首页 > 文章中心 > 纳米化学分析

纳米化学分析

纳米化学分析

纳米化学分析范文第1篇

1试验方法

称取一定量硝酸银溶于去离子水中,配成硝酸银溶液,另外称取一定量乙二胺四乙酸与氢氧化钠溶于去离子水中,配成乙二胺四乙酸的氢氧化钠溶液,以某一恒定的转速搅拌该溶液,均匀加入硝酸银溶液,配成Ag-EDTA络合溶液。称取一定量连二亚硫酸钠与少量氢氧化钠溶于去离子水中,配成碱性连二亚硫酸钠还原溶液,转移至梨形分液漏斗中。控制恒温水浴磁力搅拌器温度开关,保持Ag-EDTA络合溶液温度恒定,并保持一定转速搅拌该溶液,打开梨形分液漏斗阀门,控制还原剂溶液以一定的速度滴入Ag-EDTA络合溶液中;还原剂溶液滴加完毕后,再搅拌反应溶液5min,然后采用离心机离心、固液分离。银粉用去离子水洗涤3次后在真空干燥箱中于45℃下干燥12h;干燥后得到的银粉送X射线衍射、扫描电镜分析。试验药剂硝酸银、连二亚硫酸钠、乙二胺四乙酸、氢氧化钠均为分析纯。X射线衍射采用日本RIGAKU公司D/MAX-RB型X射线衍射仪;扫描电镜分析采用日本日立公司S-4800型场发射扫描电子显微镜。

2结果与讨论

连二亚硫酸钠与硝酸银的反应摩尔比为1∶2。为了提高反应的转化率,试验采用连二亚硫酸钠过量的形式,实际连二亚硫酸钠用量为理论用量的1.5倍。初步试验发现,在AgNO3浓度为0.01mol/L,连二亚硫酸钠浓度为0.005mol/L,温度为20℃,搅拌器转速为300r/min,自然pH值条件下,向AgNO3溶液中以0.12mL/s的速度滴加连二亚硫酸钠,制得银粉平均粒径在250nm左右,且粒径分布不均匀。为了制备粒径更小的银粉,将AgNO3用EDTA溶液络合,替代AgNO3溶液。经过试验探索,在AgNO3与EDTA摩尔比为1∶1,Ag-EDTA络合溶液浓度为0.01mol/L,pH值为11左右,还原剂量为1.5倍理论用量,搅拌器转速为400r/min,反应温度为20℃,还原剂滴加速度为0.12mL/s的条件下制得银粉的粒径为100nm左右,且其均匀性较好,在此基础上进行条件试验,考察络合剂用量、Ag-EDTA浓度、pH值、还原剂浓度、反应温度、搅拌速度、还原剂溶液滴加速度对所制得银粉粒径的影响。

2.1络合剂用量对银粉粒径的影响在AgNO3溶液浓度为0.01mol/L,pH=11,还原剂量为1.5倍理论用量,搅拌器转速为400r/min,反应温度为20℃,还原剂滴加速度为0.12mL/s的条件下,络合溶液用量对银粉粒径的影响见图1(图中,D50表示样品累积粒度分布百分数达到50%时所对应的粒径,也叫中值粒径,常用来表示粉体的平均粒度;D90表示样品累积粒度分布百分数达到90%时所对应的粒径,余图同)。随着络合剂EDTA用量增加,银粉粒径明显减小,在EDTA与硝酸银摩尔比为1.1∶1之后,银粉粒径随EDTA加入量的增加而减小的趋势减缓。Ag+与EDTA在溶液中形成结构稳定的螯合物,降低了Ag+的反应活性及Ag+的氧化还原电位,增大了还原反应的难度,因此能够得到粒径较小的银晶体颗粒。EDTA用量过量10%保证Ag+被完全螯合,继续增加EDTA的量对银粉粒径的影响不大。

2.2Ag-EDTA浓度对银粉粒径的影响在上述试验基础上,其它条件不变,保持EDTA过量10%,考察Ag-EDTA络合体系浓度对银粉粒径的影响(见图2),可以看出,随着Ag-EDTA络合溶液浓度的降低,银粉粒径逐渐减小,在银离子浓度为0.005mol/L时,银粉粒径达到最小,平均粒径为60nm左右,并且粒度分布均匀。继续降低Ag-EDTA浓度,银粉粒径略有上升。

2.3pH值对银粉粒径的影响保持Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,其它条件不变,Ag-EDTA络合溶液的pH值对银粉粒径的影响见图3。随着络合溶液pH值升高,银粉粒径逐渐减小,当pH值为11.5时,银粉粒度达到最小,随后银粉粒径减小趋势减缓,变化不大。pH值影响还原剂连二亚硫酸钠的还原能力和络合剂EDTA的络合能力。络合剂EDTA适宜的pH值范围为10以上,pH过低,EDTA解离不完全,络合能力降低;pH过高,则Ag+与OH-结合生成氢氧化银,并迅速转化为黑色的氧化银析出溶液,还原反应难以继续进行。

2.4还原剂浓度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5的条件下,其它条件不变,还原剂浓度对银粉粒径的影响示于图4。随还原剂浓度的降低,银粉粒径逐渐减小,还原剂浓度为0.0075mol/L时,银粉粒径达到最小;继续降低还原剂浓度,银粉粒径变化不大。本试验采用向银溶液中滴入还原剂溶液的方法,降低滴加的还原剂溶液的浓度,单位时间内加入的还原剂量减少,反应速度慢,银晶核生成粒度小且经搅拌很快分散到溶液中,有利于制备小颗粒银粉。

2.5搅拌速度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5,还原剂浓度为0.0075mol/L,其它条件不变,搅拌速度对银粉粒径的影响见图5。可以看出,加大搅拌速度可以明显减小反应制得的银粉粒度,在搅拌速度为400r/min时,银粉粒径最低,继续加强磁力搅拌器的搅拌速度,银粉粒度变化不大。

2.6反应温度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5,还原剂浓度为0.0075mol/L,搅拌转速为400r/min,其它条件不变,反应温度对银粉粒径的影响示于图6。随着反应温度升高,银粉粒径有减小的趋势,在温度50℃时达到最低,继续升高反应温度银粉粒径减小的趋势减缓。由阿累尼乌斯定律可知,提高反应体系的温度可以加快反应进行的速度,温度每升高10℃,化学反应速率增加2~3倍。提高反应温度,还原反应加快,银的成核反应速率增加,在银离子浓度及扩散有限的条件下,银晶核的生成占主导地位,获得的银粉粒径减小。

