首页 > 文章中心 > 合成高分子材料的特点

合成高分子材料的特点

合成高分子材料的特点

合成高分子材料的特点范文第1篇

东部沿海地区:高端集聚

东部沿海地区,包括环渤海、长三角和珠三角地区。其中,环渤海地区拥有多家大型企业总部和重点科研院校,是国内科技创新资源最为集中的地区;长三角和珠三角地区制造业发达,是新材料产业的重要研发生产基地,也是新材料产品的重要消费市场。

北京——门类齐全的创新中心

北京新材料产业是中国新材料产业的创新中心,拥有清华大学、北京大学、中国科学院等60多家新材料研发科研机构,承担了中国近半的新材料基础研究和科研开发工作,已发展成为全国新材料产业的人才集聚地和科技研发中心。北京形成了南部以北京石化新材料科技产业基地为核心,北部以中关村永丰高新技术产业基地为核心的新材料产业集群。“十二五”期间,北京将重点发展特种金属功能材料、高端金属结构材料、先进高分子材料、新型无机非金属材料、高性能复合材料及前沿新材料等领域。

相关企业:燕山石化、安泰科技、北新建材、蓝星东丽、中科纳新、有研硅股、当升科技、江河幕墙等。

上海——外资活跃的产研基地

上海是中国基础原材料工业基地和新材料研发制造基地,初步建成了宝山精品钢材、金山石油化工及精细化工两个基地,以及青浦、嘉定、奉贤等产业延伸扩展区。上海国际化程度高,是吸引新材料外资研发中心最多的城市之一。“十二五”期间,上海将重点发展特种钢、碳纤维、芳砜纶、特种功能性膜等领域。

相关企业:宝钢、上海石化、高桥石化、华谊、陶氏化学、巴斯夫、亨斯迈、拜耳等。

深圳——电子能源的配套先锋

深圳的新材料产业以支撑配套下游的电子信息产业和新能源产业为主,形成了光明电子信息材料聚集区和坪山动力电池材料聚集区。“十二五”期间,深圳将重点发展电子信息材料、新能源材料、生物材料、无机非金属材料、有色金属材料、改性高分子材料等领域。

相关企业:世纪晶源、比亚迪、光启、长园新材、华瀚管道、南玻、通产丽星、深圳惠程、贝特瑞、中金岭南等。

中西部地区:特色发展

中西部地区资源丰富,传统材料众多,新材料产业的发展将以传统材料的改进升级为主,进行特色发展。

江西省在有色金属材料、新能源材料、稀土材料等领域发展较快,主要分布在新余、赣州、鹰潭、九江、大余等市。赣州的中重稀土、新材料发展迅猛;新余的镍、锂材料、太阳能级硅材料等方面的研发生产在全国乃至全球形成了比较优势;鹰潭铜产业向精深加工发展,形成了从铜拆解回收、冶炼、加工到铜终端产品加工的完整产业链;九江的有机硅单体产能为亚洲最大。 “十二五”期间,江西将重点发展稀土发光材料、电子陶瓷材料、高分子复合材料、铜精深加工材料、多晶硅光伏材料等领域。

相关企业:江铜集团、萍钢、赛维LDK、宏磊铜业、三花集团、星火有机硅等。

河南省的新材料产业主要布局在河南超硬材料产业化基地,和洛阳国家硅材料及光伏高新技术产业化基地。郑州在超硬材料、新型铝镁合金材料、新型耐火和功能材料等领域优势突出;洛阳在多晶硅、钛合金、镁合金以及高分子材料等领域发展较快。“十二五”期间,河南省将重点发展超硬材料、钛合金、镁合金及先进高分子材料等领域。

相关企业:黄河、中南、华晶、富耐克公司、中南杰特公司、远发金刚石公司、卡斯通公司、中硅高科、洛阳单晶硅、扬硅业、洛阳尚德、阿特斯等。

重庆在以铝、镁合金为代表的新型轻合金材料领域基础雄厚,形成了重庆西彭铝产业新型工业化示范基地、重庆国家科技攻关镁合金应用及产业化基地、重庆国家化工新材料高新技术产业化基地和重庆国家功能材料高新技术产业化基地。“十二五”期间,重庆将重点发展高性能铝合金、高性能镁合金、天然气化工新材料、石油化工新材料、精细化学品等领域。

相关企业:重庆镁业、西南铝业、天泰铝业等。

陕西省在钛、钼、铅锌、钒等领域的研发和生产,处于国内领先地位,初步形成以宝鸡高新区、咸阳泾渭新区、西安经开区、西安阎良航空材料产业基地、安康新材料基地、商洛现代材料产业基地、西咸渭商榆光伏产业聚集区为核心的新材料产业聚集带。“十二五”期间,陕西省将重点发展新型金属材料、航空航天材料、电子信息材料、新能源材料、化工新材料、特种复合纤维材料、陶瓷材料、光电新材料等领域。

