首页 > 文章中心 > 网络通信

网络通信范文精选

前言:在撰写网络通信的过程中,我们可以学习和借鉴他人的优秀作品,小编整理了5篇优秀范文,希望能够为您的写作提供参考和借鉴。

网络通信

网络通信范文第1篇

下面我将对LINUX平台下网络通信设计的工作流程、数据发送、数据接收三个模块进行详细的介绍。

1工作流程

首先调用SOCKET函数创建一个用于通信的套接字,然后给已经创建的套接字(SOCKET)绑定本地地址/端口号(Bind()),成功之后就在相应的SOCKET上监听(Listen())。当Accept()函数捕捉到一个连接服务(Connect())请求时,接受并生成一个新的SOCKET,并通过这个新的SOCKET与客户端连接,用Read()/Write()或相关函数读取和发送数据,传输完毕时,用Close()关闭所有进程,结束这次通信。客户端程序设计流程:客户端也先要创建一个SOCKET,将该SOCKET与本地地址/端口号绑定,还需要指定服务器端的地址与端口号,随后向服务器端发出连接(Connect())请求,请求被服务器端接受后,用函数进行了数据的接收与发送,传输完毕后,用Close()关闭套接口,通信结束。

2数据发送模块

从应用层到物理层发送数据时,函数调用顺序如下:send>sys—send>sys—sendto>sock—sendmsg>inet—sendmsg>tcp—sendmsg>tcp—send—skb>tcp_transmit>ip—queue—xmit>ip—queue—xmit2>ip—output>ip—finish—output>ip—finish—output2>neigh_resolve_output>dev_queue_xmit>ei—start_xmit网络连接创建好以后,就可以进行发送数据了。

3数据接收模块

当网络上的数据到达接收计算机时,网卡控制器产生中断,调用该中断的中断处理程序ei—interrupt()。在这个函数中主要通过判断中断状态寄存器(ISR)的内容,调用相应的处理程序来接收数据。如果中断状态寄存器显示接收到数据或者接收到有错误的数据时,就调用ei—receive()函数进行数据的接收。在ei—receive()函数中要正确设定边界指针寄存器(BNRY)和当前页寄存器(CPR)的内容,当BNRY或者CPR等于页停止寄存器(PSTOP)时,把它们的内容设置成页开始寄存器(PSTART).当CPR=BNRY时,表示缓冲区全部被存满,数据没有被用户读走,这时网卡将停止往内存写数据,新收到的数据包将被丢弃不要,而不覆盖旧的数据;当CPR=BNRY+1时,表示网卡的接收缓冲区里没有数据,用户通过这个判断知道没有包可以读,当CPR!=BNRY+1时,表示接收到新的数据包。

结束语

网络通信范文第2篇

1.引言

将多个Wave文件或多路Wave数据同时在Wave设备上输出,就可同时听到多个不同的声音,达到混音的效果。如果是将多个不同端点的话音数据经局域网络传输到达某一个端点再经该端点的Wave设备输出,就能同时听到多个人的话音,从而实现局域网络中多方的话音交谈。

在网络上实现话音交谈,特别强调实时性,要尽量保证话音的平滑、连续,因此为了保证话音数据连续,减少话音数据存储带来的延时,在具体实现中,话音的录制和播放都不采用文件的形式,录制和播放的话音数据都存在缓冲区中。在Windows系统中,一般情况下,高层Wave接口函数无法直接播放缓冲区中的话音数据,而必须用底层函数来实现,常用的是WindowsAPI中的Wave函数。将Wave数据在Wave设备上输出使用的是WaveOutWrite函数,但是该函数不支持多路Wave数据的同时播放,为了能达到多路Wave数据同时播放的效果,对缓冲区中多路Wave数据进行必要的预处理后,再提交给Wave输出设备播放。实现原理如图1所示。