2.7还原剂溶液滴加速度对银粉粒径的影响Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5,还原剂浓度为0.0075mol/L,搅拌转速为400r/min,反应温度为50℃,还原剂溶液的滴加速度对银粉粒径的影响见图7。随着还原剂 溶液的滴加速度降低,制得银粉粒径逐渐减小,当滴加速度为0.12mL/s时,银粉粒径达到100nm以下。滴加速度为0.06mL/s时制得银粉粒径最小。当滴加速度快的时候,短时间内加入大量还原剂,反应速度过快,银晶核生成后在还原气氛下迅速长大,所生成的银粉颗粒粒径较大。降低滴加速度,反应速度降低,银晶核生成后消耗了还原剂,晶核来不及长大就分散到整个溶液中,降低了晶核长大的可能。以上条件试验表明,在Ag-EDTA络合溶液浓度为0.005mol/L,EDTA过量10%,pH值为11.5,还原剂浓度为0.0075mol/L,搅拌转速为400r/min,反应温度为50℃,还原剂滴加速度为0.06mL/s的条件下,制得银粉的粒径最小。图8为所制得银粉的场发射扫描电子显微镜(FE-SEM)图像,可以看出,银颗粒整体分散性较好,且基本呈类球形;银颗粒粒径基本在40~80nm之间,平均粒径约为58nm。为了考察制得银粉的晶体结构,进行了X射线衍射分析(见图9),在2θ=35°~85°有5个衍射峰,经过与标准谱图对照,它们分别为面心立方金属银的(111)、(200)、(220)、(311)、(222)5个晶面的衍射峰,无其它杂质峰,这表明所制备的样品为面心立方结构的单相纳米银粉。

纳米化学分析范文第2篇

【关键词】发光;功能化;纳米材料

纳米材料在实际应用中,其主要特点是比表面积大、化学反应活性强以及具有良好的尺寸效应,能够和生物体产生特殊的相互作用。在生物标记以及分析检测中则主要是作为生物探针应用,同时纳米技术、生物技术以及分析技术的良好结合,也进一步促进了功能性纳米材料的发展及应用。本文则从发光功能化角度,对纳米材料的发展及应用探讨。

1纳米材料在电化学和电化学发光生物传感中的应用

其中将CdTe量子点作为标志物的免疫传感器,能够同时测定人IgG抗原作为模型蛋白的荧光及电化学。首先借助于聚阳离子电解质PDDA能够在导电玻璃上将金胶纳米粒子在ITO芯片上被成功吸附,之后在金胶纳米离子上固定羊抗人IgG抗体,再实施封闭处理之后芯片则能够和检测出现抗原反应,并和量子点标记的鼠抗人IgG抗体反应。在以上反应结束后可以进行荧光及电化学方式检测。其中电致化学发光则是有效结合电化学和化学发光的检测方法,应用也比较广泛。量子点特点则为荧光特性独特以及生物相容性好,在其应用过程中将硫基乙酸作为稳定剂,则能够成功合成水溶性Cds纳米晶体。在对进行分析过程中,发现水溶液中会出现电致化学发光行为。采用自组装方式和纳米金放大技术相结合,在金电极上修饰Cds纳米晶,则能够构建新型ECL免疫传感器,主要是在低浓度脂蛋白检测中应用。这一材料在实际应用中具有良好的电化学发光以及生物相容性,能够进一步构建量子点电化学发光免疫传感器,主要应用在人免疫球蛋白灵敏性检测工作中。

2纳米材料在聚合物电致发光中的应用

聚合物电致发光在应用中主要优势为:主动发光,并且效率高、宽视角、能耗低、厚度小、操作简单等等,在照明及平板显示领域中具有良好的应用发展前景,目前已经在全世界科学界及工业界得到普遍关注。聚合物电致发光二极管的首次研究则是在1990年,英国机剑桥大学首次报道关于聚对苯乙烯的聚合物电致发光二极管,在采用溶液法将聚合物前驱体进行成膜之后,放置在2500C真空高温环境中进行处理,最终为均匀、致密的PPV薄膜,器件的阴阳极分别是Al和ITO,在<14V电压环境下则能够实现外量子效率0.05%黄绿光发光。PPV则属于是难溶性共轭聚合物,在其处理过程中一定要选用前驱体方式进行旋涂成膜,在操作过程中工艺复杂,同时薄膜质量也比较差。在1991年美国加州大学则提出可通行的甲氧基异辛氧基对聚对苯乙烯进行取代,能够在ITO上旋涂MEH-PPV溶液成膜,从而实现发光层,即将金属Ca作为阴极则能够得到1%橘红色发光二极管,这一工艺在操作中简单,同时具有高发光率聚合物电致发光二极管。1992年则进一步采用柔性塑料基底则可弯曲聚合物电致发光二极管,从而呈现出聚合物电致发光二极管最为迷人一面。在近些年来,世界对聚合物电致发光材料及期间的研究一直都比较重视,并取得显著进步,但是就目前而言不管是聚合物电致发光器件稳定性还是效率上均还有进步空间,因此还需要进一步加大研究。

3纳米材料在化学发光免疫分析中的应用

化学发光免疫分析则是化学发光法和免疫分析法两者的结合产物,在纳米技术迅速发展进程中,纳米材料的无机有机自组装复合研究也发展迅速。其中在研究过程中将纳米材料作为新型免疫标记物,和高效液相色谱分析法、分子印迹法以及毛细管电泳分析法等一系列现代分离技术及分析方法相结合,则能够有效构建具有良好灵敏度及特异度的纳米材料化学发光免疫分析法,不但能够广泛应用在药物检测中,同时也能够应用在蛋白质、DNA以及疾病病原体等一系列检验中。同时在研究过程中纳米标记探针的出现,则进一步让人们在纳米尺度上分析及检测生命机体痕量物质,在生命活动机理以及疾病早期诊断预防中均具有重要应用价值。和纳米材料在鲁米诺体系化学发光免疫反应中的参与作用具有差异,其应用则可以将其分成:催化增敏型、标记溶出型、能量受体型以及负载平台型四种,不同类型均具有不同作用。

4结语

具有发光功能化的纳米材料的研究越来越全面深入,在此过程中我们能够发现在纳米材料及其技术发展进程中,不管是药物、医学,还是食品以及环境等领域,化学发光免疫分析法已经广泛应用在有机物和无机物微量及痕量分析工作中。在化学发光免疫分析法中,纳米材料的参与作用则是高效催化剂,不管是纳米生物探针还是量子点荧光剂等方面均具有广阔应用前景。同时在其发展进程中和一系列现代分析技术结合应用之后,则能够对化学发光分析方法的灵敏度、稳定性以及选择性显著提升,同时还能够进一步扩大其检测方法的应用范围。同时在采用以上一系列方法制成的化学发光分析仪,具有良好的自动化水平,同时操作简单,能够有效实现实时监测,特别是在环境监测、医学监测以及食品安全监测等方面具有良好的应用前景,也有助于进一步促进化学发光免疫分析法的研究及发展。以上本文关于发光功能性纳米材料的应用有简要分析,以能够为同行工作研究者提供一定的参考资料,

参考文献:

[1]龚亮.基于功能核酸和发光纳米材料的荧光探针的构建及应用研究[D].长沙:湖南大学,2016.