相关企业:宝钛集团、西北有色金属研究院、航天四院43所、西安航空制动公司等。

Tips:进外企参考

新材料产业在全球的分布较不均衡,美国、日本、俄罗斯等发达国家在新材料产业上处于领先地位,韩国、新加坡等国紧跟其后,除中国、印度、巴西等少数国家之外,大多数发展中国家的新材料产业较为落后。根据各个国家在新材料产业上的发展特点,除了在留学时可以借鉴专业方向外,希望进入外企的大学生可以留意以下外国企业。

美国依靠强大的科技实力,在新材料领域处于世界领先地位,主攻生物医用、信息材料、纳米材料、极端环境材料等。

相关企业:陶氏化学(化工新材料);康宁公司(特殊玻璃和陶瓷材料);道-康宁(有机硅新材料);萨比克创新塑料公司(高分子材料);美国铝业公司(金属铝材料);迈图高新材料集团(有机硅材料);MEMC公司(半导体新材料);美国亚什兰集团(复合材料);美国钢铁公司(金属铁材料);杜邦公司(化工新材料)等。

欧洲在复合材料、化工材料领域优势突出,主要分布在德国、英国和法国等国家。

相关企业:奥斯龙集团(高性能纤维材料);德国默克集团(液晶材料);赢创德固赛(化工材料);拜耳材料科技(高分子材料);摩根坩埚集团(陶瓷材料、碳材料)、英国GKN宇航公司(复合材料)、圣戈班集团(陶瓷、玻璃材料)、空客集团(复合材料)、巴斯夫集团(化工材料)等。

在发展新材料产业方面,俄罗斯的战略是一方面力求继续保持某些材料领域在世界上的领先地位,如航空航天材料、能源材料、化工材料、金属材料、超导材料、聚合材料等;另一方面大力发展对促进国民经济发展和提高国防实力有重要影响的材料领域,如电子信息工业、通讯设施、计算机产业等所用的关键新材料。

相关企业:俄罗斯铝业联合公司(金属铝材料)、谢韦尔钢铁集团(金属铁)、诺里斯克镍业公司(金属镍)、俄罗斯铜业公司(金属铜材料)、俄罗斯纳米技术集团(纳米材料)、VSMPO-AVISMA集团(金属钛)等。

日本的电子信息材料全球领先,重点开发纳米玻璃、纳米金属、纳米涂层和纳米数据库等。

相关企业:TDK公司、住友金属、信越化学、东丽、三井化学和新日本制铁公司等。

合成高分子材料的特点范文第2篇

【关键词】木塑复合材料;性能;机理;优点

1.木塑复合材料概述

以木屑和废旧塑料为主要原料,经过高温混炼,再利用不同模具制成适合各种用途的板材、管材和异型材的复合材料,称为木塑复合材料。该材料的研发不仅为工业生产提供了性能良好的新材料,而且也是当代工业基础材料废物利用的最佳科研成果之一,在工业生产上的应用,有“合成木材”的美名。

木屑是木塑复合材料的主要原料之一。目前纳入国家和地方生产计划的林区和大中城市制材加工厂,每年要产生大约250万吨木屑,其中只有一小部分得到利用,大部分被丢弃,造成一定程度的环境污染和原料浪费。废旧塑料是木塑复合材料的另一主要原料。据我国轻工部门统计,2000年全国塑料制品总产量约800万吨。随着我国塑料工业的不断发展,废旧塑料制品将愈来愈多。

研究和开发木塑复合材料的生产和应用,不仅可为国民经济建设增添一种价廉而又具广阔应用前景的新材料,而且能为提高木材的综合利用率和治理废旧塑料制品的污染开避一条新的途径。这种新型复合材料在上世纪八十年代初国外已有研究成果和实际应用,我国开展该项研究则稍迟。自1984年开始立项研究,成果于1987年通过正式技术鉴定,目前已正式推广在生产部门应用,形成批量产品。

2.木塑复合材料性能的影响因素

木塑复合材料以木屑和废旧塑料为主要原材料,通过不同加工工艺成型。在实验过程中,通过调整和改变原材料或成型工艺,将所得到产品的性能进行比较,发现有明显差异。现将木屑、废旧塑料及成型工艺对木塑复合材料性能的影响进行论述。