图1多路Wave混音的实现原理

2.实现原理

实时地混音,就是将多路Wave数据进行相互叠加处理到另一个目的缓冲区,最终将该目的的缓冲区提交给Wave输出设备。

将每一路Wave数据作为一个单独通道,分别从每个通道取一数据片段,把取得的几个数据片段相互叠加,然后存进另外一个目的缓冲区中。为了便于处理,缓冲区通常采用数组的形式存放Wave数据。

如果话音数据,采用采样频率1025Hz,8位单声道的数据格式,那么一秒的话音数据量为11025个字节。

为了达到实时的效果,目的缓冲区通常都设置比较小,大约可存放1/8秒的话音数据量,对于前述的话音格式,目的缓冲区的大小为11025/8=1375个字节。

下面具体看一下Wave数据以数组形式存放时的混音过程。如图2所示。

图2多路Wave数据的叠加过程

假设有4路Wave数据,目的缓冲区的大小为1378,混音子函数调用为Mixer(lpDest,rgpCDdata,4,1378)。

下面给出混音子函数的实现。其中lpDest为目的缓冲区,rgWaveSrc为多路Wave数据源,iNumWaves为Wave数据源的通道数,wLen为目的缓冲区长度。

Voidmixit(LPSAMPLElpDest,LPSAMPLErgWaveSrc[],intiNumWaves,WORDwLen)

{int,,iSum;

WORDctr;

ctr=0

While(wLen)

{

iSum=128;/*静音时数值为128*/

for(I=0;I<iNumWaves;I++)

iSum=iSum+*(rgWaveSrc[]+ctr)-128;

PEG(int)0,iSum,(int)225);/*对转换结果处理*/

*lpDest++=iSum;

ctr++;

wLen--;

}

}

注意一点的是对于单声道数据一个字节表示一个采样值,采样值在0-255之间,各个通道的对应Wave数据相加后,就会溢出,还需要将相加结果转换成0-255之间的数值。

将该目的缓冲区中的Wave数据经WaveOutWrite函数输出,就能同时听到四个不同的声音,当Wave输出设备播放完目的缓冲区中的数据便返回,请求用户提供更多的Wave输出数据,因为Wave输出设备只能输出提交给它的Wave数据;另外,对Wave数据进行混音还需要一定的时间,因此当提交一个目的缓冲区中的数据给Wave输出设备后,就必须马上混叠另一段Wave数据来提交给Wave输出设备,作为下一个输出的数据缓冲区,避免声音输出的中断,后一个目的缓冲区提交后被输出设备放入输出队列中,当第一个目的缓冲区中输出完毕后再输出它的数据,当输出设备在输出第二个目的缓冲区的数据时,又能将第三段数据混合进第一个目的缓冲区中,然后重新提交,直到提交完所有的Wave数据,那时就将停止输出。在实际应用中目的缓冲区的数要多个,一般为3至4个,图3给出了混音、提交的完整过程。

3混音、提交过程

3.特殊情况的处理

上面讨论了混音及播放的一般过程,但在实际应用中,还需要到对一些特殊情况进行处理。

各通道中待混音的Wave数据长度不同。

...

图4各通道中的Wave数据长度不同

这种情况是指当前要混音的某一通道中的声音片段数据比Wave混音器所定义的缓冲区长度要小,这时该路被采样的声音没有足够的数据与Wave混音器中的数据相混叠。

对于这种情况,采用以下的方法可以有效地解决,主要包括三步:

a)Wave混音器在混音前首先判断是否有这种情况出现,如果出现,Wave混音器必须确定该Wave通道中所能被采样的数据长度;

b)按照该通道所能被采样的数据长度,将该路的数据与其它多个通道中的数据相混叠存入Wave混音器的目的缓冲区中;

c)停止对该通道Wave数据的采样混叠处理,只采样混叠其它通道中的Wave数据,存入Wave混音器目的缓冲区的余下部分。

因为在接下来的采样混音过程还会出现相同的情况,所以必须重复上述a-c的步骤,直到Wave混音器的缓冲区填充完毕或再没有可填充的数据为止。这时将该Wave混音器的目的缓冲区提交给Wave输出设备。