[2]刘文佳,刘桂霞,王进贤,等.具有磁性-多色发光-热性能的MWCNTs负载NaGdF4∶Tb3+,Eu3+多功能复合纳米材料[J].无机化学学报,2016,32(4):567~574.

[3]刘名扬,李百舸,赵景红,等.纳米SnO2材料催化发光传感器的研制及其在测定汽油中MTBE的应用[J].石油学报(石油加工),2012,28(1):27~32.

纳米化学分析范文第3篇

关键词 大长径比金纳米棒; 表面修饰; 细胞毒性

1 引 言

金纳米棒是一种棒状的金纳米颗粒,特殊的形状使其具有更为奇特的性质,金纳米棒的纵向等离子共振峰会随着长径比的增大向近红外区移动。由于可见光不容易穿透生物组织,而大长径比的金纳米棒在近红外光区对光的吸收和散射能力都很强,因此对于皮下组织的癌症治疗和诊断具有更好的选择性[1,2]。

金纳米棒在生物体的广泛应用,使得研究不同物理和化学性质的金纳米棒对细胞的影响变得十分重要[3]。尤其是金纳米棒的表面化学对其生物行为的影响[4]。对不同种类纳米颗粒的研究表明,纳米颗粒的表面化学强烈影响它的细胞毒性和细胞内吞[5~10]。金纳米棒合成过程需要用十六烷基溴化铵(CTAB)作为金纳米棒生长的保护剂和软模板,但CTAB显示出了严重的细胞毒性[10~12]。为了降低金纳米棒的毒性效应,许多对其表面修饰的方法应运而生,例如利用聚合物[10]和磷脂[13]包裹表面带CTAB的金纳米棒,或是用其它分子如HS-PEG来置换金纳米棒表面的CTAB分子[6]。

通常,评估金纳米棒毒性的主要方法是对细胞的活性进行表征,采用的方法都是宏观测量的平均结果,如MTT细胞活性测量法等。这些方法一般取的都是长时间培养后大量纳米棒对很多细胞的平均毒性。而近年的研究发现,这种平均测量结果已经无法很好地反映纳米材料的生物适应性。金纳米棒暴露于细胞后不仅只对细胞的增殖和内吞产生影响[14],长时间的暴露还可能会引发细胞内氧化压力的变化,可能会导致细胞凋亡或其它复杂的细胞反应[15,16]。这就需要在单细胞水平上实时原位研究金纳米棒与细胞的相互作用。目前,单细胞水平上表征细胞活性的方法主要以染色为主。在纳米材料被细胞内吞进入细胞之后所引起的细胞各个功能的影响都有相对应单细胞分析方法。当体外粘附培养的细胞传代之后,具有一定的贴壁周期,通过考察内吞有纳米材料的细胞传代后细胞贴壁面积以及细胞伸展形态随贴壁时间的变化可以考察纳米材料对贴壁的影响。接着,通过统计细胞数量随细胞增殖时间的变化,可以考察细胞增殖速率。再者,内吞纳米材料之后,对细胞内分子的调节和影响也有方法可以进行单细胞分析,如细胞内氧化压力(ROS)水平,可以通过对应的ROS染料(DCFH-DA)进行表征,荧光越强,表示ROS水平越高。纳米材料进入细胞后对细胞骨架的调节也可通过对骨架识别的染料(Phalloidin-FITC)进行分析。

本研究先合成长径比约为14的大长径比金纳米棒,利用巯基十一酸(MUDA)对金纳米棒表面进行修饰。在宏观水平上,采用MTT细胞活性表征法研究了GNR-MUDA对细胞的毒性;在单细胞水平上,分析了GNR-MUDA对细胞贴壁周期、增殖速率、细胞内ROS以及细胞骨架排布的影响。这些单细胞分析方法可以被推广用于研究其它纳米粒子的生物适应性。

2 实验部分

2.1 仪器与试剂

纳米化学分析范文第4篇

关键词:纳米CaCO3;水泥基材料;强度;微观结构

中图分类号:TU528 文献标识码:A

纳米技术是在20世纪末逐渐发展起来的前沿交叉性的新兴学科.如今,该技术已经渗透到诸多领域,建筑材料领域就是其中之一.通过对传统建筑材料的改性表明该技术具有很大的应用潜力和前景[1-3].纳米颗粒因其尺度在纳米范围,从而具有小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应[4],具有传统材料所不具备的一些新特性.

纳米CaCO3是目前最大宗也是最廉价的纳米材料之一,其价格约只有纳米SiO2的十分之一[5].目前国内外学者对纳米SiO2在水泥基材料中的应用有较多研究,而对纳米CaCO3的研究相对较少.王冲等[6]研究了纳米颗粒在水泥基材料中应用的可行性.黄政宇等[7]研究了纳米CaCO3对超高性能混凝土的性能影响,研究表明掺入纳米CaCO3能促进水化反应,使超高性能混凝土的流动性下降,能提高超高性能混凝土的抗压强度及抗折强度.Sato等[8]采用传导量热法发现,纳米CaCO3的掺入可以显著加快早期的水化反应,且掺量越多加快效果越明显.Detwiler和Tennis[9]发现,在水泥水化过程中,石灰石粉颗粒会成为成核的场所,增加了水化产物C-S-H凝胶沉淀在石灰石粉颗粒上的概率,加快了水泥石中C3S的水化.本文通过超声波分散方式将纳米CaCO3掺入水泥基材料中,研究其对水泥基材料性能和结构的影响,并进一步通过XRD和SEM分析纳米CaCO3对水泥基材料的影响作用机理,以期为纳米CaCO3在水泥基材料的工程应用提供理论基础.

1原材料与方法

1.1原材料

水泥为P・O42.5R普通硅酸盐水泥,由重庆天助水泥有限公司生产,化学成分见表1;细集料为岳阳产中砂,细度模数为2.48;高效减水剂为重庆三圣特种建材股份有限公司生产的聚羧酸系高效减水剂,固含量为33%;纳米CaCO3由北京博宇高科新材料技术有限公司生产,表现为亲水性,部分技术指标列于表2,扫描电镜图见图1,X射线衍射结果见图2.

