首页 > 文章中心 > 纳米技术的重要性

纳米技术的重要性

纳米技术的重要性

纳米技术的重要性范文第1篇

陶瓷可以做成刀具,只要在烧制过程中加入纳米材料;打针可以不痛也不出血,药物反而更容易被人体吸收,只要使用无痛纳米微针;液晶显示器可以显示效果更好,只要用纳米微球作液晶板间的“支架”;使用纳米技术,一分钟就能分辨出地沟油;使用纳米技术,中巴车充电三十分钟就能从苏州开到南京……拥有纳米技术,即使没有刘谦,也能见证奇迹。

事实上,纳米技术由来已久。1990年,第一届国际纳米科学技术会议召开,这是纳米技术诞生的重要标志。在此后多年中,纳米技术只是扮演了一个冷冰冰的科学名词。如今,其已经悄然蜕变,并走进了人们的衣食住行。更值得欣慰的是,将来纳米技术还能被广泛应用于七大新兴产业的上游高端环节,引领新兴产业发展,推动战略性新兴产业发展。

据了解,纳米技术理念最早由诺贝尔物理学奖获得者费曼提出。作为一个长度单位,纳米是十亿分之一米。因为在1~100纳米的尺度内,物质特性发生许多不同于宏观世界的物理和化学变化,而正是这些特性,注定纳米技术必将对产业带来颠覆性的革命。

细数纳米技术对世界产生的深远影响:除了大量原创性成果不断涌现,近十项重大突破性技术荣获诺贝尔奖,材料、能源、微电子、生物技术等众多产业领域发生了深刻的变革,产业规模迅速壮大。美国市场研究人员预测,到2014年,全世界纳米技术产业市场规模将到达2.6万亿美元,相当于IT和通信两大行业的总和。

苏州纳米技术产业发展首席顾问,中科院院长、国家纳米领域首席科学家白春礼院士曾这样预测纳米技术产业的未来:会像今天的计算机技术一样普及。他指出,纳米技术是对21世纪一系列高新技术有重要影响的关键技术,将引发人类社会的新一轮产业革命。纳米技术及应用国家工程研究中心主任助理何丹农也曾指出,纳米技术与信息技术、生物技术共同成为21世纪社会发展的三大支柱,它是当今世界大国争夺的战略制高点。

如此,在全球范围内,世界主要国家都把推动新一轮产业革命的纳米技术产业列入国家重大战略性产业并不意外。而各国都在加快布局,抢占纳米技术的战略制高点。韩国、美国、日本、欧盟、俄罗斯等世界主要国家都将纳米技术产业作为国家重大战略性产业,纷纷制定国家层面的发展战略和计划,重视政府资金投入,强化产业国际合作与交流。

韩国最为突出。据了解,韩国正大力发展纳米生物科技、纳米能源、纳米材料技术、纳米环境等产业。韩国甚至还为纳米产业的发展制定了特别法,过去十年财政投入超过20亿美元。此外,韩国政府还整合教育部、科技部等相关政府部门,实施2020计划,渗透新市场,加快纳米产业化。美国也不例外。美国也从2000年开始实施《国家纳米技术计划》,近几年在纳米技术领域的研发投入都保持在每年近20亿美元的规模。

2005年,欧盟制定《欧洲纳米技术发展战略》,欧盟成员国德国、法国、芬兰等分别制定了本国纳米技术发展计划,欧盟及主要成员国已累计投入超过140亿美元。俄罗斯从2001年开始重点推动纳米技术产业,2007年专门成立国有“俄罗斯纳米技术集团”推动产业化发展。此外,埃及、印度、泰国、沙特、南非等国也不甘落后,加大研发投入和产业化促进力度。全球形成争夺纳米科技制高点的竞争态势。

在纳米技术领域,中国也不落人后。中国从20世纪80年代起就一直高度重视纳米技术,作为较早开展纳米技术研究的国家之一,2001年就成立国家纳米科技指导协调委员会,同年7月科技部等五部委《国家纳米科技发展纲要(2001~2010)》。

科技部技术研究司司长张先恩指出,上世纪80年代初,中国纳米领域的量几乎为零,进入21世纪以来,呈曲线上升的趋势。直至去年,中国的量占全世界总量的20%,同时论文的引用次数也在增长,其中中科院的论文的引用次数位居全国首位。

数据显示,2001~2009年,中国用于纳米科技的研发经费超过26亿元人民币。“973”计划、“863”计划设立纳米技术专项,吸引了包括国家杰青、中科院百人、教育部长江学者在内的约342名高端人才从事纳米技术研究,在基础研究方向取得众多原创性技术成果;清华大学等50所大学和中科院的36个研究所从事纳米技术研究;2009年,我国发表纳米科技SCI-E论文总数首次超越美国,跃居世界第一,专利申请量世界第二;先后建设“国家纳米技术科学中心”和“纳米技术及应用国家工程研究中心”等国家纳米科技研发载体。

纳米技术的前景更得到产业界的认可。众多世界500强企业看好纳米技术产业的战略前景。美国IBM公司持续20几年推进纳米技术研发,在多个领域拥有突破性的优势。2010年4月,韩国三星公司开始建设“三星纳米城”,全面推进纳米级超精密半导体产业。日本的索尼公司积极布局纳米科技,在半导体显示及存储领域已经取得优势地位。

毋庸置疑,发展纳米技术与相关产业,对提升国家及区域竞争力的巨大战略意义。然而,与物联网等相关产业类似,纳米技术问世也已有20余年时间,但现在,技术产业化过程并不理想。“纳米技术成果产业化之路走得并不顺畅。”业内人士告诉记者。

