功能;骸关节和踩关节的偏转自由度协调动作可实现在侧向平面内的重心转移功能;上述关节的自由度共同协调可实现机器人的静态转弯功能。

3 步行机器人选材

步行机器人的选材主要从工作环境、机械强度、外观视觉等几个方面去考虑,设计的机器人要能适应各种不同的工作环境。因为在日常生活中不确定因素太多,所以为了能保证机器人的稳定运行,要充分考虑各种能影响到稳定运行的可能性,特别是生活中一些带有腐蚀性的物质,所以选材料必须能耐腐蚀、耐磨损、耐高温。考虑到步行机器人的运动特性,在材料上要选择较高的抗拉强度、硬度和韧性,同时也要兼顾步行机器人的外观视觉,一个好的产品总能给人一个好的品相。为保证步行机器人的良好的综合性能,选用316L奥氏体不锈钢作为机器人的材料是再好不过的。316L奥氏体不锈钢可耐多种介质腐蚀、尤其是抗击点蚀效果显著,具有优秀的机械特性且光泽度好,外观漂亮。

4 驱动元件的比较与选择

1)直流电机

直流电机是机器人平台的标准电机,它功率调节范围宽、适应性强、性价比高、适用范围很广,很多轮式机器人都采用的直流电机。直流电机可以运行在8000-20000r/min之间,甚至更高。因此需要安装齿轮减速器,来降低电机转速,同时也增大了电机的转矩。在机器人上我们可以直接使用减速电机,但这无形中给机器人的电源增加了负担。

2)步进电机式电动推杆

直线电机也称推杆电机,是一种将旋转运动转变为推杆的直线往复运动的电力驱动装置。原理:电动机经齿轮减速后,带动一对丝杆螺母。把电机的旋转运动变成直线运动,利用电动机正反转完成推杆动作。电动推杆在一定范围行程内作往返运动,一般电动推杆的负荷和行程也可根据不同应用条件要求设计定做。相比其它电机直线电机有着以下优点:设计新颖精致、体积小、精度高、完全同步、自锁性能好、卫生,电机直接驱动,不需要管道的气源、油路。由于双足步行机器人要求的精度要求比较高,而直流电机通电就转,断电后在惯性作用下又不会马上就停,比较难进行机器人的位置控制;并且从体积小、高力矩、高精度、稳定性好、控制简单、装配灵活、等因素去考虑,选择步进电机式电动推杆来作为驱动元件为佳。

3)控制元件的选择

本课题设计中采用三菱FX2N_64MT_D 型PLC。三菱PLC是日系品牌,指令较多,编程直观易懂,学习难度较低,对于本科阶段的设计者来说是一个很好的选择。该型号的PLC 属于整体式的PLC,相对来讲比较节省空间,且输入输出都是28点的,可以留有一些余量,对于以后的开发很有益处,且三菱的FX2N系列PLC 寿命较长,可以减少日后的维护保养工作。

5 结构设计

双足步行机器人的腰部是联接两条腿的桥梁,是机器人实现行走不可或缺的元件,本O计方案中腰部还被要用来实现机器人的转弯动作。利用三维软件PRO/E对机器人腰部三维建模,髋关节的仿生设计效果图如1所示

1) 足部机构设计

足部关节的仿生设计如2所示

为了使机器人在行走过程中更加平稳,需考虑在足部增加个减震机构,利用弹簧的变形压缩来缓冲行走过程中的震荡。其示意图如3所示

未来的机器人行为姿态将高度模仿人类的肢体动作,完成各种高难度的动作,不再是一步一步地按部就班地去施行人的指令,而是有思维地去思考,以最优化最合适的方法去施行;未来机器人的外表和五官将与人类无异,采用人造肌肉,人造皮肤和五官,你有可能用肉眼根本就无法判断出来。总的来说未来机器人将朝着人工智能、自我意识、高度仿真、高度集成化的方向发展。

机器人的机械设计范文第2篇

关键词:中国制造2025 机械电子工程专业 机器人实践教学平台 能力培养

中图分类号:G642 文献标识码:A 文章编号:1674-098X(2017)01(c)-0160-04

实践教学是高校机械电子工程专业不可或缺的重要教学环节,其在培养学生创新思维和实践动手能力方面具有重要意义。机器人教学平台是高校开展实践教学,培养及提高学生创新能力的最佳平台。当前,我国正处于“中国制造2025”战略发展时期,高校机械电子工程专业作为制造业人才培养的主体机构,积极开展机器人实践教学平台建设,正是响应国家智能制造战略“以人为本”的基本方针,充分把握智能制造业人才培养市场机会,顺应高校实践教学发展趋势,提高学生实践和创新能力,适应智能制造发展对高素质机械电子工程人才需求的重要工作。