1.2试验方法

1.2.1纳米CaCO3分散方式

根据前期试验验证,超声波分散方式对纳米CaCO3有更好的分散效果.制备水泥砂浆试件时,将减水剂和纳米CaCO3加入水中,超声波分散10 min,再手工搅拌2 min,以待测试.

1.2.2表观密度

水泥浆体表观密度试验采用水泥净浆,水胶比为0.29,减水剂掺量为胶凝材料质量的0.15%,纳米CaCO3掺量分别为胶凝材料质量的0.5%,1.5%,2.5%.试验所采用容器为1 L的广口瓶,采用水泥净浆搅拌机制样,放在振动台上振捣密实.

1.2.3流动性测试及成型

流动度试验按照GB/T2419-2005《水泥胶砂流动度测定方法》进行;力学性能试验按照GB/T17671-1999《水泥胶砂强度检验方法》进行.将水泥和砂在搅拌机中搅拌90 s,再将分散有纳米CaCO3和减水剂的溶液倒入干料中搅拌90 s.采用40 mm×40 mm×160 mm三联钢模成型,1 d后脱模,在温度为(20±2) ℃的饱和石灰水中养护至相应龄期.水泥砂浆试件的配合比见表3,其中纳米CaCO3和聚羧酸减水剂以胶凝材料的质量百分比掺入.

1.2.4微观测试试验

XRD分析测试采用日本Rigaku公司D/MAX2500PC型X射线衍射仪.测试条件:Cu靶,管压40 kV,电流100 mA,扫描步长0.02°,扫描速度4 °/min,扫描范围5°~70°.样品采用与表3相同胶凝材料组成与水胶比的水泥净浆,养护至规定龄期破碎取样,放入无水乙醇中浸泡3 d以终止水化,置于50 ℃干燥箱中干燥24 h,取出样品用研钵研磨过0.08 mm方孔筛,将过筛的粉末样品置于干燥器中以待测试.

扫描电镜测试采用捷克TESCAN公司生产的Tescan VEGA Ⅱ LMU型扫描电子显微镜(Scanning electron microscope,SEM),测试样品取自强度测试破坏后的砂浆试块,放入无水乙醇中浸泡3 d终止水化,装入50 ℃干燥箱中干燥24 h,将样品真空镀金,在20 kV高压钨灯下分析其微观形貌.

2结果与分析

2.1纳米CaCO3对水泥基材料表观密度的影响

对新拌的水泥净浆浆体进行表观密度测试,试验结果如图3所示.

结果表明,随着纳米CaCO3掺量的提高,水泥浆体的表观密度随之增大.掺量从0%增加到2.5%时,表观密度由1.98 g/cm3提高到2.10 g/cm3.表明纳米CaCO3可填充水泥浆体中熟料颗粒之间空隙,使浆体的结构更加密实.

2.2纳米CaCO3对水泥基材料流动性的影响

按表3拌制水泥砂浆测试流动度,结果如图4所示.随着纳米CaCO3掺量的增大,砂浆的流动度逐渐减小.这是因为纳米CaCO3比表面积大,其颗粒表面吸附更多的水导致需水量增大[10],纳米CaCO3同其它超细粉料一样可以填充熟料颗粒之间的空隙,将熟料颗粒之间的填充水置换出来,起到减水作用,但纳米CaCO3颗粒比表面积过大,其增加需水量的作用远远大于减水作用,宏观表现为水泥砂浆的流动度减小.

2.3纳米CaCO3对水泥基材料力学性能的影响

按表3拌制水泥砂浆,分别测试3 d和28 d的抗压和抗折强度,结果如图5和图6所示.

由图可知,纳米CaCO3提高了水泥砂浆的3 d及28 d强度.1.5%的纳米CaCO3掺量效果最好,其3 d的抗压和抗折强度较基准组分别提高20.6%和17.7%,28 d的抗压和抗折强度较基准组分别提高22.9%和11.1%.然而掺量增加到2.5%时,砂浆强度相较于1.5%掺量明显下降.由试验结果可知纳米CaCO3的掺量不宜过多,存在一个最佳掺量[11-12],在本研究中这个最佳掺量为1.5%.

纳米CaCO3可以提高水泥基材料早期强度有以下几方面原因:纳米CaCO3可以起到超细微集料的作用,填充熟料颗粒周围的空隙,使结构变得更加密实从而提高强度,这与图3结果一致;纳米CaCO3可以明显降低Ca(OH)2在界面处的密集分布和定向排列,有助于改善界面的综合性能[13];纳米CaCO3可促进C3A与石膏反应生成钙矾石,钙矾石与纳米CaCO3反应生成碳铝酸钙也是早期强度提高的原因之一[13].而文献[14]也指出,纳米颗粒掺量过多容易产生团聚,并包裹水泥颗粒,因而阻碍水化反应,使得强度下降.纳米CaCO3掺量过多所造成的团聚也会影响纳米CaCO3在水泥基材料中的分散,使新拌水泥砂浆产生过多的微小气泡,增加硬化后的水泥浆体有害孔的数量,导致强度下降.

2.4纳米CaCO3对水泥基材料性能与结构的影响

机理

2.4.1XRD分析

按表3配合比制备水泥净浆,其3 d和28 d的XRD图谱见图7和图8.由图7可知,在3 d龄期内,纳米CaCO3并没有改变水泥的水化产物组成.2组试样的水化产物基本相同,均含有Ca(OH)2,钙矾石(AFt)相,未水化的硅酸三钙(C3S)和硅酸二钙(C2S),以及掺入的和因碳化而生成的CaCO3.分析2组试样的C3S和C2S的特征衍射峰(2θ=32.3°)可以发现,对照组中C3S和C2S的特征衍射峰比基准组中低;而对照组中钙矾石的特征衍射峰(2θ=23.1°)比基准组中高;对照组中Ca(OH)2的特征峰(2θ=34.2°)略比基准组强,说明前者Ca(OH)2含量略高于后者,这是由纳米CaCO3加速硅酸三钙的水化所致,使其水化产生更多的Ca(OH)2.上述分析说明纳米CaCO3可以促进水泥的早期水化.

由图8可见,在28 d龄期内水泥的水化产物中出现了水化碳铝酸钙(C3A・CaCO3・11H2O),这与李固华等[12]的试验结果类似,即表明纳米CaCO3参与了水泥的水化反应,与水及铝酸三钙反应生成了水化碳铝酸钙.对比2个样品的C3S,C2S的特征衍射峰发现,对照组中C3S,C2S的特征衍射峰要比基准组中低;而对照组中Ca(OH)2的特征峰略比基准组低,根据前人的研究[15],这是由于Ca(OH)2和CaCO3作用生成了碱式碳酸钙,这种碱式碳酸钙可以增强界面区的粘结.纳米CaCO3的这种效应使得水化产物Ca(OH)2在更大程度上被消耗,因此其衍射峰强度低于基准组.上述分析表明在3 d到28 d的龄期内,纳米CaCO3仍促进水泥的水化,产生新的水化产物相并从宏观上导致水泥基材料强度提高,内部界面区增强粘结能力更好,XRD图谱从微观方面解释了28 d掺入纳米CaCO3其力学性能优于基准组的原因.

