首页 > 文章中心 > 光学传感技术

光学传感技术

光学传感技术

光学传感技术范文第1篇

关键词:电子传感器;光学传感器;定位原理

DOI:10.16640/ki.37-1222/t.2016.06.144

1 星载传感器目标定位原理

1.1 电子传感器目标定位原理

在星载电子传感器定位系统中,无源定位技术是一种主要的方法。在星载无源定位过程中,星载传感器不需要发射大功率电子信号,相反,他们依靠获取目标的电子信号来确定目标的具置。最主要的无源定位方法是双曲线定位法,也叫做时差定位法。影响来自相同发射源的不同接收信号的机会在于相应时间,目标的位置可以借助于滞后时间的判定来追踪。在飞机上,[1]辐射源和观测点的相对位置上通常存在一些不同因素。通常,电磁波到达这两个位置需要的时间是不一样的,这样就会产生一个确定的时间差值,以此就可以做双曲线。

1.2 光学传感器定位原理

2 基于特征谱向量的相关算法

通常用电子检测方法获得的目标点集合是一种全连接图。[5]可以使用相邻矩阵A来代表全连接图的表示矩阵,也可以减去A得到拉普拉斯矩阵用以表示表示矩阵的完整连接图。相邻矩阵A也可以被表示为目标点和之间的高斯加权欧式距离。

3 结束语

现时代,各国以及很多领域对定位技术急切需求,定位技术也取得了很大的进展,但是相关技术仍有待突破与创新。本文详细论述了电子传感器与光学传感器的定位原理以及基于特征谱向量的相关算法,并且简要说明了两种传感器定位原理的不同。这项技术具有一定的先进性,并很快达到实际应用。由于大量的民用需求,这项技术不仅仅局限于军事应用更多应偏向民用。

参考文献:

[1]Wang zhanbin, Zhaohui, Zhang Haibo. A new method of conflict evidence combination based on the reliability function, [J]. Journal of Shanghai University of science and technology, 2008(01):50-54.

[2]Zhang Changfang,Hu weidong. Integrated location and attribute information matrix group of members of the observation matching algorithm [J]. Journal of electronics &information technology, 2009(08):1835-1839.

[3]Zhao Bangxu, Yang Hongwen. Group of target data association algorithm that use coding and formation characteristics [J]. Electric and Control, 2012(06):32-35.

[4]Li Wenli, Guo Kaihong. D - S evidence theory synthesis rules and conflict [J]. Journal of systems engineering theory and practice, 2010(08):14 22-2010.

光学传感技术范文第2篇

传感器技术是现代科技中极具发展潜力的一项应用,通过对当前新型传感器技术的应用现状分析,提出了传感器技术在未来发展中的难题和挑战,最后就传感器技术的发展趋势和应用前景进行了探讨。

【关键词】传感器技术 光电传感器 生物传感器 发展趋势

传感器技术水平在一定程度上反映了一个国家科技现代化的水平,传感器在实现自动化控制及测试控制中发挥着重要的作用。传感器技术在近些年来发展迅速,与计算机技术和通信技术一起被称为信息技术的三大支柱。现代科技中,自动化与智能化已经成为新的发展方向,传感器作为自动测量与控制中的关键环节,在社会的生产生活中应用十分广泛,且具有巨大的发展空间。

1 新型传感器技术的应用现状

随着微电子技术、微机械加工技术、光电科学以及当代生物科学等高新技术的推动下,传感器已经从过去单一功能转变为功能多样、科技含量高的新型产品。传感器技术所涉及的知识领域非常广泛,其研究和发展也越来越多地和其他学科技术的发展紧密联系。

1.1 光电传感器技术

光电式传感器是以光为测量媒介、以光电器件为转换元件的传感器,它具有非接触、响应快、性能可靠等卓越特性。随着光电科技的飞速发展,光电传感器已成为光电传感器已成为各种光电检测系统中实现光电转换的关键元件,并在传感器应用中占据着重要的地位,其中在非接触式测量领域更是扮演者无法替代的角色。光电传感器工作时,光电器件负责将光能(红外辐射、可见光及紫外辐射)信号转换为电学信号。光电器件不仅结构简单、经济性好,且具有响应快、可靠性强等优势,在自动控制、智能化控制等方面应用前景十分广阔。此外,光电传感器除了对光学信号进行测量,还能够对引起光源变化的构件或其它被测量进行信息捕捉,再通过电路对转换的电学信号进行放大和输出。