1 高校机械电子工程专业机器人实践教学平台建设的必要性

1.1 高校助力“中国制造2025”的重要措施

2015年5月8日国务院公布的为强化高端制造业的国家战略《中国制造2025》明确提出“以人为本”的基本方针,强调“坚持把人才作为建设制造强国的根本”,“加快培养制造业发展急需的专业技术人才”,“以高层次、急需紧缺专业技术人才和创新型人才为重点,实施专业技术人才知识更新工程和先进制造卓越工程师培养计划,在高等学校建设一批工程创新训练中心,打造高素质专业技术人才队伍”[1]。高校机械电子工程专业是培养制造业人才的主体。机器人教学平台是高校进行工程训练,开展实践教学,培养提高学生创新能力的最佳平台[2]。因此,高校机械电子工程专业应依托机器人实践教学平台,加强新型制造业人才培养力度,提高制造业人才整体素质,以响应制造业强国战略、助力“中国制造2025”。

1.2 把握智能制造人才培养市场机会的客观要求

高校人才培养要关注新问题,迎接新挑战[3]。当前,我国正处于传统制造向智能制造的升级转变阶段,智能制造也是“中国制造2025”战略发展的主攻方向。要实施“中国制造2025”发展战略,达到中国制造强国的发展目标,必然需要大量具有以机器人和数控机床为代表的自动化、智能化装备专业背景知识、具备创新设计能力和自动化、智能化产品研发和制造能力的高素质制造业人才[4]。然而,目前我国制造业人才中高级技工人数仅占5%,远低于欧美制造业强国35%~40%的平均水平,而且具有大学本科学历的制造业工人的数量也甚少[5]。实践教学是高校人才培养的重要环节,而机器人平台是开展工程实践训练,培养学生创新思维和实践能力的最佳平台[2]。因此,高校应把握新形势下的人才需求市场机会,积极建设机器人实践教学平台,提升高校机械电子工程专业人才培养质量,增强学生综合能力,适应智能制造发展对高素质制造人才的需要。

1.3 机械电子工程专业人才培养中实践教学的发展趋势

机器人是典型的机电一体化系统,它融合了机械、电子、单片机软硬件、传感器、通讯和自动控制技术等众多先进技术,涉及单片机、C/C++语言、传感器、机械设计、自动控制技术、无线通讯等专业课程知识内容,被称为“当代最高意义上的自动化”。机器人实践教学一直是个热点,其在培养学生实践创新能力方面具有重要作用。早在1970年,麻省理工学院(MIT)机械电子工程系的H.H.Richardson教授就采用了《设计课程导论》课程,并将其改造成一项设计竞赛,成功开创了“工程导向式”培养模式的先河,目前它已经成为全世界众多遥控机器竞赛和机器人比赛的典范[6]。此外,美国、日本、德国、法国和韩国的高校都开设了机器人课程。其中,美国高校不仅开设了诸如《机器人学》《机器人学导论》这样的机器人相关理论课程,它们还将机器人作为课程的学习平台以提高学生的工程实践能力和创新能力。近年来在国内,清华大学、北京航空航天大学、哈尔滨工业大学、西安交通大学等传统工科优势高校也相继以教学机器人或者改造过的工业机器人为载体,开展了工程实践课程或者相关活动,并取得了一些成效。依托机器人平台,已成为高校实践教学发展的大趋势,高校要顺应这一趋势,大力开展机器人实践教学平台建设,提高高校教学质量。

1.4 有限实验条件下的有效人才培养措施

实践教学活动是工科院校人才培养的重要组成部分,但是很多院校由于实验经费投入不足、实验人员数量不足、实践教学活动时间少等原因,导致学生的培养质量下降。选择通用的实践教学平台、构建合理的课程体系是实现“有限实验条件下的有效人才培养”的重要措施。具有高度综合和学科交叉性质的机器人实践教学平台,同时具备机械、电子、自动化、计算机等学科的实践教学功能。构建高校机械专业机器人实践教学平台是解决工科院校在有限实验条件下,进行人才培养的有效措施。

2 机械电子工程专业机器人实践教学平台建设的目标和基本思路

2.1 建设目标

机械电子工程专业机器人实践教学平台旨在以机械臂教学平台、各种传感器模块、开放式控制器平台、轮式移动机器人教学平台、机电一体化综合应用等几大机器人教学平台为载体,通过分年级、分层次的模块化能力培养模式,实现专业课程体系的理知识和机器人实践教学平台的有效衔接,从而达到机械电子工程专业的培养目标,即:培养掌握基本数学和自然科学知识;具备坚实的机械学科的基本理论和机械电子工程专业知识;具有从事机械电子工程行业所需的数值计算与分析能力、机构设计与分析能力、控制系统设计与分析能力、工程实践综合运用能力;胜任机械电子工程领域的研究开发、设计制造、技术经济管理等岗位的智能型制造人才。

2.2 基本思路

结合智能制造人才的内涵,依据解决工程问题的能力需求,我们认为智能制造时代机械电子工程专业大学生应具备4类基本能力,即数值计算与分析能力、机构设计与分析能力、控制系统设计与分析能力、工程实践综合运用能力。对应这4个能力模块,将机械电子工程专业机器人实践教学划分为4个层次,即:关注数值计算与分析能力培养的基础实验、关注机械设计与分析能力培养的拓展实验、关注控制系统设计与分析能力培养的提高实验、关注工程实践综合运用能力培养的综合实验。基本建设思路如图1所示。