2.4.2SEM分析

按表3成型的水泥砂浆试样的3 d和28 d SEM图片见图9和图10.图9显示了4组试样水化3 d的微观形貌结构.分析发现:试样(a)已有一定程度的水化,发现有针状的AFt晶体和水化硅酸钙凝胶,但整体结构不太密实,存在较多的空隙,在过渡区处水泥石与集料的结合不太紧密.掺入纳米CaCO3后对于界面过渡区来说有明显的改善,水泥石更加密实.试样(b)和(c)已有明显的水化,水化产物水化硅酸钙凝胶增多,形成网络状和絮凝状的凝胶填充未水化颗粒之间的空隙,使整体结构更加致密[16].由图可知,随着掺量的提高,当纳米CaCO3掺量为胶凝材料质量的1.5%(试样c)时,其对界面的改善效果最好,水泥石结构也更加致密,在界面过渡区几乎看不到水泥石与集料之间的间隙,说明连接很紧密,与上述力学性能试验结果相符.但未明显发现有Ca(OH)2晶体,这可能是因为Ca(OH)2晶体被大量的水化硅酸钙凝胶所覆盖.随着掺量的继续提高,从试样(d)中可看出,水泥石的孔隙变多,结构变得不密实.在界面过渡区处水泥石与集料之间存在间隙并发现了针状钙矾石晶体和六方片状的Ca(OH)2晶体,水化产物水化硅酸钙凝胶也随之减少.这是由于纳米CaCO3掺量过多,分散不均匀形成团聚引起的.水泥石结构的致密程度以及水泥石和集料的界面过渡区的结合紧密程度都会影响水泥基材料的强度,上述分析从微观角度解释了水泥基材料力学性能变化的原因.

图10显示了4种试样水化28 d后的微观形貌结构.分析发现:随着水化的进行,在28 d龄期内各组试样中的水化产物都较3 d增多,水泥石结构也更加致密,水泥石与集料的在界面过渡区处的结合也更加紧密.但在试样(a)和试样(d)中集料与水泥石的界面过渡区处的结合仍不是很紧密,且存在一定的缝隙,水泥石自身结构也存在一定的空隙,不是十分致密,而在试样(b)和试样(c)中则发现集料与水泥石的界面过渡区处的结合更为紧密,水泥石中存在大量的凝胶状的水化产物,结构密实.尤其在试样(c)中,界面过渡区处找不到连接的间隙,水泥石中都是凝胶状水化产物几乎没有孔隙,这些水化产物并不独立分散,而是呈现整体化结构.上述现象说明适宜掺量的纳米CaCO3可以促进水泥基材料早期的水化,使水泥熟料颗粒水化产生更多的水化硅酸钙凝胶[17].同时,纳米CaCO3可以增加水化硅酸钙凝胶在界面处的含量,可以改善Ca(OH)2晶体的定向排列性能,使得界面位置的水化结构由平面排列向空间结构过渡,所以适宜的掺量可以改善界面的综合性能[13].

3结论

1)纳米CaCO3的掺入增加了水泥浆体的表观密度,降低了水泥基材料的流动度,掺入适量的纳米CaCO3有助于水泥砂浆3 d和28 d龄期强度的提高,但掺量不宜过大.

2)掺入适量的纳米CaCO3可以促进水泥水化反应的进行,增加水化产物的生成量.在3 d的龄期内,纳米CaCO3并没有改变水泥的水化产物组成;在28 d的龄期内,在水泥的水化产物中发现了新的水化产物――水化碳铝酸钙.掺入适量的纳米CaCO3还可以改善水泥基材料的界面结构和水泥石的结构,使集料与基体结合的更加紧密,水泥石更加密实.

参考文献

[1] 孙瑞平. 建筑材料领域中纳米技术的应用[J]. 建材技术与应用, 2010(12):9-11.

SUN Ruiping. Application of nanotechnology in the fields of building materials[J]. Research & Application of Building Materials, 2010(12):9-11.(In Chinese)

[2]赵文轩, 张越. 建筑材料中纳米材料和纳米技术的应用[J]. 河南建材, 2012(2):24-26.

ZHAO Wenxuan, ZHANG Yue. The application of nano materials and nanotechnology in building materials[J]. Henan Building Materials, 2012(2):24-26. (In Chinese)

[3]肖力光, 周建成, 马振海. 纳米技术及其在建筑材料中的应用[J]. 吉林建筑工程学院学报, 2003, 20(1):27-32.

XIAO Liguang, ZHOU Jiancheng, MA Zhenhai. Nanotechnology and its application in building materials[J]. Journal of Jilin Architectural and Civil Engineering Institute, 2003, 20(1):27-32. (In Chinese)

[4]白春礼. 纳米科技及其发展前景[J]. 科学通报, 2001, 46(2): 89-92.

BAI Chunli. Nano science and technology and its development prospect[J]. Chinese Science Bulletin, 2001, 46(2): 89-92. (In Chinese)

[5]刘立军. 纳米CaCO3钢纤维复合增强混凝土韧性的研究[D]. 天津:天津大学建筑工程学院, 2009.

LIU Lijun. Study on increasing the toughness of cement concrete by using nanoCaCO3/ steel fiber composite[D]. Tianjin:School of Civil Engineering,Tianjin University,2009. (In Chinese)

[6]王冲, 蒲心诚, 刘芳, 等. 纳米颗粒材料在水泥基材料中应用的可行性研究[J]. 新型建筑材料, 2003(2): 22-23.

WANG Chong, PU Xincheng, LIU Fang, et al. Feasibility study of nanoparticles materials apply to cementbasted materials[J]. New Building Materials, 2003(2): 22-23. (In Chinese)

[7]黄政宇, 祖天钰. 纳米CaCO3对超高性能混凝土性能影响的研究[J]. 硅酸盐通报, 2013, 32(6):1103-1109,1125.

HUANG Zhengyu, ZU Tianyu. Influence of nanoCaCO3 on ultra high performance concrete[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(6):1103-1109,1125. (In Chinese)

[8]SATO T, BEAUDOIN J J. Effect of nanoCaCO3 on hydration of cement containing[J]. Advances in Cement Research, 2010, 23(1): 1-29.