2.1木屑对材料性能的影响及增强机理

木屑含有大量的短切纤维和木素。木纤维具有较高的机械强度和弹性,木素具有较好的硬度和刚性,它们均可作为改性剂在复合材料中起增强作用。木屑的比表面积和孔隙率都很大,使得木屑与液态树脂基体之间具有很大的接触界面。由于界面之间存在有偶极定向力、诱导偶极力和色散力,异相的复合过程便是依靠这种电场和力场的界面结合力而牢固结合。

木塑复合材料的电镜显示,PVC树脂可渗透到木材细胞腔中,进一步提高复合材料的强度和硬度。由于复合材料是呈结晶态(木纤维) 和无序态(树脂) 的多相状态,使复合材料既具有木纤维的高强度、高弹性,又具有聚合物基体的高韧性、耐疲劳等优点,因此,这种复合材料具有优良的综合性能,即力学强度良好,抗冲击强度高,热伸缩性和吸水性均比木材小,尺寸稳定性好、耐磨、耐化学腐蚀,不虫蛀,非易燃,并具有木材和塑料的双重加工特性,既可锯、刨、钉、油漆,又可挤出、压制、注塑成型。

2.2废旧塑料对材料性能的影响及改性

为降低材料成本,提高废旧塑料回收利用率,研究以废旧PVC塑料作为木塑复合材料的基体。但由于废旧塑料在使用过程中,受到空气中氧气的氧化作用,同时受光和热等外界环境影响,使聚合物分子链断裂而降解,导致废旧塑料力学性能下降。为提高复合材料的力学强度,需对废旧塑料进行改性处理或者在原料配方中加人适量的树脂。经过实验研究发现,当复合材料中PVC含量一定时,增加PVC树脂,复合材料的力学性能提高,或者换句话说,复合材料的力学强度随废旧塑料含量的增加而下降。

2.3成型工艺对材料性能的影响

木塑复合材料可以根据工业生产的实际需要加工成不同材质,如:软材、硬材、片材、板材或者管材、导型材。不同的型材和用途通过不同的成型工艺成型。硬板材通常有层压成型、压制成型和挤出成型三种不同的成型工艺。其中,在压制成型和层压成型过程中材料受到的压力要比挤出成型大。经过压制成型和层压成型的复合板材比挤出成型的板材具有较好的力学性能。从生产角度看,压制成型和层压成型都是间歇式的,而挤出成型则是连续式的,只要挤出成型的复合板材其力学强度足以满足实际需要,则应该选择挤出成型工艺,这对生产管理、提高生产效率都是有益的。

3.木塑复合材料性能增强机理

用扫描电镜对木塑复合材料进行微观形貌观察,发现木塑复合材料中,木细胞与细胞之间以及多数细胞腔中有许多闪光自点―这是PVC颗粒。它说明细胞腔中有PVC浸入、纤维与纤维之间有PVC填允,还可看到细胞腔受成型压力挤压而变形纤维致密,这是天然纤维增强复合材料所共有的特点。此外观察到排列整齐的细胞腔横断面,说明经热压复合工艺后,材料中纤维取向较为一致、定向性较强。

通过观察到的微观形貌,可以做如下增强机理分析:

3.1具有结晶结构的木材纤维素与分子无序排列的PVC共混复合的结果

共混物是以结晶态和无定形态两相存在,因此复合材料可保留这两种高聚物各自性能上的优点,使木塑复合材料具有良好的机械强度和物理性能,特别是兼具有木材和塑料的双重加工特性。

3.2木材纤维素之间的侧面联结力来源于纤维素巨分子的极性羟基之间的氢键力

羟基是亲水性基团,它能吸着空气中的水分子,致使纤维润胀,尤其因吸着水分子而减少纤维素的侧向交联键,导致强度降低。木塑共混复合材料,因纤维与纤维之间有极性聚氯乙烯分子填充,阻碍了水分子对纤维素巨分子间氢键结构的影,从而有效地阻止了水分子对材料机械强度的严重衫响,提高了材料的抗湿性能,获得较好的尺寸稳定性。

3.3树脂浸入细胞腔,提高了材料密度,增强材料硬度和冲击强度

塑化热压使木粉和树脂牢固粘结,原有各种取向的木纤维经成型工艺而呈现较好取向状态,并且使纤维致密,含有大量羟基的木纤维形成氢键结合力,提高结合强度。

4.木塑复合材料的优点和特点

木塑复合材料综合了木材和塑料的优点,并且在集成木材和塑料优点的同时克服了单一材料的不足,具有机械性能好和物理力学性能优的显著特点。此外,原材料价格低廉、成型工艺丰富,可以根据工业需要进行恰当的生产和推广。

【参考文献】

[1]杨庆贤.木/塑复合材料机械性能的评定.高分子材料科学与工程,1993,9(3):140~143.