2.2.1 基础实验

基础实验的适用对象为大一学生,旨在帮助大一学生了解和掌握工科专业基础知识,强化数值计算与分析能力的培养。实验内容涉及的课程主要包括《Matlab程序设计与应用》《工程数学》《工程力学》。实验项目包括:(1)基于“机械臂教学平台”和“轮式移动机器人教学平台”,运用《工程数学》的基本数学理论知识,结合Matlab的Robot工具箱进行机器人运动学分析,使学生深入理解数学的基本概念和基本方法,掌握微积分运算、矩阵运算、线性方程组运算的方法,培养学生使用数学工具、建立数学模型解决实际问题的意识与能力,并培养大学生运用数学知识解决工程实践的能力。(2)以《工程力学》基本理论为基础,以“机械臂教学平台”和“轮式移动机器人教学平台”的传动轴设计为研究对象,利用Matlab进行建模、仿真,根据运算结果输出传动轴的弯矩图、扭矩图及合成弯矩图,对机器人传动轴进行校核与优化设计。(3)以机器人教学平台为基础,在《工程数学》《工程力学》等课程的学习过程中,借助Matlab软件强大的计算、仿真和绘图功能,激发学生的学习兴趣,培养学生独立思考问题的能力,在奠定工程理论基础的同时达到培养学生数值计算与分析能力的目的。

2.2.2 拓展实验

拓展实验的适用对象为大二学生,旨在帮助大二学生了解和掌握机械电子工程专业的相关知识,强化机构设计与分析能力的培养。实验内容涉及的机械专业基础课程有《金属工艺学》《工程制图》《机械原理》《机械设计》《互换性与测量技术》《基于SolidWorks的机械CAD/CAE》等。其中,学生通过《基于SolidWorks的机械CAD/CAE》课程的学习,要能使用SolidWorks软件进行机构设计与分析。因为,SolidWorks软件以其强大的工程图设计、零件建模、装配体建模、钣金设计、模具设计、机构运动仿真、机构力学分析、机构优化、计算液体力学分析、虚拟样机等功能,目前在航空航天、机车、食品、机械、国防、交通等领域得到广泛应用。在国外,包括麻省理工学院(MIT)、斯坦福大学等在内的著名大学都已经把SolidWorks列为制造专业的必修课。在国内,清华大学、华中科技大学、哈尔滨工业大学、北京航空航天大学、大连理工大学、北京理工大学、武汉理工大学等一批具有机械电子工程优势专业的高校也都在应用SolidWorks开展实践教学。实验项目包括:基于“机械臂教学平台”和“轮式移动机器人教学平台”,利用SolidWorks软件进行机器人关键零部件的3D设计、机构运动学仿真、机构优化设计,在具备一定的设计基础后进行新型机器人运动机构的设计与开发,最终达到机构设计与分析能力培养的目的。

2.2.3 提高实验

提高实验的适用对象为大三学生,旨在帮助大三学生了解和掌握电气与控制相关专业知识,强化控制系统设计与分析能力培养。提高实验涉及的课程为电气与控制专I课程,不同课程实现不同能力与技能的培养。如通过学习《电路基础》《电工电子》课程,要求学生掌握基本的电路设计方法;通过学习《C/C++语言程序设计》《单片机应用技术》《微机原理与接口技术》课程,要求学生掌握控制系统设计的方法;通过学习《机械工程控制基础》《传感器与测试技术》《机械故障诊断》《Labview虚拟仪器技术》课程,要求学生掌握基本的控制理论;通过学习《PLC原理与应用》《液压与气压传动技术》《机电传动控制》课程,要求学生掌握常用执行机构的工作原理及应用方法。该实验模块的内容包括:(1)基于“开放式控制器平台”,利用单片机、工控机、PC机、PLC等控制器实现电机、液压缸、液压马达、气压缸等常用执行器的运动控制,掌握开放式运动控制器的应用与开发方法;(2)基于“各种传感器模块”平台,利用Labview软件,掌握各类传感器的使用及信号采集与处理方法;(3)基于“开放式控制器平台”“各类传感器模块”“机械臂教学平台”和“轮式移动机器人教学平台”,根据控制理论,通过设计C/C++控制程序,实现机器人的运动控制,并通过Matlab的Simulation工具箱对控制系统进行分析。