[9]DETWILER R J, TENNIS P D. The use of limestone in Portland cement:a stateoftheart review[M]. Skokie, IL: Portland Cement Association, 1996.

[10]王玉杰, 刘炳华. 纳米碳酸钙对水泥物理性能影响的试验研究[J]. 山东交通科技, 2014 (2):39-41.

WANG Yujie, LIU Binghua.The study on the effects of nanometer calcium carbonate to the physical properties of cement[J]. Shandong Transportation Technology, 2014 (2):39-41. (In Chinese)

[11]JEAN Pera, SPOTRIC Husson. Influence of finely ground limestone on cement hydration[J]. Cement and Concrete, 1999(21) : 99-105.

[12]李固华, 高波. 纳米微粉SiO2和CaCO3对混凝土性能影响[J]. 铁道学报, 2006, 28(1):131-136.

LI Guhua, GAO Bo. Effect of level SiO2 and level CaCO3 on concrete performance[J]. Journal of the China Railway Society, 2006, 28(1):131-136. (In Chinese)

[13]孟涛, 钱匡亮, 钱晓倩, 等. 纳米碳酸钙颗粒对水泥水化性能和界面性质的影响[J]. 稀有金属材料与工程, 2008, 37(S2):667-669.

MENG Tao, QIAN Kuangliang, QIAN Xiaoqian, et al. Effect of the nanoCaCO3 on hydrated properties and interface of cement paste[J]. Rare Metal Materials and Engineering, 2008, 37(S2):667-669. (In Chinese)

[14]范基骏, 孙中华, 陈日高, 等.NS影响硅酸盐水泥性能的机理研究[J]. 广西大学学报:自然科学版, 2009, 34(2):158-163.

FAN Jijun, SUN Zhonghua, CHEN Rigao, et al. Study on mechanism of Portland cement performances as NS affected[J]. Journal of Guangxi University:Natural Science, 2009, 34(2):158-163. (In Chinese)

[15]陆平, 陆树标. CaCO3对C3S水化的影响[J]. 硅酸盐学报, 1987,15(4):289-294.

LU Ping, LU Shubiao. Effect of calcium carbonate on the hydration of C3S[J]. Journal of the Chinese Ceramic Society, 1987,15(4):289-294. (In Chinese)

[16]SENFF L, JOO A L, VICTOR M F, et al. Effect of nanosilica on rheology and fresh properties of cement pastes and mortars[J]. Construction and Building Materials,2009, 23(7): 2487-2491.

纳米化学分析范文第5篇

【关键词】 银纳米粒子; 表面等离子共振; 亚甲基蓝; 表面增强拉曼散射

1 引 言

金属复合纳米粒子与其单组分金属纳米粒子相比, 具有独特的光学、电学、磁学、力学和催化特性[1~3]。表面等离子体共振特性是金属纳米结构最重要的光学性质之一。金属纳米结构的表面等离子体共振吸收与其形状、尺寸和金属本身的介电常数有关,还与周围介质的折射率等有关。通过调整金属纳米结构的几何形状、尺寸等参数,可以控制其表面等离子体共振波长等重要光学特性。目前,已经制备出了许多不同形状的金属纳米材料,如纳米棒、纳米线、纳米壳等[4~7]。其中以电解质为核、金属为壳的核壳结构纳米材料备受关注。通过剪裁核壳的相对比例,其表面等离子体共振峰可在紫外、可见、近红外甚至红外范围内调谐。帽状纳米粒子是一种对称性降低的核壳复合纳米结构,由于自身的结构特点,对光的响应更敏感。研究发现,对称性降低的核壳金属纳米结构的光学响应对入射光角度具有明显的依赖性,相对于对称的核壳金属纳米结构,其局域电磁场强度明显增强[8]。

贵金属、碱金属以及部分过渡金属被发现具有良好的表面增强拉曼活性,其中以银的增强能力最强。普遍认为表面增强拉曼散射(SERS)效应主要来自于两种增强机制的共同作用:一是电磁场增强,源于局域电磁场的极大增强,这是由金属纳米粒子的表面等离子体共振引起的;二是化学增强,源于基底与吸附物之间的类共振拉曼相互作用。但对于贵金属纳米而言,电磁场的作用对其表面增强拉曼活性的贡献是最主要的。金属纳米结构的制备方法、以及所制备基底的表面粗糙度也会对其表面增强拉曼活性产生极大影响。目前,制备SERS活性基底的方法主要有化学还原、电化学还原、化学腐蚀、真空热蒸发、磁控溅射以及电子束平版印刷术等[9~11]。本研究以自组装的密排单层阵列二氧化硅纳米粒子为模板,通过湿化学还原法在二氧化硅模板表面沉积金属银,制备了帽状SiO2/Ag复合纳米结构。用TEM, SEM, XRD, UV/Vis对该复合纳米结构的表面形貌、结构及表面等离子体共振特性进行了表征。选择亚甲基蓝作为探针分子,考察了所制备的帽状纳米结构的表面增强拉曼散射(SERS)活性。

2 实验部分

2.1 仪器与试剂

采用TECNAI10型透射电镜(美国PHILIPS公司)观测SiO2纳米球的形貌;采用XL30ESEM型扫描电镜(美国PHILIPS公司)观测SiO2纳米粒子自组装膜和SiO2/Ag复合纳米粒子的表面形貌,加速电压为20 kV;通过MSAL XD2型X射线衍射仪分析银纳米帽的结构,辐射源为铜靶,工作电压36 kV,电流20 mA。用UV2550型紫外可见分光光度计(日本岛津公司)测银壳层的吸收光谱。拉曼光谱测试用显微拉曼光谱仪,激光器的激发波长为785 nm,激光照射斑点大小为2 μm, 到达样品表面的激光功率为2 mW。取15 μL 1×10-5 mol/L的亚甲基蓝酒精溶液分散于样品表面, 待溶剂挥发后立即进行测试。

正硅酸乙酯(TEOS,分析纯,汕头市光华化学厂);无水乙醇(EtOH,分析纯,天津市化学试剂一厂);3胺丙基三甲氧基硅烷(APTES, ≥ 97%,分析纯,进口分装);25% NH3·H2O、 NaBH4(广州化学试剂厂);AgNO3(分析纯,国药集团化学试剂有限公司);柠檬酸三钠(Na3C6H5O7·2H2O,分析纯,广东光华化学厂);实验用水为自制高纯水,其电阻率大于18.2 MΩ·cm。