合成高分子材料的特点范文第3篇

高分子的概念

首先,什么是高分子?从化学角度来定义,高分子是由分子量很大的长链分子所组成,而每个分子链都是由共价键联合的成百上千的一种或多种小分子构造而成。我们日常所接触到的大分子、聚合物以及高聚物都可以称为高分子。高分子通常有如下两个特点:1.高分子的分子量很高,其相对分子量为1万~100万,很高的分子量也赋予了高分子材料很高的机械强度,从而决定了它们具有很好的实际应用价值。2.高分子的结构千变万化,一般材料的性能是由材料的结构所决定的,我们可以根据实际需求,通过结构设计等方法制出不同性能的高分子材料。

高分子材料发展历史

高分子一词的产生不足一百年,最早于1922年由著名德国化学家赫尔曼·施陶丁格提出,但其应用却已有几千年的历史。从人类最开始利用蚕丝、棉、毛等织成织物,到后来用木材、棉、麻等造纸,人类在利用这些天然高分子作为生活资料和生产资料中不断进步。到了19世纪30年代,天然高分子衍生物即改性或半合成天然高分子材料被使用,其中典型代表就是硫化橡胶和硝化纤维素的使用。1907年出现合成高分子——酚醛树脂,标志合成高分子时代的到来,从此,合成高分子材料逐渐在诸多领域大放异彩。如今,高分子材料已经成为社会进步中不可或缺的基石,在日常生活、国防工业、科技发展等各个领域占有举重轻重的地位。

高分子材料分类

如上所述,高分子按来源可以分为天然高分子、天然高分子衍生物、合成高分子三大类。天然高分子是存在于动物、植物及生物体内的天然物质,如植物中的淀粉、纤维素、棉、麻等以及动物中的蛋白质、糖类、毛发等等。天然高分子可通过化学改性成天然高分子衍生物,从而改变其加工性能和使用性能,例如硫化橡胶、硝酸纤维素等。合成高分子是指自然界中不存在,通过化学方法合成的高分子,如我们常见的聚乙烯、聚氯乙烯、尼龙等等。与天然高分子材料相比,合成高分子材料通常具有较好的力学性能、低密度、耐腐蚀性、耐磨性等一系列优异的性能。

此外,高分子材料根据其应用功能又可以分为通用高分子材料及功能高分子材料。

通用高分子材料是指能够通过大规模工业化生产,并普遍应用于建筑、农业、交通运输、电子工业等国民经济主要领域和人们日常生活的高分子材料,如塑料、橡胶、纤维、粘合剂、涂料等。通用高分子材料给人类生活带来了极大的改变。以使用最多的塑料、橡胶和纤维为例,塑料的使用已经渗透到我们生活的方方面面,从日常食品、化妆品、药瓶等包装,到建材管道、电子器件、家居装修及日常用品,再到汽车、火车装饰甚至航天设施。橡胶主要是用来制作轮胎,除此之外,由橡胶作为原材料制作的密封制品(密封条、橡胶圈等)、胶管、传动带及安全制品等在汽車、航空航天及国防装置中都发挥着极其重要的作用。合成纤维的出现首先解决了天然纤维种植的制约,随后随着技术的进步,从我们常穿的的确良(涤纶)、尼龙(锦纶)等,到消防员所穿的聚酰亚胺防火服,以及防弹衣中的碳纤维都属于合成纤维。合成纤维性能优异,能够满足不同领域需求的纤维得到广泛应用。

功能高分子材料一般是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料。其突出特点在于其特殊的光、电、磁、催化等性能,具体如光敏高分子材料、导电高分子材料、铁磁性高分子材料以及生物高分子材料。因其功能的独特性,功能高分子材料在诸多领域得到广泛应用,并具有巨大的发展潜力。如光导高分子材料用于静电复印、喷墨打印等领域,极大地提高了办公效率;导电功能高分子材料用于电池、电路、精密仪器等,大大提高了传导效率;高分子分离膜在水污染处理、物质分离等环境领域的应用,降低了生产处理成本,利于环境保护;最后还有与生命息息相关的生物医用功能高分子材料,在人工器官、外科修复以及药物及药物释放等方面,获得越来越多的关注。