2.2.4 综合实验

综合实验的适用对象为大四学生,旨在帮助大四学生了解和掌握机械电子工程的专业知识,强化工程实践综合运用能力。综合实验要求大四学生通过《机器人技术》《数控加工技术》《工业设计》《工业系统工程》《自动化产品设计》和《自动化生产线设计》等课程的学习,基于各类机器人教学平台,以课程设计、毕业设计的形式,进行以工程应用为导向的各类课题的研究。以工程应用为导向的相关的课题包括:传感器类课题(机器人路径规划、移动机器人精确定位研究、传感器信号采集及处理)、运动控制类课题(基于PID控制的机器人轨迹跟踪、移动机器人控制方法研究、开放式机器人控制器研究)、机器人系统类课题(新型机器人系统开发、机器人寻迹、机器人避障、机器人灭火)、图像处理类课题(视觉伺服控制、机器人视觉信息处理、运动目标跟踪)、人机交互类课题(语音识别技术研究、手势识别技术研究)、工业现场类课题(自动包装生产线研究、自动化仓库研究)。通过工程应用前景明确的课题的研究,实现机电一体化产品开发能力的培养。

3 机械电子工程专业机器人实践教学平台的实践效果

河南工业大学机电工程学院以现有机械电子工程训练中心为基础,在学校实验室建设专项经费支持下,规划建设了机械电子工程专业机器人实践教学平台。长期的实践教学表明,机器人实践教学平台对促进学生能力培养,激发学生的学习兴趣,提高人才培养质量有重要作用。

3.1 培养了学生从事机械电子工程专业所需的能力

专业能力培养是机械电子工程专业的重要教学目标。通过以能力培养为导向的专业课程体系群学习后,学生掌握了工科专业基础知识和机械电子工程专业知识;通过基于机器人教学平台的实践教学环节的培养后,学生具备了从事机械电子工程行业所需的数值计算与分析能力、机构设计与分析能力、控制系统设计与分析能力和工程实践综合运用能力。其中,在工程实践综合运用能力培养过程中,基于机器人教学平台,运用工程软件解决复杂工程问题的培养效果尤为明显。如运用Matlab进行工程计算、运用Matlab Simulation进行控制系统仿真、运用SolidWorks进行机构3D设计、运用SolidWorks Simulation进行机构力学特性分析与仿真、运用SolidWorks Flow Simulation进行流体力学分析、运用Labview进行控制系统构建、信号采集与处理等,极大地提高了学生解决复杂工程问题的能力。

3.2 激发了学生的学习兴趣,提高了人才培养质量

趣味性是学习的原动力,基于机器人教学平台的实验教学模式以工程应用能力为培养目标,以工程问题为研究对象,有效地提高课程的趣味性,增强了学生的学习主动性。通过组织小组对抗赛、校内机器人大赛、校间机器人大赛,充分调动了学生学习的积极性、主动性;通过组织参加挑战杯、机械设计创新大赛,提高了学生的创新思维能力,实现了工程应用能力培养的目的,在提高人才培养质量的同时,大大提高了大学毕业生的首任职业胜任率。

4 结语

针对机械电子工程行业对数值计算与分析能力、机构设计与分析能力、控制系统设计与分析能力和工程实践综合运用能力的需求,构建基于机械臂、传感器模块、开放式控制器平台、移动机器人和机电一体化系统的机械电子工程机器人实践教学平台,建立包括基础实验、拓展实验、提高实验和综合实验的分层次实验体系。实践教学效果表明,机器人实践教学平台对于培养大学生综合能力,激发学习兴趣,提高培养质量有重要作用。

参考文献

[1] 于志晶,刘海,岳金凤,等.中国制造“2025”与技术技能人才培养[J].职业技术教育,2015(21):10-24.

[2] S文恺,陈虹.机器人创新性教学平台的实践与探索[J].今日科苑,2009(5):131-132.

[3] 钟秉林.大学人才培养要研究新问题,应对新挑战[J].中国大学教学,2013(7):1-2.

[4] 周济.智能制造――“中国制造2025”的主攻方向[J].中国机械工程,2015(17):2273-2284.

机器人的机械设计范文第3篇

【关键字】 压力容器 机械强度 设计模型 存在问题 可靠性设计

在压力容器的机械强度可靠性设计中,尺寸是设计需要重点参考的数据,科研人员必须根据不同压力容器的实际情况对可靠性进行设计。可以将压力容器的机械强度可靠性分为设计-生产-使用-保养等步骤[1]。机械强度的可靠性设计是一项较为复杂的过程,本文首先对压力容器机械强度可靠性设计进行了简单的分析,并进一步探讨了进行压力容器机械强度可靠性设计的方法。

一、压力容器机械强度可靠性设计的理论基础

1、可靠性含义。压力容器可靠性是指其在特定的情况下,能够让使用功能满足用户的需求,并且在使用的过程不发生故障性质。与压力容器机械强度可靠性存在密切关联的因素有使用环境、环境温度、消费者使用需求以及应力O等,压力容器机械强度的可靠性和压力容器的使用时间存在密切联系,随着压力容器使用时间的延长,压力容器机械强度的可靠性逐渐降低,也正是由于有可靠性的存在人们才对压力容器产生了使用寿命的认识[2]。无论是电子产品还是人们日常生活用品,研究可靠性都是非常有必要的。随着国家经济水平和人们生活质量的提升,人们对压力容器的要求也越来越高,在科技发展的支持下,压力容器可靠性得到了大幅度的提升,由于可靠性在一定程度上体现了一个国家的实力水平,因此产品的可靠性研究具有非常重要的意义。