1.2 生物传感器技术

生物传感器的原理主要由两大部分组成:生物功能物质的分子识别部分和转换部分前者的作用是识别被测物质,当生物传感器的敏感膜与被测物接触时,敏感膜上的某种生化活性物质就会从众多化合物中挑选适合于自己的分子并与之产生作用,使其具有选择识别的能力;转换部分,是由于细胞膜受体与外界发生了共价结合,通过细胞膜的通透性改变,诱发了一系列的电化学过程,而这种变换得以把生物功能物质的分子识别转换为电信号,形成了生物传感器。

2 传感器技术发展中面临的挑战

传感器技术是利用现代科技来获取所需要的信息和信息量,以此来代替人类的感觉器官。传感器技术的发展不断更新着人们的观念,也为社会生产和生活的进步提供了新的思路,然而,在传感器技术的发展中仍存在着一些问题亟待解决。

2.1 通信能力有限

当前无论是生产还是生活中应用的传感器大多是基于Zig-Bee协议,这些传感器的通信距离虽然在理论上支持无限扩展,然而在实践中受到周围环境的干扰,并不能完全达到标准的通信距离。因此,如何应对复杂的地形,多变的天气,以及无处不在的电磁干扰,保证网络通信的可靠性,仍是传感器面临的一大挑战。

2.2 电源能量有限

传感器在工作中通常靠干电池或可充电电池提供电源,而这种电源的能量十分有限,严重影响着传感器的民用化应用。因此,针对传感器电源的研究也正在被研究者们日益重视。主要包括两个方面,一方面是研究传感器在网络工作中的节能技术;另一方面是选择可长时间供电的新型能源。

2.3 计算能力有限

嵌入式处理器以及存储器满足了传感器微型化设计的需要,且具有信息和数据处理的能力,虽然它们有一定信息处理的能力,但是数据经过A/D转换后,只经过少许处理就输出出去,很容易产生大量的数据,而有些数据是不需要的。因此,尽可能地提高传感器的数据处理能力,并能够进行协作分布式信息处理是当前研究的另一难点。

2.4 传感器数量大、范围广难维护

在未来的传感器应用中,很多都不是依靠单一的个体工作,而是由许多传感器组成的系统,系统中的传感器不仅数量巨大,且其分布具有广泛性,传感器组成的网络系统维护难度就显得异常突出。管理数目庞大的传感器系统,需要可靠的软硬件网络,同时传感器网络必须具备可重构性及自调整性,这也是需要研究的另一重点。

3 传感器技术的发展趋势和应用前景

随着传感器技术在科学发展中的重要地位日益显现,对传感器的研究和应用也逐渐受到人们的普遍关注。当今传感器技术的研究与发展,特别是基于光电通信和生物学原理的新型传感器技术的发展,已成为推动国家乃至世界信息化产业进步的重要标志与动力。

3.1 利用新材料开发新型传感器

随着光导纤维、纳米材料、超导材料等材料科学的深入,智能材料的应用和发展正成为人们关注的热点。智能材料是指材料本身就具备传统传感器的功能,能够对外界及自身性能的变化进行识别和判断,进而通过一定功能的转换,最终采取相应的行动来调整以适应外界变化和避免自身性能受损。新材料这种敏感功能为新型传感器的出现提供了技术支持。

3.2 集成化多功能传感器的开发

集成化是指传感器同一功能的多元件并列,以及功能上的一体化。同一功能的多元化并列能够实现传感器参数的多维立体化,再通过软件的编译,对传感器中的多个单一参数进行集成,进而完成对多个点或面的集中监测。传感器功能上的一体化主要是改变传感器功能单一的缺陷,转而向着单传感器集成多种功能自一体,实现一个传感器能够同时监测多种信号变化,简化监测系统,提高工作效率。运用集成化多功能理论研制出的传感器可以应用到更广泛的领域,并发挥出更加强大的功能效用利用集成化多功能原理,现代传感技术已制成带温度补偿的集成压力传感器,频率输出型集成压力传感器,霍尔集成传感器,半导体集成色敏传感器,多维化集成气敏传感器等。

4 结束语

当前我国在传感器的研发已经具备一定的规模和应用实力,在今后的研发中应重点关注基础性产品,在攻克传感器制造工艺技术的前提下,对产品的可靠性进行深入化分析,实现传感器技术的研究与应用平衡发展。

参考文献

[1]焦长兵,金勇杰,傅历光.无线传感器网络及其军事应用[J].黑龙江科技信息,2007(23).