当播放混音数据时又有新的一路Wave数据要求混叠并且被播放。

当前正在播放Wave混音器中一个已经混叠的目的缓冲区中Wave数据,这时又有一路声音要求马上混叠并且被播放。

这种情况处理起来比较复杂。多路Wave数据经过混叠,存储到目的缓冲区,该目的缓冲区中的Wave数据在提交给输出设备前,是确定时长的。当有新的一路Wave数据要求加入时,Wave混音器必须要能确定目的缓冲区中的Wave数据已经播放到什么位置了,同时通知Wave播放设备当前所播放的Wave数据以及Wave设备播放队列中的所有Wave数据不再有效,然后从该时间点起,重新采样混叠各通道中余下未播放的Wave数据,采样混叠过程中加入新的一路要求混叠的Wave数据,将重新混叠的Wave数据提交给Wave输出设备,所有这一切必须在很短的时间完成,要不然用户可能听到声音有中断现象出现。而且这种方法中该重新采样的时间点比较难定。

因此,对于这种情况还可以采用图2所示的方法来处理,也能达到同样的效果。这样Wave混音器不用中断Wave输出当前所在播放的数据,只要重新处理一下Wave设备播放队列中的Wave数据便可以了。

在混叠下一个目的缓冲区中数据时,包含进新的Wave数据。这种方法有一定的延时,延时的时间长度为,从重新混叠的数据提交到Wave设备的播放队列中算起,直到该缓冲区的Wave数据被播放开始为止。如果定义输出队列的长度3个缓冲区,那么延时的长度最长也就2个缓冲区中的Wave数据播放长度,要是缓冲区的长度设置的非常短的话,这种延时一般是不容易听出来的。

播放过程中中止其中某一路Wave数据的播放。

当正在播放多路Wave数据时,在某一通道中的Wave数据还未播放完成前,要求中止该通道中Wave数据的播放。对于这种情况的处理,与前面提到的情况(2)相似。Wave混音器首先确定当前缓冲区中Wave数据已经播放到什么位置,同时通知Wave播放设备当前所播放的Wave数据以及Wave设备播放队列中的所有Wave数据不再有效,然后从该时间点起,重新混叠余下的未播放的Wave数据,但在采样混叠过程不包括要求去除的Wave数据。

同样当前播放位置的确定比较困难,所以实际中解决的方法基本同第二种情况中方法2相同,不过在进行后续的采样混叠过程不是加入新的Wave数据,而是去除某一指定通道中的Wave数据。

4.结束语

该方法已经在实际中使用,因考虑到网络中数据流量和系统的性能要求,话音数据的录制与播放都采用了8位单声道的格式,对于立体声16位Wave数据的混音处理较复杂,有待作进一步的研究。

参考文献

《MicrosoftCorporation.MicrosoftWindowsMultimediaProgrammer''''sReferce》MicrosoftPress1995

网络通信范文第3篇

1、通信技术问题

这主要是由于网络故障引起的浏览器无法正常运行上网、网络通信中断等问题。对这样问题的解决办法则是通过运行网络故障修复的诊断命令或者根据提示的故障原因报修等。除此之外,计算机网络通信常常提示计算机设置错误等,则应该根据实际状况进行设置即可。

2、网络通信安全

网络通信安全问题越来越成为人们头疼的问题,尤其是计算机网络在电子商务、电子银行、电子购物等B2C、B2B领域的发展,使得计算机网络安全问题越来越受到关注。网络信息安全问题的出现,很大程度上是由当前技术发展过快、人们保护信息意识较差等原因造成的。这样的问题,虽然给计算机网络通信带来了一定的障碍,但是却可以在短时间内解决。