2、理论基础。根据国家标准,压力容器设计应充分的考虑实际厚度和计算厚度的附加值。实际厚度的附加值是指筒体的腐蚀裕量和材料得到实际厚度误差,材料的实际厚度误差是根据材料标准中所规定的误差范围进行计算[3],而筒体的腐蚀裕量则指的是压力容器中所装的物体对材料腐蚀速率的影响和对压力容器的预期使用时间的计算等。通过长期实践研究表明,我国大部分的压力容器机械强度可靠性设计,在对使用寿命进行计算的弹性失效的中径公式都是将其设为极限情况,计算并没有考虑到腐蚀裕量,所以所得出的结果与实际存在差别。一般情况下压力容器机械强度的可靠性设计可以分为6个步骤:(1)计算压力容器的可靠度和强度系数;(2)根据公式计算出容器的故障概率;(3)利用所计算出故障概率计算压力容器的可靠度;(4)计算出生产材料能够承受的负载强度;(5)计算出压力容器的应力均值;(6)利用计算出的各项结果确定压力容器的预算厚度[4]。

二、进行压力容器机械强度可靠性设计的基本方法

1、注重极限情况。在压力容器使用的过程中,筒体的厚度会发生较大的变化,并且其也会在筒体应力的作用下发生一定的改变,所以进行压力容器机械强度可靠性设计,需要充分的考虑压力容器所装物体对筒体的腐蚀速率。科研人员在应用公式对压力容器使用过程中的筒体厚度进行计算时,必须注重可靠性受到破坏的情况:a、压力容器筒体发生屈服失效;b、压力容器筒体发生断裂;科研人员必须仔细分析压力容器在极限情况下失效问题,最大限度的提升压力容器的抗压值,提升压力容器机械强度的可靠性。

2、精确计算压力容器的筒体厚度。在二十世纪五十年代,科研人员在对路合金强度进行研究时,变证明了在实际条件中材料腐蚀深度的分布,随着研究范围的扩大,材料在实际情况下的腐蚀深度相应的研究成果也越来越多。所以在进行压力容器腐蚀裕量计算时,可以计算出压力容器最初的筒体厚度。如果某压力容器的筒体厚度是23mm,根据蒙特卡罗的模拟方法可以计算出十年后该压力容器的可靠性是0.9的五次方,大量实践表明,压力容器的厚度会随着时间延长发生变化,但是需要注意的是,压力容器在使用年限中应当保证可靠性在0.9五次方以上。

3、合理应用受压材料。受压材料对压力容器机械强度可靠性的影响较大,因此受压材料的应用应当根据介质腐蚀性强度、设计压力进行计算,一方面受压材料还会受到介质易燃、易爆特性的影响,压力容器所使用的材料必须满足国家规定的标准和实际应用的需求。另一方面,科学、合理的结构对压力容器的可靠性也存在一定的影响,需要加以重视。

结语:现阶段我国在压力容器机械强度的可靠性设计方面较为随意,没有明确的规定。压力容器机械强度可靠性设计的主要目的是确保压力容器的机械强度能够符合安全要求,外界环境、应力和经济水平都是对压力容器机械强度可靠性设计的考量,所以加强压力容器机械强度的可靠性设计应当引起人们足够的重视。

参 考 文 献

[1]蔡克霞,.压力容器强度可靠性平均安全系数校核[J].哈尔滨工业大学学报,2003,35(12):1496-1498.

[2]刘小宁,张红卫,刘岑等.钢制压力容器静强度可靠性设计的关键技术[C].//第七届全国压力容器设计学术会议论文集.2010:86-93.

机器人的机械设计范文第4篇

关键词:压力容器;机械强度;可靠性设计

DOI:10.16640/ki.37-1222/t.2015.24.040

在压力容器的机械强度可靠性的设计当中,压力容器的大小是其设计需要重点参考的数据,科研人员需要充分考虑不同压力容器的实际情况的不同,然后再对其可靠性进行符合其自身的设计,因此,压力容器的机械强度可靠性主要划分为设计、生产、使用、保养四大主要步骤。压力容器的机械强度可靠性设计是一个极其复杂的过程,本文将主要针对其机械强度、可靠性的概述进行简单的分析,并通过利用假设方法建立模型讨论压力容器机械强度的可靠性。

1 理论方法

1.1 可靠性设计的理论基础

按照国家目前的标准,压力容器的大小设计应该充分考虑其筒体的计算厚度和实际厚度的附加值两大重要数据。实际厚度的附加值主要是指材料的实际厚度误差以及筒体的腐蚀裕量,其中,材料实际厚度的误差主要是以材料标准中规定的误差范围来进行统一计算的,而筒体的腐蚀裕量主要是指压力容器所盛放的物体对于其材料腐蚀速率的影响以及预期使用寿命的平均值计算等。通过多次的实践研究发现,在我国绝大部分压力容器的机械强度可靠性设计过程中,筒体材料使用寿命的计算中,弹性失效的中径公式的使用都假设为在极限情况下,接着便计算该极限情况下压力容器筒体的预期使用寿命,在其计算中并未考虑到压力容器筒体的腐蚀裕量,因此,在我国很多相关性的学术研究中压力容器筒体使用寿命的计算往往只根据压力容器以及其机械强度的可靠性。