2.2 实验方法

SiO2纳米粒子的制备参考Stber法[12]:先将30 mL无水乙醇、5 mL水和5 mL 25% NH3·H2O置于锥形瓶中,经磁力搅拌使之混合均匀,然后逐滴加入2 mL正硅酸乙酯,数分钟后溶液呈现乳白色,表明SiO2纳米粒子开始生成。持续搅拌11 h后加入60 μL APTES, 对SiO2纳米粒子进行表面改性。静置12 h后, 将混合液离心洗涤4~5次以除去剩余反应物。TEM照片显示其平均粒径约为350 nm。

SiO2纳米粒子自组装单层膜的制备[13]:将2 cm×2 cm普通载玻片彻底清洗干净。2~3滴一定浓度SiO2溶胶滴于洁净的普通玻片上轻轻摇动使其铺展开后,将玻片沿水面以45°缓慢浸入盛满高纯水的烧杯中,待水面上形成单层SiO2薄膜,利用向上提拉法将单层膜转移到普通玻片上,最后将其放入恒温干燥箱于60 ℃干燥1 h以提高其表面附着力。整个过程应尽量保持水面平静。

帽状结构SiO2/Ag复合纳米粒子薄膜的制备:采用湿化学还原法在SiO2纳米粒子表面沉积银膜。将附有SiO2自组装单层膜的玻片浸没于6×10-4 mol/L AgNO3溶液中,加入9 mg NaBH4固体作为还原剂,还原出来的银则被吸附到表面改性后的SiO2纳米粒子表面上并作为晶种和反应的成核点,浸泡30 min后取出,并用超纯水轻轻冲洗其表面,再浸没于8×10-3 mol/L AgNO3溶液中,将其加热至80 ℃后再加入适量0.34 mol/L柠檬酸钠溶液。几分钟后,样品的颜色逐渐发生变化,从黄色至深蓝,表明银纳米帽已开始形成。通过改变反应温度、反应时间及银盐的浓度可以调节帽层的厚度。

3 结果与讨论

3.1 形貌分析

图1 SiO2纳米粒子的透射电镜照片,平均粒径约为350 nm

Fig.1 TEM image of SiO2 nanoparticles with average diameter of 350 nm图1是用Stber 法[10]制备的SiO2纳米粒子经APTES表面改性后的透射电镜照片。SiO2纳米粒子呈球形状,表面光滑平整,单分散性良好,平均粒径约为350 nm,粒径分布范围窄,不均匀度小于5%。

图2a是玻片上粒径约为350 nm的SiO2纳米粒子自组装膜的扫描电镜照片。由图2可见,SiO2纳米粒子自组装膜基本呈密排单层排列,但局部不均匀,这主要是由于所制备的SiO2纳米粒子的粒径存在着一定的分布范围。从图2b可见,在SiO2自组装单层膜上沉积金属银后,空白区域减少,粒子排列得更为紧凑。从图2c可见,在SiO2小球上形成不完全包裹的银纳米帽后其表面变得粗糙,并且可以清楚地看出其表面纳米级谷粒状结构。粗糙程度与反应的时间、温度及银盐浓度有关[14]。

3.2 结构分析

图3为SiO2/Ag复合纳米粒子的XRD图,样品具有较强的衍射峰,且衍射峰形状尖锐。2θ为38.8°, 45°, 65°, 77.8°处的衍射峰分别归属于银(111), (200), (220), (311)晶面的特征衍射,表明SiO2/Ag复合纳米粒子中银以晶态形式存在。其中25°处较宽的衍射峰应归属于SiO2球的非晶特征峰。 图3 帽状SiO2/Ag复合纳米粒子的XRD图

Fig.3 XRD pattern SiO2/Ag composite nanoparticles

3.3 帽状结构SiO2/Ag复合纳米粒子的吸收光谱

图4是不同的SiO2内核粒径的帽状结构SiO2/Ag复合纳米粒子的紫外可见吸收光谱图。SiO2内核粒径为350 nm的银纳米帽的表面等离子共振吸收出现2个共振峰,分别位于382和689 nm处;SiO2内核粒径为450 nm的银纳米帽的2个表面等离子共振吸收峰分别位于382和725 nm处。其中382 nm处的吸收峰是由横向等离子共振吸收引起的,而689和725 nm附近较宽的吸收峰则是由纵向等离子共振吸收引起的[15]。由图4可见,在还原时间相同即壳层厚度一定的条件下,随着SiO2内核粒径的增大,复合纳米粒子的表面等离子共振吸收峰发生红移,吸收带变宽。核壳粒径不均匀分布、较大粒子的电磁延迟效应以及电子界面散射等物理机制是吸收带增宽的主要原因[16]。785 nm是拉曼光谱的激发光源波长。 图4 不同SiO2核粒径的银纳米帽的紫外可见吸收光谱图

3.4 SERS分析

将亚甲基蓝(MB)配制成1×10-5 mol/L的乙醇溶液。其特征峰分别位于656, 610和293 nm(图略),远离激发光源波长785 nm,表明共振拉曼贡献很小。

图5a和5b分别是亚甲基蓝的乙醇溶液和固体粉末的正常拉曼光谱。图5a表明,MB的特征振动峰因其极低的分子浓度被溶剂强的拉曼散射掩盖而几乎观察不到,图谱中882, 1052和1096 cm-1处的拉曼峰是由乙醇引起的[17]。

图5c和5d是亚甲基蓝分子吸附在SiO2核粒径分别为350和450 nm的银纳米帽基底上的表面增强拉曼光谱。MB的特征峰1618和449 cm-1在谱带c和d中表现非常明显,表明亚甲基蓝分子在基底上吸附良好。谱带d中241 cm-1处的峰在谱带a和b中都得不到体现,它归属于亚甲基蓝与银纳米帽之间的AgN伸缩振动峰。表1列出了图5中观察到的亚甲基蓝的主要特征峰的拉曼位移、相对强度及其归属,与文献[18~22]的结果相比较,有些峰尚无明确的归属,例如1911, 1318, 930和743 cm-1。

与MB的正常拉曼光谱NRS(谱带b)中的特征振动频率相比,表面增强拉曼光谱SERS (谱带c和d)中部分振动峰发生位移,例如:谱带b中亚甲基蓝的CC伸缩振动峰由1535 cm-1移至1510 cm-1;谱带b中位于1184 cm-1处CN的伸缩振动峰移至1210 cm-1;亚甲基蓝的骨架变形振动峰由501和449 cm-1分别移至513和460 cm-1;值得注意的是,位于1440 cm-1处亚甲基蓝的CN振动峰在谱带d中未能观察到,而是与临近的峰1404 cm-1合并成一个较宽的峰;谱带b中945 cm-1处的峰在谱带c中分裂为2个峰并移至930和902 cm-1;图5中一些峰的移动、分裂及合成是由探针分子与金属纳米粒子基底之间的化学作用引起的[21~24]。