二、新时期计算机网络通信技术的发展趋势

1、多网融合技术

由于当前社会手机终端的发展、平板电脑的出现,在很大程度对传统笔记本或家用电脑产生了冲击。在这样的背景下,移动网络技术、光通信技术以及多媒体通信技术的融合发展,成为了人们在新时期新时代下的新要求。利用光通信技术的快速、移动通信技术的便利性以及多媒体技术的多样性等优势,融合成为一种快速、便利、多样的新技术,这样不仅可以满足人们对移动通信技术的要求,也可以促进人们在工作、生活中办公的效率,大大提升人们由于计算机网络通讯不便、不畅所带来的工作效率低下等问题的解决效率。而且,还可以满足不同人群、不同地点对计算机网络通信的不同要求,一举多得。

2、无线通信技术的跨越

在新时期网络通信的改革中,人们对于网络通信技术发展的便利性提出了越来越高的要求,因此,计算机网络技术向无线通信技术的发展越成为了必然的趋势。目前,无线通信技术主要是指WiFi技术,包括中国电信的chinanet、中国移动的CMCCauto等。这些率先使用无线通信技术的移动通信公司,在很大程度上是借鉴外国无线通信技术,缺少独立自主的开发。所以,完成无线通信技术的消化吸收,完成无线技术的跨越,成为了摆在当前网络通信技术公司的严峻问题。把无线网络技术的发展作为基础设施来建设,把便利性提高,惠泽民众,使得社会的发展更加得益于此,也是当前无线网络通信公司所要解决的重大问题之一。

3、移动通信技术的革新

现如今,移动通信技术的发展正在由2G向4G跨越。然而,就目前的状况来说,对4G移动网络通信技术的追求,是为了保护三家移动通讯巨头的市场占有率,并没有真正的做到方便民众,而是作为营销的策略才进行的通信技术革新。因此,在未来的移动网络通信中,如何做到通信技术革命真正的有益于使用者,这才是移动网络通信所需要解决的首要问题。

三、结语

网络通信范文第4篇

1.1建筑物的雷电侵害雷电是自然界的一个现象,主要是云层中积累的电荷被释放出来,因为所储存的电荷非常大,放电时会产生强大的电能,导致建筑物以及设施受到破坏。雷电的危害方式比较多:直击、侵入、感电、球形雷等,直击雷是云层内的电荷向地面建筑物进行放电而产生的。雷电的危害形式有几种:直击雷、雷电侵入、雷电感应、球形雷。直击雷是云层电荷与地面建筑物进行放电而形成的。雷电侵入是雷击产生的冲击电压沿线缆或管道传播侵入室内的雷电波。雷电感应是由于雷电流的强大电场和磁场变化,在设备和线路产生的静电感应和电磁感应而产生的过电压过电流形成危害。球形雷是一种游动的发光带电体,可从门窗、烟囱等通道侵入室内,击毁接触之物。

1.2计算机网络通讯系统的感应雷侵害产生雷击的时候,电荷所蕴含的电能被释放出来,由于散流电阻产生出局部的高电压,在放电的时候,脉冲电流因为附近的金属和导线等发生了电磁感应,形成高电压。高电压是建筑物以及室内的设施主要的威胁,所以我们在采取防雷措施的时候,需要针对感应雷来进行处理。通信线路如果在空旷的地方比较突出,那么就有较大的几率在发生雷电现象的时候,被雷电所击毁。即便是电缆被埋在地下,当直击雷冲击时,强电压也能够穿透突然进入到线路内部。平行铺设的电缆被雷击中后,会在附近形成高电压,导致与其相连的设备被损毁。

2.计算机网络通信系统的雷击防护

2.1防护雷电的主要方式有隔离、疏导、等位、消散。疏导是将强大的电流引入大地,我们比较熟悉的避雷针就是这样的防雷方式。隔离则是通过隔离的方式来让雷电不影响到被保护的物体。等位是将多物体地连接置于同一电位以保护物体。消散是用消雷装置释放异性电荷中和雷云电荷,阻止雷电的形成。