[2]郝全义,王太宏.生物传感器及其在传染病检测中的应用[J].中国基础科学,2009(06).

光学传感技术范文第3篇

关键词: 光电器件;光电特性;传感器应用

0 绪论

光电传感器是采用光电元件作为检测元件的传感器,它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号,光电传感器一般由光源,光学通路和光电元件三部分组,光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。

1 光电传感器原理

光电传感器是通过把光强度的变化转换成电信号的变化来实现控制的。光电传感器在一般情况下,由三部分构成:发送器、接收器和检测电路。

发送器对准目标发射光束,发射的光束一般来源于半导体光源,发光二极管(LED)、激光二极管及红外发射二极管。光束不间断地发射,或者改变脉冲宽度。接收器有光电二极管、光电三极管、光电池组成。在接收器的前面,装有光学元件如透镜和光圈等。在其后面是检测电路,它能滤出有效信号和应用该信号。此外,光电开关的结构元件中还有发射板和光导纤维。三角反射板是结构牢固的发射装置。它由很小的三角锥体反射材料组成,能够使光束准确地从反射板中返回,具有实用意义。

槽型光电传感器把一个光发射器和一个接收器面对面地装在一个槽的两侧的是槽形光电。发光器能发出红外光或可见光,在无阻情况下光接收器能收到光。但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。槽形开关的检测距离因为受整体结构的限制一般只有几厘米。

对射型光电传感器若把发光器和收光器分离开,就可使检测距离加大。由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。它的检测距离可达几米乃至几十米。

反光板型光电开关把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。正常情况下发光器发出的光收光器是找不到的。

2 光电传感器的应用

2.1 透射式光电传感器在烟尘浊度检测上的应用

防止工业烟尘污染是环保的重要任务之一。为了消除工业烟尘污染,首先要知道烟尘排放量,因此必须对烟尘源进行监测、自动显示和超标报警。

为了检测出烟尘中对人体危害性最大的亚微米颗粒的浊度和避免水蒸气与二氧二碳对光源衰减的影响,选取可见光作光源。光检测器光谱响应范围为400-600nm的光电管,获取随浊度变化的相应电信号。为了提高检测灵敏度,采用具有高增闪、高输入阻抗、低零漂、高共模抑制比的运算放大器,对信号进行放大。刻度校正被用来进行调零与调满刻度,以保证测试准确性。显示器可显示浊度瞬时值。报警电路由多谐振荡器组成,当运算放大器输出浊度信号超过规定时,多谐振荡器工作,输出信号经放大后推动喇叭发出报警信号。

2.2 漫射聚焦型传感器

漫射-聚焦型传感器是效率较高的一种漫射型光电传感器。发光器透镜聚焦在传感器前面固定的一点上。接收器透镜也是聚焦在同一点上。敏感的范围是固定的,取决于聚焦点的位置。这种传感器能够检测在焦点上的物体,允许物体前后偏离焦点一定距离,这个距离称作“敏感窗口”。当物体在敏感窗口以外,在焦点之前或者之后时便检测不到。敏感窗口取决于目标的反射性能和灵敏度的调节状况。因为所射出来的光能是聚焦在一个点上面,增益增大了很多,于是传感器很容易地就检测到窄小的物体或者反射性能差的物体。

具有背景光抑制功能的漫射型光电传感器只能检测一定距离的目标物体,在这个距离以外的物体它便检测不到。在各种漫射型光电传感器中,这种类型的传感器敏感目标物体颜色的灵敏度是最低的。这种传感器的一个主要优点是,它不会检测背景物体。而普通的漫射型光电传感器往往会把背景物体误认为是目标物体。

对于具有机械式背景光抑制功能的漫射型光电传感器,它里面有两个接收元件:一个接收来自目标物体的光,另一个接收背景光。目标接收器E1上的反射光的强度超过背景光接收器E2上的反射光时,便把目标检测出来,产生输出信号。当背景光接收器上的反射光的强度超过目标接收器上的反射光时,不检测目标,输出状态不发生变化。在距离可变的传感器中,焦点可以用机械的方法进行调节。

对于具有电子式背景光抑制功能的漫射型传感器,在传感器中使用一只位置敏感元件(PSD)而不是使用机械元件。发光器发出一束光线,光束反射回来,从目标物体反射回来的光线和从背景物体反射回来的光线到达位置敏感元件的两个不同位置。