高分子材料的未来发展

合成高分子材料的特点范文第4篇

纳米科学技术是20世纪80年展起来的一门多学科交叉融合的技术科学,其最终目标是直接以原子、分子及物质在纳米尺度上表现出来的新颖的物理、化学和生物学特性来制造具有特定功能的产品。纳米材料是指具有纳米量级的超微粒构成的固体物质。纳米材料具有三个结构特点:①结构单元或特征维度尺寸在纳米数量级(1~100nm);②存在大量的界面或自由表面;③各纳米单元之间存在一定的相互作用。由于纳米材料结构上的特殊性,使纳米材料具有一些独特的效应,主要表现为小尺寸效应和表面或界面效应,因而在性能上与相同组成的微米材料有非常显著的差异,体现出许多优异的性能和全新的功能。纳米材料在化学、冶金、电子、航天、生物和医学等领域展现出广阔的应用前景。当铁磁材料的粒子处于单畴尺寸时,矫顽力(Hc)将呈现极大值,粒子进入超顺磁性状态。这些特殊性能使各种磁性纳米粒子的制备方法及性质的研究愈来愈受到重视。开始,多以纯铁(a-Fe)纳米粒子为研究对象,制备工艺几乎都是采用化学沉积法。后来,出现了许多新的制备方法,如湿化学法和物理方法,或两种及两种以上相结合的方法制备具有特殊性能的磁性纳米材料。磁性纳米材料具有许多不同于常规材料的独特效应,如量子尺寸效应、表面效应、小尺寸效应及宏观量子隧道效应等,这些效应使磁性纳米粒子具有不同于常规材料的光、电、声、热、磁、敏感特性[2]。当磁性纳米粒子的粒径小于其超顺磁性临界尺寸时,粒子进入超顺磁性状态,无矫顽力和剩磁。众所周知,对于块状磁性材料(如Fe、Co、Ni),其体内往往形成多畴结构以降低体系的退磁场能。纳米粒子尺寸处于单畴临界尺寸时具有高的矫顽力[3]。小尺寸效应和表面效应导致磁性纳米粒子具有较低的居里温度[4]。另外,磁性纳米粒子的饱和磁化强度(Ms)比常规材料低,并且其比饱和磁化强度随粒径的减小而减小。当粒子尺寸降低到纳米量级时,磁性材料甚至会发生磁性相变。磁性纳米材料也具有良好的磁导向性、较好的生物相容性、生物降解性和活性能基团等特点,它可结合各种功能分子,如酶、抗体、细胞、DNA或RNA等,因而在靶向药物、控制释放、酶的固定化、免疫测定、DNA和细胞的分离与分类等领域可望有广泛的应用。

2性纳米材料在生物医学领域的应用

2.1靶向药物载体技术

利用磁性纳米颗粒制造靶向输送医疗药物,是目前医药学研究的热点。通常的靶向纳米药物载体是运用了载体对机体各组织或病变部位亲和力的不同,或将单克隆抗体与载体结合,使药物能够转运到特定的治疗部位,但如果制备的载药颗粒过大,如处于微米量级,可能会引起血栓样血管栓塞,甚至导致死亡,而纳米级的磁性颗粒可以解决这个问题。磁性纳米颗粒的粒径比毛细血管通路还小1-2个数量级,用其作为定向载体,通过磁性导向系统控制,可将药物靶向输送到病变部位释放,以增强疗效。制备出生物相容性和单分散性较好的无机磁性纳米颗粒载体(主要为铁系氧化物),再用生物高分子(氨基酸、多肽、蛋白质、酶等)包覆磁性纳米颗粒载体,再将包覆好的磁性载体与药物分子结合,将这种载有药物分子的磁性纳米粒子注射到生物体内,在外加磁场的作用下,通过纳米颗粒的磁性导向性使药物更准确地移向病变部位,增强其对病变组织的靶向性,有利于提高药效,达到定向治疗的目的,从而降低药物对正常细胞的伤害,改变目前放疗和化疗中正常细胞和癌细胞统统被杀死的状况,减少副作用。动物临床实验证实,载药磁性纳米微粒具有高效、低毒、高滞留性的优点,它在治疗结束后可以通过人体肝脏和脾脏自然排泄。磁性纳米药物载体一般通过下面3种方式结合:(1)药物与高分子先结合成颗粒,磁性颗粒再吸附其表面;(2)磁性颗粒和高分子先结合成颗粒再吸附药物;(3)磁性颗粒、药物、高分子一起混合经均匀化后再颗粒化。磁性高分子颗粒作为药物载体,其中控制释放速率是影响药效的主要因素,骨架材料的选择对控释作用具有一定的影响,而搅拌速度和成型温度对颗粒控释作用也有很大影响。纳米颗粒有的微型水解通道的多少、宽窄及交联程度是决定颗粒能否控释的主要因素,而搅拌速率和成型温度对颗粒中最后形成的微型通道程度起决定作用。早期应用的载体多为葡聚糖磁性毫微粒(DextranMNP),但易被RES系统吞噬,被动靶向于肝脾,难于实现其他组织的靶向给药。后来,有人改变载体的表面的性能,使其具有一定负电性,可更好地应用于主动靶向治疗。