1.2 可靠性设计的步骤

在一般情况下,压力容器的机械强度的可靠性设计主要划分成为六大主要步骤,第一步,计算压力容器的强度系数以及其可靠度;第二步,按照计算公式得出压力容器的故障概率F=I=R;第三步,利用前一个步骤得出的故障概率计算压力容器的可靠度;第四,计算生产材料的所能承受负载的强度;第五,利用之前计算的可靠度并通过公式得出压力容器的应力均值;最后,利用各项计算结果和测量数据确定压力容器的预算厚度。

2 可靠性的简述

2.1 可靠性的定义

压力容器的可靠性主要是指在特定情况下,其使用功能不仅能够满足消费顾客的使用要求,并且在压力容器的使用过程中不出现任何故障的性质。与压力容器的机械强度可靠性密切相关的因素主要有温度、使用环境、应力以及消费者的使用要求等。压力容器的机械强度可靠性与压力容器的使用时间息息相关,随着使用时间的增长,压力容器的可靠性也在不停地随之降低,因此,可靠性的存在使人们对于压力容器有了使用寿命的概念。

2.2 可靠性研究的实际意义

无论是日常用品还是电子产品,可靠性的研究对于其使用来说都十分重要,尤其是一些比较重要的产品,例如航空零件、武器装备、电子产品等,其可靠性与一个国家的实力水平密切相关。随着生活质量和经济水平的发展,顾客对于压力容器的可靠性开始提出了更加严格的要求,并且,随着科学技术的发展,压力容器的可靠性也有了很大的提升,由于产品的可靠性在个人生活和国家实力的体现上都着及其重要的作用,因此,产品可靠性的研究便有着其无可替代的特殊意义。

3 压力容器的机械强度可靠性设计的基本方法

3.1 重视极限情况的存在

压力容器在使用的过程中,其筒体的厚度会产生比较大的变化,与此同时,筒体在应力的作用下,也在随之发生变化,因此,在压力容器的机械强度可靠性设计过程中,需要充分考虑筒体所盛放的介质对于筒体腐蚀速率的作用,相关科研人员需要利用公式计算压力容器在使用过程中筒体的实际厚度,与此同时,压力容器的筒体在受到应力的情况下,可靠性受到破坏的情况有两种,一种是压力容器的筒体发生了屈服失效的情况,第二种情况是压力容器的筒体产生了断裂。因此,科研人员需要分析压力容器在极限情况下发生的失效,在最大程度提升压力容器的抗压值,提高其可靠性。

3.2 精确压力容器筒体的厚度计算

在上个世纪50年代,科研人员在研究路合金的强度时,证明了实际条件下材料的腐蚀深度的分布,后来,随着研究范围的不断扩展,关于实际情况下材料腐蚀深度研究的成果也越来越显著。因此,对于压力容器筒体腐蚀裕量的完全可以计算,并可以计算出压力容器筒体的最初厚度。根据蒙特卡罗的模拟方法可知,若压力容器筒体的厚度为23毫米,则十年之后,压力容器的可靠性为0.9的五次方。因此,通过大量的实践分析证明,压力容器筒体的厚度会随着时间的增长而发生变化,但是需要保证的是,在压力容器的使用年限中,其可靠性必须大于0.9的五次方。

3.3 受压材料的合理使用

受压材料的使用对于压力容器的机械强度可靠性具有极其重要的影响,受压材料的使用要根据设计压力、外界环节、以及介质的腐蚀性强弱等,同时,介质易燃、易爆等特性都直接影响到受压材料的采用,压力容器的材料需要能满足其工作是的工作要求以及国家的规定标准,同时,合理的结构对于压力容器的可靠性也有着极其重要的影响。

4 结论

目前,我国压力容器的机械强度可靠性设计都较为随意,没有对于压力容器可靠性的明确要求,而以上的可靠性方法主要通过公式、假设等进行分析概括。压力容器的机械强度可靠性设计的主要目的是为了时压力容器的机械强度能够达到安全水平,经济水平、外界环境以及应力等都是对压力容器的机械强度可靠性设计的最终考量,因此,压力容器的机械强度可靠性设计具有极其重要的作用。

参考文献:

[1]孙维国.对压力容器的机械强度可靠性设计的简单探讨[J].科技资讯,2012(18).