图5e和5f是亚甲基蓝分子吸附在SiO2核粒径为350 nm的银纳米帽基底上2个不同区域的表面增强拉曼光谱。对这2个不同区域进行测试得到的e和f两谱线有相似的谱形,且所有振动峰的强度、位置和形状几乎相同。这说明制备SiO2/Ag帽状复合纳米粒子基底表面结构较均匀,具有良好的可重复性。另外,将样品在室温下放置一段时间后在相同的测试条件下再次进行拉曼测试,发现所得SERS光谱基本不变,该基底具有较好的稳定性。

图5 MB的拉曼光谱图

Fig.5 Raman spectra of methylene blue(MB)

a,b: 亚甲基蓝的乙醇溶液和固体粉末的正常拉曼光谱(Normal Raman spectra of MB in ethanol solution and solid powders); c,d: 亚甲基蓝分别吸附在350和450 nm银纳米帽基底的表面增强拉曼光谱(Surface enhanced Raman scattering (SERS) spectra for MB adsorbed on silver nanocaps with the SiO2 core diameter of 350 and 450 nm); e,f: 亚甲基蓝吸附在350 nm银纳米帽基底的不同区域的表面增强拉曼光谱(SERS spectra for MB adsorbed on silver nanocaps which are holded for a period of time with the SiO2 core diameter of 350 nm)。表1 亚甲基蓝的拉曼位移、相对强度及其振动归属

拉曼增强因子的计算公式定义为:G=Ienh·Nsol/(Iref·Nads)(1)经过一系列估算步骤[24,25]得到简式如下:G=5.0×103×Ienh/Iref (2)其中, Ienh和Iref是亚甲基蓝分子吸附和未吸附在拉曼活性基底上某个特征振动峰的强度面积。选取MB的特征吸收峰1616 cm-1处的振动峰计算拉曼增强因子。经计算,SiO2粒径为350和450 nm的SiO2/Ag帽状复合纳米粒子基底在1616 cm-1处的拉曼增强因子分别为3.6×109和3.9×109。后者的拉曼增强因子略高于前者,这可能与SiO2/Ag复合纳米粒子的表面等离子共振峰位置有关。SiO2粒径为350 nm的SiO2/Ag帽状复合纳米粒子的表面等离子共振吸收峰位于689 nm附近,SiO2粒径为450 nm的SiO2/Ag帽状复合纳米粒子的表面等离子共振吸收峰位于725 nm附近。一些研究表明,表面等离子共振吸收峰越靠近激发光源波长其拉曼增强因子越大[25]。4 结 论

以SiO2纳米微球为模板, 采用无电镀化学还原法制备了SiO2/Ag帽状复合纳米结构,并对其形貌、结构、光学性质及SERS活性进行了表征和研究。所制备的复合纳米粒子表面粗糙,在高分辨扫描电镜下可清楚地观察到其表面存在无数纳米级谷粒状结构。内核粒径为350 nm的SiO2/Ag帽状复合纳米粒子的表面等离子共振吸收出现两个峰,分别位于382和689 nm附近。SERS测试结果表明采用的湿化学还原方法所制备的帽状银纳米基底稳定性能良好,增强因子可能与帽状银纳米基底的表面等离子共振吸收光谱有关,表面等离子共振吸收峰越靠近激发光源波长其拉曼增强因子越大。

参考文献

1 Graf C, Van Blaaderen A. Langmuir, 2002, 18(2): 524~534

2 Mayer A B R, Grebner W, Wannemacher R. J. Phys. Chem. B, 2000, 104(31): 7278~7285

3 Gittins D I, Susha A S, Wannemacher R. Adv. Mater., 2002, 14(7): 508~512

4 Charnay C, Lee A, Man S Q, Moran C E, Radloff C, Bradley R K and Halas N. J. Phys. Chem. B, 2003, 107(30): 7327~7333

5 HU XiaoGe(胡晓歌), WANG Tie(王 铁), CHENG WenLong(程文龙), WANG ErKang(汪尔康), DONG ShaoJun(董绍俊). Chinese J. Anal. Chem.(分析化学), 2004, 32(9): 1240~1245

6 Deng Z W, Chen M, Wu L M. J. Phys. Chem. C, 2007, 111(31): 11693~11697

7 YANG Hao(杨 昊), YANG XiaoHe(杨笑鹤), CHEN YuQuan(陈裕泉), PAN Min(潘 敏). Chinese J. Anal. Chem.(分析化学), 2009, 37(2): 275~278

8 Ye J, Van Dorpe P, Van Roy W, Lodewijks K, De Vlaminck I, Maes G, Borghs G. J. Phys. Chem. C, 2009, 113: 3110~3115

9 MAN ShiQing(满石清), XIAO GuiNa(肖桂娜). Chinese J. Inorg. Chem.(无机化学学报), 2009, 25(7): 1279~1283

10 Liu J Q, Maaroof A I, Wieczorek L, Cortie M B. Adv. Mater., 2005, 17(10): 1276~1281

11 Oldenburg S J, Averitt R D, Westcott S L, Halas N J. Chem. Phys. Lett., 1998, 288: 243~247

12 St ber W, Fink A, Bohn E. J. Colloid Interface Sci., 1968, 26(1): 62~69

13 Wang X D, Summers C J, Wang Z L. Nano. Lett., 2004, 4(3): 423~426

14 Jiang Z J, Liu C Y. J. Phys. Chem. B, 2003, 107(45): 12411~12415

15 Link S, Elsayed M A. J. Phys. Chem. B, 1999, 103(40): 8410~8426

16 Westcott S L, Jackson J B, Radloff C, Halas N J. Phys. Rev. B, 2002, 66: 1554311~1554315

17 LIU WenHan (刘文涵), YANG Wei(杨 未), WU XiaoQiong(吴小琼), LIN ZhenXin(林振兴). Chinese J. Anal.Chem.(分析化学), 2007, 35(3): 416~418

18 Ruan C M, Wang W, Gu B H. J. Raman Spectrosc., 2007, 38(5): 568~573

19 JIANG Hua(蒋 化), CHEN WanXi(陈万喜), XU ZhuDe(徐铸德), LU Yun(陆 云). Chin. J. Chem. Phys.(化学物理学报), 1998, 11(1): 82~86

20 Naujok R R, Duevel R V, Corn R M. Langmuir, 1993, 9(7): 1771~1774

21 Hulchineon K, Heater R, Albery J, Hillman A R. J. Chem. Soc. Faraday Trans, 1984, 180: 2053

22 Nicolai S H A, Rubim J C. Langmuir, 2003, 19: 4291~4294

23 Niu Z Q, Fang Y. Spectrochim. Acta Part A, 2007, 66(3): 712~716