2.2细胞分离和免疫分析

细胞分离是生物细胞学研究中一种十分重要的技术,高效的细胞分离在临床中是首要的、重要的步骤。这种细胞分离技术在医疗临床诊断上有广范的应用,例如治疗癌症需在辐射治疗前将骨髓抽出,且要将癌细胞从骨髓液中分离出来。传统的细胞分离技术主要采用离心法,利用密度梯度原理进行分离,时间长、效果差。随着合成磁性粒子的发展,免疫磁性粒子在分离细胞方面已经获得了快速的发展经动物临床试验已获成功。其中最重要的是选择一种生物活性剂或者其他配体活性物质(如抗体、荧光物质、外源凝结素等),根据细胞表面糖链的差异,使其仅对特定细胞有亲和力,从而达到分离、分类以及对其种类、数量分布进行研究的目的。磁性粒子用于细胞分离需要考虑以下几个因素:不与非特定细胞结合、具有灵敏的磁响应性、在细胞分离介质中不凝结。免疫分析在现代生物分析技术中是一种重要的方法,它对蛋白质、抗原、抗体及细胞的定量分析发挥着巨大的作用。在免疫检测中,经常利用一些具有特殊物理化学性质的标记物如放射性同位素、酶、胶体金和有机荧光染料分子等对抗体(或抗原)进行偶联标记,在抗体与抗原识别后,通过对标记物的定性和定量检测而达到对抗原(或抗体)检测的目的。由于磁性纳米颗粒性能稳定,较易制备,可与多种分子复合使粒子表面功能化,如果磁性颗粒表面引接具有生物活性的专一性抗体,在外加磁场的作用下,利用抗体和细胞的特异性结合,就可以得到免疫磁性颗粒,利用它们可快速有效地将细胞分离或进行免疫分析,具有特异性高、分离快、重现性好等特点,同时磁性纳米颗粒具有超顺磁性,为样品的分离、富集和提纯提供了很大方便,因而磁性纳米颗粒在细胞分离和免疫检测方面受到了广泛关注。

2.3磁性纳米颗粒对蛋白酶的吸附及固定化

生物高分子例如酶等都具有很多官能团,可以通过物理吸附、交联、共价偶合等方式将他们固定在磁性颗粒的表面。用磁性纳米颗粒固定化酶的优点是:易于将酶与底物和产物分离;可提高酶的生物相容性和免疫活性;能提高酶的稳定性,且操作简单、成本较低。制备吸附蛋白酶的磁性高分子颗粒的过程可以概括为:制备磁流体,在对磁流体中的磁性纳米颗粒用大分子包覆或联结,所形成的磁性高分子载体可用作亲和吸附的磁性亲和载体。作为酶的固定化载体,磁性高分子颗粒有利于固定化酶从反应体系中分离和回收,还可以利用外部磁场控制磁性材料固定化酶的运动和方向,从而代替传统的机械搅拌方式,提高固定化酶的催化效率。磁性高分子颗粒作为酶的固定化载体还具有以下优点:固定化酶可重复使用,降低成本;可以提高酶的稳定性,改善酶的生物相容性、免疫活性、亲疏水性;分离及回收酶的操作简单,适合大规模连续化操作。

2.4基因治疗

20世纪70年代,医学领域提出了“基因治疗”这一概念,即将遗传物质导入细胞或组织,进行疾病的治疗即将遗传物质导入组织或细胞进行疾病治疗。目前常用病毒载体和脂质体载体,病毒载体存在制备困难,装载外源DNA大小有限制,能诱导宿主免疫反应及潜在的致瘤性等缺点。多价阳离子聚合物,如目前广泛应用的脂质体,具有病毒载体的优点,而没有病毒载体的缺点。但是聚合物的颗粒大小是影响转染效率的因素之一。磁性纳米粒子的出现克服了它们的缺点。磁性材料直径可达10nm以下,在外磁场作用下具有靶向性。磁性材料外部包裹生物高分子,从而增强了生物相容性,对细胞无毒,而且在血管中循环时间大大延长。目前要控制阳离子聚合物大小的合成方法还不很成熟,且阳离子聚合物的细胞毒性是影响转染的突出问题。磁性四氧化三铁生物纳米颗粒的制作简单,直径可达10nm以下,具有比表面积效应和磁效应。在纳米颗粒的表面可吸附大量DNA。在外加磁场的作用下,可具有靶向性。且四氧化三铁的晶体对细胞无毒。为达到生物相容性,在磁性四氧化三铁的晶体表面可很容易地包埋生物高分子,如多聚糖,蛋白质等形成核壳式结构。由于纳米颗粒有巨大表面能,有多个结合位点,因而携带能力优于其他载体,且转染效率高于目前使用的载体,因此磁性生物纳米颗粒可成为较好的基因载体。