机器人的机械设计范文第5篇

关键词:工程机械 远程监控 监控系统

0 引言

随着我国公路、铁路及其它公共设施的基础建设规模日趋扩大,及机械化程度越来越高,工程机械在建设领域扮演着越来越重要的作用,但由于工程建设项目战线长、分布广、地域跨度大,管理维护人员不足,工程机械的远程监控成为制造、租赁、使用单位不得不考虑的问题。伴随着网络通讯技术的发展,使得工程机械远程监控成为可能,可以实现对远程工程机械设备的定位跟踪、实时在线监控、远程调试、故障报警及维护、专家诊断等功能,最终实现对工程机械的远程监控。

1 工程机械远程监控系统

该系统是利用计算机检测技术、无线通讯技术、卫星定位技术,全面检测运行中的机械设备的位置和施工进度,并向调度室实时传输检测数据作进一步分析;如果在设备操作过程中出现问题,设备操作人员也能利用工程机械远程监控系统将故障信息传输至调度室,由调度室远程指导修整措施。工程机械远程监控系统在施工现场的应用,有助于优化机械化施工组织设计,大幅提升机具设备的管理水平,在保证工程质量的前提下缩短施工周期,从而提高经济效益。该系统由机械工作状态检测系统、卫星定位信号接收装置、无线数据通讯系统和远程监控中心构成。设备运行状态检测系统需要安装传感器,传感器将设备运行参数通过转换器传输至计算机。远程监控重心也可以实时接收由设备操作人员传输的设备故障等相关问题。在设备上装设卫星定位信号接收装置,接收信号后自动计算该机械所在的经纬度。远程监控中心负责管理整个监控系统,管理者可通过远程指令实时监控并测评机械设备的位置和运行状态,提出扩大经济效益的建议。同时还可以通过检测和分析工程机械的运行状态,对大型工程机械及其配套机械进行优化调度,以提高机械化施工组织水平和机械的生产效率。

2 工程机械远程监控系统发展历史及现状分析

从70年代初发展至今,工程机械监控系统历经四个阶段。

2.1 SDM (传感与诊断系统)是早期的车辆数据记录仪,传感和诊断功能与安全气囊配合使用,基于传感器的输入信号判断能否引爆安全气囊及安全带预紧器。碰撞事故发生前几百毫秒的车辆运行数据可以通过SDM记录下来。

2.2 EDR (车辆事故数据记录器)基于传感与诊断模块发展至今,属专用运行状态监测器。该记录器的监测功能各飞行器上的“黑匣子”极为相似。EDR可记录碰撞事故发生前五秒和引爆安全气囊后300毫秒的车速、发动机转速、节气门角度等参数信息。

2.3 工程机械数据记录仪专门用于记录工程机械的数据参数。该仪器设有标准数据接口,工程机械的前端单元控制系统向该仪器实时传输设备运行参数,工程机械数据记录仪将接收的参数信息储存于内设的存储器上。工程机械数据记录仪与车辆事故数据记录器一样,操作者应该在施工现场直接下载仪器中存储的数据信息来获取机械历史作业参数。

2.4 工程机械远程监控系统以车辆数据记录仪为核心,通过扩展GPRS无线通讯模块与GPS全球定位系统远程监控行车状态。工程机械远程监控系统能够对车辆进行实时跟踪和定位,使操作者和管理者实时掌握车辆运行状态,提高施工作业的安全系数。

当前,全球领先的工程机械公司所设计的机械设备均已装设车载监控系统,该系统内设GPS、GPRS、车载计算机和液晶显示装置,车载监控系统向中央控制系统实时传输机械设备运行时的技术参数、施工进度等信息。但国内工程机械监控系统在某些方面仍存在缺陷:

功能单一:我国对车载监控系统的研究刚刚起步,产品的功能设计过于单一,操作性能一般,无法满足客户对远程测控的需求。

机群化管理水平较差,维护成本高:基于车辆数据记录仪的工程机械车载监控子系统主要通过CAN总线、RS.232/485总线、通用输入输出端口(GPIO)接收相应总线传输来的包含设备运行参数的数据信息,并将其储存在存储器中。管理者定期利用PDA或笔记本电脑等终端设备下载并分析数据参数,以实时监控机械设备的运行状态。该监控系统数据存储空间有限,而且在实际应用过程中需要定期维护,维护成本较高。

可靠性、安全性考虑不足:恶劣的工地环境要求车载监控系统必须具备较强的适应性,以免无关人员随意变更数据参数,存储器能为工程人员提供第一手设备运行参数,以缩短设备维护时间,提高工作效率。但是,国内设备的防护能力、数据安全保密性能和稳定性较差,甚至达不到国标要求。近些年,美国出台了IEEE Std 1616-2004车辆数据记录仪标准,要求设备生产商严格把控设备环境适应性、数据安全、防护等级等方面的质量,以确保安全施工。

工程机械拥有者不能实现远程管理与维护。

以上系统一般由工程机械制造商开发,设备购买者并不能直接使用。

3 工程机械远程监控技术研究

本文的研究目的是为了满足中铁航空港建设集团有限公司对其拥有的工程机械实现远程管理要求,开发工程机械远程监控系统。这套系统应满足设备参数数据采集的基本要求,以协助工程人员实时监控设备运行状态。