3 光电传感器的发展前景

光电式传感器可非接触地探测物体,广泛用于自动化领域,如管理系统、机械制造、包装工业等。当然,光电式传感器也有它的缺点,它是以光为媒介进行无接触检测,光是一种频率很高的电磁波,光干扰也算一种电磁干扰,它是导致传感器误动作的主要因素之一。环境光、背景光和周围其他光电式传感器所发出的光都是光干扰源。故设计时,采用偏振光及高频调制的脉冲光,采用同步检波方式,有利于抑制光干扰。

在各行业、各领域中,光电传感器都得到了广泛的应用,尤其是在电力、工业、军事、农业及生活领域,光电传感器的应用不达标有利于电力电子设备的升级与改造,而且客观促进了社会生产力水平的提高。随着现代科学技术的不断发展,光电传感器的应用展现了更为广阔的发展空间,我们应注重对于国内外相关技术研究成果的积累和借鉴,并且加强与现代计算机技术、网络技术、电力电子技术的有机结合,从而不断拓展光电传感器的应用范围,更好的服务于现代社会的发展。

4 结论语

以上对光电传感器的检测技术和部分光电传感器的应用做了分析说明,在现展中,光电技术有很多种,同时工作方式也又很多。在多方面考虑,应该仔细的选择性能比较稳定价格适应的技术和类型,实施好设计方案。

参考文献:

[1]黄贤武、郑莜霞,传感器原理与应用[M].成都:电子科技大学出版社,2004:145-147.

光学传感技术范文第4篇

关键词:物联网专业;传感器技术;教学改革

当前,物联网在国内得到了广泛的应用,教师要针对物联网专业的人才培养目标来设计制定相应的课程,其中传感器技术课程是物联网专业的核心课程。以往高职院校的传感器技术这门课程在教学中过多地倾向于传感器原理的介绍,关于测量电路的分析以及传感器的应用实例也多为理论分析,实践机会较少。目前,大多数院校尝试对这门课程进行改革,笔者也针对传感器技术课程教学改革谈几点意见。

一、课程教学内容的调整

高职物联网专业更注重学生应用能力的培养。物联网应用以电子标签技术、传感技术、中间件技术及网络和移动通信技术为支撑。传感器是构成物联网的基础单元,是物联功能的前提,根据物联网专业的知识结构,传感器技术课程教学内容也需要更新。

1.课程内容主线的确定

目前传感器技术这门课程教学内容安排主要是两种:一种按传感器类别划分讲解测量原理,另外一种按被测量的类型来划分讲解测量原理及应用情况。传统的传感器种类已有几十种,并且新功能传感器还在不断推出,随着物联网的不断发展,新知识还要及时补充到课程里去。按照被测量的类别来划分教学内容更易于拓展学生的思维。提出一个被测量物后,教师可以提供几种典型的传感器,简要分析它们的测量原理,然后引导学生根据不同类别的传感器来思考相应的测量方案,分析几种方案的优缺点,考察传感器的工作特性。这样的教学内容安排更灵活,使学生明白传感器提供的是检测手段和方法。

2.光电传感技术

光电传感技术以光电传感器为核心器件,用光电的方法对某些物理量进行信息转换。近年来,光电传感技术发展较迅速,并且光电传感器与其他传感器相比,具有明显的优越性,是一种应用极其广泛的传感器件。物联网技术中较多使用光电传感器节点,所以在课程的教学内容中应加强光电传感技术的介绍,它主要包括典型光电器件、红外传感、激光传感、光纤传感、光栅传感及图像传感技术等方面的内容。

3.传感器网络与节点

物联网应用实现的是对感知获取的数据进行分析和处理后,能有针对性地对标的物进行连续控制、整体控制、动态控制、有效控制。它是一个完整的、流程化的全自动控制过程,因此用来感知数据的“感知层”作为物联网的底层应该做到“全面感知”。另外,智能传感器的开发和大量使用,导致了在分布式控制系统中对传感信息交换提出了许多新的要求,单独的传感器数据采集已经不能适应现代控制技术和检测技术的发展,取而代之的是传感器网络。物联网专业的传感器技术课程中需要重点讲解传感器网络,包括传感器网络的结构、信息交换体系、通信协议、OSI开放系统互连参考模型等都是需要补充的内容,其中无线传感网络、传感器节点的设计是教学重点。无线传感网络是由大量移动或静止传感器节点,通过无线通信方式组成的自组织网络,它的结构和应用是本课程中的重点。传感器节点的设计主要包括传感器模块、处理器模块、无线通信模块和电源模块设计。因为我院自主开发了物联网实验台,并且自行设计了几个典型的传感器节点,所以正好可以作为教学案例,让学生了解传感器节点的主要模块的功能和设计。