3磁性纳米材料应用于生物医学领域的局限性

纳米材料科学技术的发展为纳米材料的制备提供了许多新的工艺,在此基础上人们已经能够合成出单分散性比较好、形状和尺寸可控的磁性纳米材料,但磁性纳米材料目前处于研究实验阶段,有些问题还需要进一步研究解决,但目前尚处于实验阶段,有众多的问题亟待进一步研究解决:

(1)磁性纳米颗粒的特性与颗粒的尺寸、颗粒尺寸的分布、颗粒的形状和晶体结构密切相关,因而深入研究这些因素与磁性纳米颗粒性能(尤其是磁学性能)的关系,以便找到最佳的合成工艺,最终达到对材料性能剪裁的目的。从热力学和动力学两方面深入探索纳米尺度范围内材料合成机理对磁性纳米颗粒的尺寸、形状和晶体结构的影响,发展和完善单分散磁性纳米颗粒的制备方法;

(2)着重研究生物大分子在磁性纳米颗粒的组装结合机理,以提高组装的结合力和结合量,发展面向不同应用要求的组装形式和组装方法;深入分析生物大分子在磁性纳米颗粒载体上组装后对其生物功能的影响,进一步研究磁性纳米颗粒及生物高分子组装体中无机成分和有机成分对磁性的贡献以及无机成分与有机成分的磁相互作用,以期将功能设计与组装方法有机地结合起来。

(3)目前的磁性纳米材料在生物医学领域的应用研究才刚刚起步,但随着磁性纳米材料的产业化和商业化的推进,如何大批量的生产质量可靠稳定的磁性纳米材料,如何在生产过程中简化生产步骤,降低成本,以期大规模临床应用。

合成高分子材料的特点范文第5篇

关键词:高分子材料;汽车领域;应用

当前汽车工业得到了快速发展,要求在车体结构、车身重量、防止腐蚀、做好隔音减振、节约能源等方面实现突破性进展,要求生产工艺实现自动化、行驶达到高速化。因此在生产汽车过程中大量应用重量轻、韧性好、不易腐蚀、良好隔音隔热的高分子材料,不但可以在汽车行驶中节约大量的燃料而且也可以提高汽车综合性能。所以当前高分子材料已普遍应用于汽车生产当中。由于使用高分子材料,所以不但可以减轻汽车总体重量,减少能源排放,而且也可以利用塑料易成型加工的特点,可以减少生产成本。当前,高分子材料已广泛应用于汽车饰件与功能结构件当中,在汽车总重量中占到了十分之一以上。

1 高分子材料在汽车上的应用状况

1、汽车饰件上的应用

汽车的饰件主要有内饰件与外饰件。这些饰件的作用等同于汽车的功能结构件。它们不但具有多方面的功能,而且主要占据着汽车的外观,是购买汽车者的首要选择。

(1)内饰件

汽车的内饰件主要有仪表板、车门内板、方向盘、座椅、顶篷、地垫、遮阳板等。内饰件不但要保证具有减振、隔热、隔音、遮音等作用,而且还要求做到耐热与高抗冲性、高强度与刚性、表面硬度高、不易被化学品腐蚀、不怕刮擦、保护环境等特点。最早汽车内饰件主要应用金属、木材、纤维纺织品等制作而成,不但外观较差而且也不利于保护环境。因此,高分子材料以其独有的优势迅速得到了汽车行业的应用。当前,汽车内饰件当中应用的塑料在汽车全部塑料中占到了一半以上。过去汽车内饰件主要应用PVC、ABS、PU 等。当前汽车内饰件则主要应用聚丙烯材料,有着无以伦比的优势,如较好的韧性、较大的强度、较好的弹性、可以隔热、不怕腐蚀、可以随地取材、可以实现二次利用、成本较低等,因此得到了汽车内饰件的普遍应用,特别应用于汽车当中最大的内饰件----仪表板方面。PP仪表板是最近几年才出现的新型仪表板,不但有着较强的韧性与强度,而且外观较美、成本较低,所以广泛应用于汽车的仪表板方面。欧洲是世界范围内生产汽车最多的地区,他们的汽车仪表板全部采用PP,而且还在不断扩大应用范围。