该系统包括两个组件,即车载监控系统(包括设备工作状态检测系统、无线数据通讯系统和卫星定位信号接收装置)、远程监控系统(包括监控中心、智能服务系统)。

设备出厂时内设以微控制器为核心的车载监控系统。微控制器包括总线接口、实时时钟、随机存储器、内置只读存储器和A,D转换器、看门狗和处理器组成。车载监控系统设备提供多路数据采集器与工程车辆的各类传感器联接,实时采集传感器控制器数据,通过无线通讯网络将数据传送至服务器中心。

远程监控系统自行研发,主要由监控中心和多种类型的车载监控系统组成,监控中心由硬件和智能服务系统组成。其原理为:智能服务系统将指令传输至车载监控系统,该系统利用GSM/GPRS将机械设备的运行参数和所在的方位传回调度室,由智能服务系统对参数作进一步处理后标示在电子地图上,然后综合分析所有参数信息,按用户需求制作管理图表,协助用户准确决策,远程监控机械设备。

3.1 监控中心硬件结构及设置。基于计算机、GPRS、GPS技术,构建一个强大的网络信息交互平台,使GPS数字化、GPRS网络化,数字化显示数据参数,以缩短监控管理的信息识别时间,提高工作效率。为了实现上述监控中心服务系统功能,监控中心系统硬件结构如下图所示:

3.2 智能服务系统功能设计。智能服务系统专用于对工程机械、物流及服务车辆进行信息化管理的软硬件支撑系统。该系统集GSM/GPRS通讯系统、GIS地理信息系统、计算机及网络技术、基于SQL的信息管理系统于一体,将网控管理中心、计算机技术、移动通讯网络和车载监控系统有机整合,实时监控机械设备的位置及其运行时的数据参数。以功能特点为依据,可将智能服务系统划分为WEB服务器软件、数据服务器软件和数据库三部分。数据传输功能通过GSM及以太网实现。软件结构参见下图3:

WEB服务器软件完成工程机械管理、用户管理、运行数据和操作管理功能,数据处理软件负责数据接收、解析和命令发送。

3.2.1 接入功能

该系统必须满足与不同的车载监控系统实现无缝对接,通过必要的接口和不同工程机械厂商的内部管理系统实现连接,通过对相关信息整合,更好地实现对工程机械的管理。

3.2.2 工程机械数据采集与分析

远程智能服务系统的一项基本功能就是数据的采集与分析。该系统能够实时传输GPS定位信息,同时采集设备运行参数,如运行时间、发动机转速、压力和制动气压、液压油温度、故障代码和耗油量等。根据运行要求可适当调整系统参数,中心数据库负责存储设备参数。设备上装设的GPS终端能够直接联通原有监控器,可直接通过监控器获取设备参数,无需添加传感器。监控中心通过虚拟仪表实时监控设备运行参数,方便使用。自动记录机械设备当前所处地详细位置、行驶轨迹。

系统在日常使用过程中,会积累大量的历史数据,这些数据都是来自设备最原始、最真实的第一手数据,对设备管理和技术人员是难得的材料,为了充分利用这些数据,设计了强大的数据分析功能,除了简单的数据列表,还包括曲线统计分析和各种下载功能。主要是对车辆的地理位置分布,故障车辆统计,工作时间,历史数据信息的统计和分析,实现对车辆的时时监控,动态分析,深度统计。(见下图)

3.2.3 工程机械远程检测与诊断

工程机械由于使用环境恶劣,故障率较高,产品发生故障是很常见的问题。通过智能服务系统,在监控中心增设一套专家系统专门用于故障诊断,远程监测机械运行参数,如突发故障,工程人员可参照设备参数及时排查故障并进行维护,延长机械设备的寿命。

3.2.4 报警和远程监控功能

当机械违规运行或突发故障时,终端设备会将预警信号传输至监控中心,预警信息主要包括:

①跨区作业报警。②非法启动报警。③缺电报警。④参数报警。⑤提供二级锁车功能。锁车包括一级锁车(锁定机械的运行功能,但不锁其行走功能)、二级锁车(为了防盗,锁定机械的运行和行走功能,发动机熄火,禁止启动)。一级锁车就是在不影响机械正常行走的前提下只锁定机械的运行状态,使机械设备及时躲避可能发生的危险。

根据实时数据,监控系统可自动对数据进行分析、整理,自动发出安全警报(越界报警、超载报警等),对工程机械进行远程断油断电操作。

该工程机械远程监控系统基本满足客户需求,目前在研发和试用阶段,很多方面有待进一步优化,还未达到实际运行要求,但远程监控技术武装工程机械,提高产品的科技含量和竞争力,使用户实现对工程机械的远程管理和维护是提高经济效益的必然选择,未来必定会有更多的专家学者投入该领域的研究中,使工程机械的远程管理和维护更加符合现实需求。

参考文献:

[1]邓晖.GPS车辆定位跟踪系统的电子地图的建立[J].工程勘察,2000(04).

[2]张雪冬.GPS车辆监控调度系统中高速数据传终端的设计[J].中小企业管理与科技(上旬刊),2009(01).

[3]吴卫国,李玉河,吴国祥.工程机械远程监控器的研制[J].工程机械,2007(5):7-11.