4.实训项目

以往的传感器技术课程中实训项目并不多,学校购买的传感器实验台以传统的传感器实验为主,现在学校新建立了物联网实验基地,其中包含物联网传感器实训室,新增了光电、红外、光纤、超声、图像、指纹等新型传感器,实训项目明显增加。另外,学校自主开发的典型传感器节点就可以作为“传感器网络”部分的实训项目。

二、整合教学方法,注重教学效果

采用以学生为主体、教师为主导的现代教学模式,发挥了学生的学习主体作用,利用情境、协作等学习环境激发学生的学习兴趣,挖掘学生的学习潜能和创新能力,最终达到使学生掌握知识和技能、提高综合素质的目的。

1.多种教学方法综合运用

课堂教学中,教师要改变单一的教学方式,结合多媒体、传感器实物来教学,淡化理论推导,注重应用实例。实训教学中,教师要采用“任务驱动”教学方法,基于学校已有的实训设备,安排典型“任务”,并引导学生由简到繁、由易到难、循序渐进地完成一系列“任务”。在完成“任务”的过程中,培养了学生分析问题、解决问题的能力,大大提高了学生的学习效率。

2.细化考核方式

为提高教学质量,保证教学的有效性,教师必须全面了解教学目标的完成情况,并且以此为据及时调整教学过程。教师还应重视学生平时所学知识和能力的检查和测试,及时做好每个学生的学习情况记录,学生的总评成绩包括平时成绩、理论考核、实训考核。其中,理论考核的比例可适当降低,实训考核的比例要提高。

光学传感技术范文第5篇

参考文献

[1]梁瑞冰,孙琪真,沃江海,刘德明.微纳尺度光纤布拉格光栅折射率传感的理论研究[J].物理学报.2011(10)

[2]钱银博.基于SOA的长距离无源光网络理论与实验研究[D].华中科技大学2010

[3]赵攀,隋成华,叶必卿.微纳光纤构建M-Z干涉光路进行液体折射率变化测量[J].浙江工业大学学报.2009(03)

[4]李宇航,童利民.微纳光纤马赫-泽德干涉仪[J].激光与光电子学进展.2009(02)

[5]刘盛春.基于拍频解调技术的光纤激光传感技术研究[D].南京大学2011

[6]高学强,杨日杰.潜艇辐射噪声声源级经验公式修正[J].声学与电子工程.2007(03)

[7]胡家艳,江山.光纤光栅传感器的应力补偿及温度增敏封装[J].光电子·激光.2006(03)

[8]牛嗣亮.光纤法布里-珀罗水听器技术研究[D].国防科学技术大学2011

[9]曹锋.新一代周界防入侵软件系统研究及其应用[D].华中科技大学2010

[10]唐天国,朱以文,蔡德所,刘浩吾,蔡元奇.光纤岩层滑动传感监测原理及试验研究[J].岩石力学与工程学报.2006(02)

[11]詹亚歌,蔡海文,耿建新,瞿荣辉,向世清,王向朝.铝槽封装光纤光栅传感器的增敏特性研究[J].光子学报.2004(08)

[12]孙运强.激光内通道传输的气体热效应研究[D].国防科学技术大学2011

[13]刘浩吾,吴永红,丁睿,文利.光纤应变传感检测的非线性有限元分析和试验[J].光电子·激光.2003(05)

[14]邓磊.OFDM技术在无源光网络及光无线系统中的应用与研究[D].华中科技大学2012

[15]胡家雄,伏同先.21世纪常规潜艇声隐身技术发展动态[J].舰船科学技术.2001(04)

[16]ZuyuanHe,QingwenLiu,TomochikaTokunaga.Ultrahighresolutionfiber-opticquasi-staticstrainsensorsforgeophysicalresearch[J].PhotonicSensors.2013(4)

[17]YiJiang,WenhuiDing.Recentdevelopmentsinfiberopticspectralwhite-lightinterferometry[J].PhotonicSensors.2011(1)