(2)外饰件

汽车的外饰件主要有保险杠、雨刮、车灯、车玻璃、门把手、门锁等。在过去较长时期内,汽车外饰件主要使用金属合金,主要缺点是重量大、外观差、价格昂贵、不能环保、容易腐蚀等。随着高分子材料普遍应用于汽车工业,尤其是汽车保险杠主要使用塑料制作而成。保险杠的主要作用就是当汽车受到冲撞时,可以抵消一部分冲击力,具有缓冲的作用,可以保护外界的人与车。因此保险杠不但要做到外观美而且还需具有很好的安全保护作用。当前世界范围内的保险杠应用高分子材料制作的占到了十分之九以上。主要应用SMC、GMT 和改性 PP 等材料。保险杠的组成部分有面板、缓冲材料、横梁。合成面板主要应用PP制作而成,如桑塔纳轿车的保险杠面板应用的材料就是共聚丙烯加热塑性弹性体。与其它材料相比,这种材料的具有较大弹性、可以有效低消外界冲击、不易损伤等优点,这样的保险杠在受到外力冲击过程中,能够最大程度地减轻冲力,可以有效保护车外人的生命安全。

2、汽车功能结构件上的应用

汽车配件作为特殊商品,在使用上有很多具体要求,例如防油、抗腐蚀、耐高温、成本低、质轻等特点,才能符合汽车上油箱、发动机主要部件、脚踏离合器等的使用要求。其中最主要的部件就是油箱,由于油箱的结构复杂,工艺要求高,大大增加了制造成本。塑料的使用就能有效解决这一难题。在汽车油箱制作中最常使用的就是超高分子量聚乙烯和高密度聚乙烯,但是这种材料的缺点是容易漏油,经过工艺改进,F在生产出了具有较好隔油性的改性pe材料。pe材料在发达国家使用较早,我国在轿车上使用树脂制作油箱还处于开发阶段。

2 汽车高分子材料未来发展方向

1、降低成本,提高性能

笔者认为在将来汽车塑料应用中,主要以PP、ABS 为主。为了进一步节约生产资金,需要大力研究应用同一种或几种材料,这种原材料随处可见,生产工艺简单,使回收的废旧塑料及时得到了应用。为了使其具有更高的性能,就要对原材料进行改性与复合,从而创造出性能更优、发展潜力更大的复合材料与工程塑料等。

2、增加安全性能和环保性能

当前汽车工业得到了前所未有的发展机会,每年都会消耗大量的塑料制件,但同时也会产生大量的塑料废品,要占塑料生产总量的50%以上。当前废旧塑料的回收利用还没有得到较快发展,同时也不具有可降解性。所以开发新型塑料具有非常重要的意义。生物塑料的可降解性较好,可以普遍应用于将来的汽车制造当中。如使用天然纤维与PP、PE等材料共混改性,用来生产汽车制件,性能远远高于玻璃纤维增强材料,而且重量更轻,可以回收再利用,与快速发展的汽车行业相适应,塑料制件实现生物化是发展的趋势。

3、创新材料及应用技术

当前,工程塑料在塑料行业中占有重要地位,它的主要特点是强度高、不易腐蚀、不易老化等,因此迅速进入各行各业当中,特别是汽车行业的生产。高分子合金是在改进工程塑料的基础上生产出来的,具有更优的性能,不但材料易于加工,而且具有较高的性能,有利于减轻重量节约资金。随着纳米技术的出现与应用,当前已经在塑料行业中崭露头角。当前,高分子纳米复合材料在碳纳米管高分子复合材料、纳米粒子关于聚合物的改性方面实现了突破。发达国家当前已经出现了高性能的纳米复合材料,并广泛应用于汽车生产当中。

3 结束语

总之,在将来的汽车发展中,汽车轻量化是各个生产企业追求的最终目标,由于高分子材料具有质量轻、性能高、生产简单、安全环保、低成本等众多优点,因此将来必然会应用于汽车生产当中,塑料有望代替金属在汽车生产中得到普遍应用。

参考文献

[1]谢冬宁.新型材料在汽车轻量化中的应用[J].黑龙江科技信息.2016(32)

[2]李桥,陈珍.分析汽车轻量化及其材料的经济选用[J].科技经济市场.2015(06)

[3]岳博,徐晶才.汽车轻量化技术的进步与展望[J].世界制造技术与装备市场.2015(05)

[4]李嘉良,张泽涛,闫雪松. 基于化工新材料应用推动汽车轻量化的分析[J].化工设计通讯.2016(06)