2.2电源系统的防雷建筑物如果有避雷针,那么其直击雷的危害基本上能够避免,但是直击雷所形成的电磁场对于电子设备而言仍然是较大的危害,所以我们还需对电流过电压对计算机网络的损害进行防护,通过设置防雷装置,将电流进行分散,限制压力,避免计算机系统受到影响。

2.3网络通信线路及接口的防雷通信线路的防雷要点与供电线路相同,需要对建筑物外所架设的通信网络给予注意,对于已经处于架空状态的线路安置保护套管,将进入室内前的端位金属壳接地,光纤线路可不用进行防雷处理。虽然电源供电和网络线路等外接线路上安装了防雷保护装置,但由于雷击发生时巨大的电磁场,会在500米范围内的网络传输线路感应极强的过电压,因此在网络通信线缆接入设备前,特别是跨越房间、接近窗口和由室外引入的双绞线到网络设备之间,均需接入信号避雷器进行瞬态过电压保护,保护与之相连的网络设备。由于信号避雷器是串接在通信线路中,所以信号避雷器选择时除要考虑防雷性能指标外,还必须满足信号传输带宽、传输损耗、接口类型等网络性能指标的要求。

2.4设备安装箱柜防雷设备安装箱柜的防雷,主要是将箱柜金属壳体链接接地,宜采用单独、多点分别就近接地,在设备安装箱柜的隐蔽位置打孔去漆,再使用铜质螺钉链接接地线即可,它可以有效的防止周边雷击电场、大电流感应造成二次损毁的扩大。

2.5地电位反击的防范要消除地电位反击危害,通常采取的措施:一是作等电位连接,用金属导体将两个金属物体或接地体相互连接起来,使雷电接闪时电位相等;二是使可能电位反击的两个物体之间隔离或保持一定的安全距离。三是采用联合接地网,消除各地网之间的电位差,保证设备不因雷电的反击而损坏。机房接地能够给机房提供较好的安全性,也是防雷设施的一项基础工作,使用联合接地网,让所有的防雷接地设施都连接一个接地装置,设备就可以单独的连接附近的地网,联合接地网能够避免不同地方的电位上升带来的影响,避免了电位差,让机房接地系统的防雷效果进一步得到了强化。

3.结束语

网络通信范文第5篇

网络通信线路的安全性问题引起的。纵观网络通信的安全性问题主要包括以下六点。

1.电磁泄漏电磁泄漏是指网络通信时的大量信息在通过地线、电源线、信号线、寄生电磁信号或谐波等媒介传送的时候,由于媒介本身的弊端导致电磁信号泄漏,如果这些电磁信号被有意者接收并通过相应的技术措施予以提取,就会将其复原成原来信息的一种弊端。电磁泄漏可以是由于网络终端屏蔽不严密,也可以是传输的线路或计算机没有采取应有的屏蔽措施而引起。目前,对于我国的经济发展状况而言,大多数机房的屏蔽和防辐射措施做得都不到位,所以相应的防护措施必须做到位。

2.搭线窃听搭线窃听作为一种黑客手段,是利用计算机的电磁波辐射的原理,通过相关解译的设备将目标信息复现的一种窃取手段。黑客通常会大面积的将之应用于跨国计算机网络信息、情报的窃取。此手段对于黑客等犯罪分子而言,可以在获得大量珍贵情报和信息的同时,又不易被警方察觉方向,便于逃脱。

3.非法终端非法终端可以是通过两种渠道获得,一种是通过各种手段在已有的终端上再安装另一个终端;一种是犯罪分子投机取巧,当网络用户断开网络通信时,趁机操纵网络通信接口,拦截网络信息,使网络信息改道流入到他的非法终端。