[18]AnSun,YuliyaSemenova,GeraldFarrell.Anovelhighlysensitiveopticalfibermicrophonebasedonsinglemode-multimode-singlemodestructure[J].Microw.Opt.Technol.Lett..2010(2)

参考文献

[1]孙运强.激光内通道传输的气体热效应研究[D].国防科学技术大学2011

[2]赵兴涛.掺镱、亚波长空芯及新型高非线性光子晶体光纤的研究[D].北京交通大学2015

[3]杨春勇.GMPLS智能光网络中波长路由器的研究[D].华中科技大学2005

[4]许荣荣.光纤环形腔光谱技术与传感应用的研究[D].华中科技大学2012

[5]张磊.基于光子晶体光纤非线性效应的超宽带可调谐光源[D].清华大学2014

[6]王超.基于高频等离子体法制备掺镱微结构光纤及其特性的研究[D].燕山大学2014

[7]林桢.新型大模场直径弯曲不敏感单模及少模光纤的研究[D].北京交通大学2014

[8]苏伟.新型光子准晶光纤及石英基光纤的微观机制研究[D].北京交通大学2015

[9]许艳.基于飞秒光频梳的绝对距离测量技术研究[D].华中科技大学2012

[10]钱新伟.PCVD单模光纤高速拉丝工艺与光纤性能研究[D].华中科技大学2009

[11]刘国华.高功率光纤激光器的理论研究[D].华中科技大学2007

[12]常宇光.光纤射频传输(ROF)接入系统及无线局域网应用研究[D].华中科技大学2009

[13]张雅婷.基于光子晶体光纤的表面等离子体传感技术研究[D].华中科技大学2013

[14]张小龙.同轴电缆接入网信道建模与故障诊断方法研究[D].华中科技大学2013

[15]张传浩.电信级以太无源光网络接入理论与实验研究[D].华中科技大学2009

[16]吴广生.无源光网络与电网络复合接入技术研究[D].华中科技大学2009

[17]江国舟.10Gbps以太无源光网络关键技术与应用研究[D].华中科技大学2009

[18]张利.以太无源光网络安全性与增强技术研究[D].华中科技大学2009

[19]冯亭.MOPA光纤激光系统放大级增益光纤特性与高质量种子源关键技术研究[D].北京交通大学2015

[20]张曙.EPON和WLAN融合网络架构下的上行链路调度算法研究[D].华中科技大学2009

[21]孙琪真.分布式光纤传感与信息处理技术的研究及应用[D].华中科技大学2008

[22]孙运强.Ⅰ钳式镍配合物的合成及性质反应研究Ⅱ有机氟化物的合成新方法研究[D].山东大学2014

参考文献

[1]刘钰旻.纳米功能材料在能量转换与储存器件中的应用[D].武汉大学2013

[2]曾谦.声表面波技术在微流控芯片中的集成及应用研究[D].武汉大学2011

[3]彭露,朱红伟,杨旻,国世上.微沟道内两相流速比对液滴形成的影响[J].传感技术学报.2010(09)

[4]郭志霄.微液滴和海藻酸凝胶颗粒在微流控芯片中的应用研究[D].武汉大学2011

[5]全祖赐.环境友好型多功能氧化物薄膜的微结构、光学、电学和磁学性能研究[D].武汉大学2010

[6]彭涛.功能电极材料在染料敏化太阳能电池中的应用[D].武汉大学2014

[7]黄妞.光阳极修饰和二氧化钛形貌调制在染料敏化太阳能电池中的应用[D].武汉大学2013

[8]国世上.电子辐照铁电共聚物P(VDF-TrFE)及超声传感器的研究[D].武汉大学2004

[9]韩宏伟.染料敏化二氧化钛纳米晶薄膜太阳电池研究[D].武汉大学2005

[10]何荣祥.纳米功能材料器件及其在流体和细胞检测中的应用研究[D].武汉大学2013

[11]周聪华.染料敏化太阳能电池中电极材料和寄生电阻的研究[D].武汉大学2009

[12]胡浩.碳材料对电极在染料敏化太阳能电池中的应用[D].武汉大学2011

[13]李伟平.铁电共聚物P(VDF-TrFE)的性能和换能器的模拟研究[D].武汉大学2004

[14]蓝才红,蒋炳炎,刘瑶,陈闻.聚合物微流控芯片键合微通道变形仿真研究[J].塑料工业.2009(05)