4.非法入侵风趣的说,非法入侵更加贴近我们的生活。当我们在浏览网页,与人视频聊天的时候,你的电脑就悄悄的被恶意软件入侵。这个软件的图标和名称出现在你的桌面上,试图右击图标删除,却顽固的不能将之删除。非法入侵造成的最低的破坏是一些入侵软件需要你花费大量精力去破解删除,而更大程度上的破坏是非法窃取、使用你的信息后向他人披露,以及直接致使你的网络通信设备瘫痪,信息丢失。

5.注入非法信息笔者认为,此种手段更倾向于应用到企业之间的不正当竞争中。因为非法者(如不正当竞争一方)使用此种手段的最大目的是不仅将用户(如对方)的原有信息(如被害一方与客户的信息资料)传播截断,而且是为了替换原有信息而发出非法者想要发出的有利于其自身利益需要而又不利于合法用户的信息。

6.线路干扰线路干扰常常是因为公共转载波设施没有得到及时更新,设备陈旧老化,或是因为网络通信线路质量残次而导致。最常见的是无线路由器的电磁干扰。

二、解决网络通信安全性问题的对策

要解决网络通信的安全性问题,最根本的是要完善相应技术防控措施。所谓“魔高一尺,道高一丈”,通过对通信信息进行加密处理、用户身份认证、设置权限等方法来预防和制止网络通信安全的安全问题。

1.对通信信息进行加密处理所谓加密处理是指对信息的相互传播通过设置密钥等加密方式防止信息泄露的措施。加密措施能有效防止搭线窃听、非法入侵的发生。根据加密与解密的密钥不同可以分为对称加密算法和公钥加密算法。对称加密算法相对于公钥加密算法,又称私钥加密算法,它是加密与解密的密钥内容设置相同一致的情况。其弊端显而易见,即任意一个密钥被破解,即意味着你的通信信息处于暴漏状态。而公钥加密算法是加密与解密的密码内容设置完全不同,加密密钥是公开的,而解密密钥是私有的。非法者要想获取通信信息,就必须掌握两个密码才可以。虽然较前者安全性有了很大提高,但是他的资金投入却是不菲的。因此,要根据具体的使用环境、操作状态来决定是使用二者之一,还是同时使用。当前,应用的加密措施如信息隐藏技术,是通过设置密钥,将待隐藏信息通过嵌入算法嵌入到某一载体上,携带隐藏信息的载体通过线路进行传输,接收方再利用密钥通过提取算法提取隐藏信息的技术措施。这种措施能有效地进行信息隐藏,保证网络通信在一定程度上安全、顺畅的进行。但是,过度注重信息隐藏技术的研发,相对忽视了信息隐藏检测的问题(即检测潜在的隐蔽信道,并对隐蔽信道进行阻截,加扰和防御,以破坏隐蔽信道的传输和同步机制,提高对抗信息隐藏的能力)研究。因此,要加强网络通信技术措施的全方位研究。

2.确定用户身份认证即通过让用户提供相应的账户、密码和用户名等信息,得到访问服务器中信息的许可,这可以在很大程度上防止非法用户的登陆及其带来的一系列信息泄露等损害。

3.设置权限此措施和2有所类似,对于没有相应访问信息权限的其他人,在没有得到合法用户的授权的基础上是无权访问该信息的,以此来预防非法用户的入侵,注入恶意信息或病毒,篡改和破坏通信系统。

4.完善网络通信安全的法律法规法律是预防和惩处犯罪的最有力的武器。面对现如今出现的各种各样、层出不穷、花样百出的网络通信安全问题所引发的犯罪,加强完善网络通信安全的法律法规和相关制度是势在必行的。2009年,刑法修正案(七)通过,将非法获取计算机数据罪、非法控制计算机信息系统罪和为非法侵入、控制计算机信息系统提供程序、工具罪写入修正案中,而它的颁布实施也对网络通信的犯罪起到了警示的作用。然而面对不断出现的新的网络犯罪,完善相关的立法体系仍是不能忽视的重要课题。

三、结语