科技部万钢部长(国家纳米科技指导协调委员会主任)在总结过去十年中国纳米科学领域取得的成果时指出,中国已迈入纳米大国行列,但还不是纳米强国。这主要表现为产业化水平低,无规模企业广泛参与,不能有效推进协调纳米技术资源。亟待从产业发展角度对国家纳米技术产业进行整体规划,形成良好的技术成果产业化机制。

在联想之星副总裁梁青看来,这正是纳米技术产业化面临的最大问题。“没有设备、没有原料、没有应用,一切都要从新开始。这也是我们在投资过程中面临的最头痛的问题。材料做出来了,但还得等6年才能实现部件销售,应用时间更长。因为周期长,投资额也很大。”

他告诉记者,“纳米技术是变革性的,不是改良性的。其产业化周期很长,需要产业链上下游的协调与配合。正常情况下,要先做出材料,再做出配件,再做出应用。但现实的情景是,很多部件企业会认为,上游材料没有大规模生产前,不敢冒然采用,而材料大规模生产至少要两三年,部件大规模生产也要两三年,应用同样如此。它们之间的矛盾很明显。”

然而,在纳米技术产业,国外并没有成功经验可以借鉴。梁青指出,“因为,在纳米技术领域,中国并不落后。但国外有更多的钱,更好的投资环境,企业不是那么急功近利,而国内中小企业功利性比较强。现在,很多地方政府和学研机构对科技成果产业化也有疑虑。国家科技经费投资研发出某项技术,后被企业以某种方式获取的状况时有发生。当然,更应该看到,技术如果一直放在研究所里就不值钱。”

不久前的一项调查结果显示,日本80家大企业中,有大约40%的企业设置了专门机构,已经或者即将着手发展这一高新科技。三菱、伊藤忠和丸红等综合商社已经或计划同美国的风险企业设立合资公司,把纳米技术列为新的发展项目。富士通公司设立了纳米技术研究中心,住友电工公司也组织了纳米技术研究班子。

在日本,企业界是发展纳米技术的主力军。与之不同,中国在纳米技术产业化过程中,并未实现“以企业为主体”。尽管从纳米领域的专利方面看,中科院申请的数量已经位居世界排名的首位,但是与其他国家相比,中国的专利大都是研究机构在申请,而在国外企业却占主导,“这也说明中国纳米企业科研的进展还有很大的努力空间。”张先恩说。

何丹农认为,在纳米技术成果集成方面,要始终坚持把市场需求作为出发点和归宿点,选择具有市场前景的技术和成果。由于纳米技术的跨学科性、实验和技术上的局限性、技术的成熟度不够、研究成本高周期长等问题,仅靠一个工业部门或者研究机构将无法加快推动纳米技术产业化进程,所以,急需采用合理的产业化与投融资模式。

梁青认为,在纳米技术产业并没有规模化的企业,而这制约了产业化的进程。“事实上,只有像联想、3M等大型企业才会考虑三五年后的事情,一般的中小企业无暇,也没有实力去考虑长远。所以,它们就宁愿等着,反正没有威胁,它并不着急。而最着急的是新创立的企业,但它们也是干着急。很多纳米产业投资进去后,都出现越来越难熬的状况。”

当然,资本的助力对纳米技术产业化来说也必不可少,然而,现在资本市场偏好投资中后期项目,而不愿意投资早期项目?而这对于更多处在孵化阶段的纳米技术产业的融资环境更是雪上加霜。梁青说,“很多项目就是在从科技部到发改委的阶段,中间有一个断层,没有人管。但是,对国家来说,如果不做纳米技术,可能会丧失未来。”

他建议,“能不能让政府投资,材料、部件、应用等三个层面的企业一起干。在遵循市场规律的同时,给予足够的扶持政策,消除企业对规模化生产的疑虑。这等于把一个串行动作,变成一个并行的。如果能做到这一点,产业就能非常快地推进,长远对行业是有好处的。”

纳米技术的重要性范文第2篇

[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。

一、纳米的发展历史

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

二、纳米技术在防腐中的应用

纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。

纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。

纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。

我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。

三、纳米材料在涂料中应用展前景预测

据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。

由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。

在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。

纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。

纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。

四、结语

由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。

参考文献:

[1]桥本和仁等[J].现代化工.1996(8):25~28.

纳米技术的重要性范文第3篇

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

二、纳米技术在防腐中的应用

纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。

纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。

纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。

我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。

三、纳米材料在涂料中应用展前景预测

据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。

由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。

在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。

纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。

纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。

四、结语

由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。

[论文关键词]纳米材料应用

[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。

参考文献:

[1]桥本和仁等[J].现代化工.1996(8):25~28.

纳米技术的重要性范文第4篇

一、纳米科技的意义与发展过程

(1)纳米科技的定义。

如果将人类所研究的物质世界对象用长度单位加以描述,我们可以得到人类智力所延伸到的物质世界的范围目前人类能够加以研究的物质世界的最大尺度是Kfm(约10亿光年),这是我们已观测到的宇宙大致范围人类所研究的物质世界的最小尺度为1CF19m(0.1阿米)纳米科技中的“纳米”为rn^m,是1毫米的百万分之一。原子的直径在0.1-0.3个纳米之间。研究小于10-1()@以下的原子内部结构属于原子核物理粒子物理的范畴。纳米科技是指在纳米尺度(1nm到100nm之间)上研究物质(包括原子、分子的操纵)的特性和相互作用,以及利用这些特性的多学科交叉的科学和技术。当物质小到1至100纳米(rn9-10"7米)时,由于其量子效应、物质的局域性及巨大的表面及界 面效应,使物质的很多性能发生质变,呈现出许多既不同于宏观物体,也不同于单个孤立原子的奇异现象纳米科技的最终目标是直接以原子、分子及物质在纳米尺度上表现出来的新颖的物理、化学和生物学特性制造出具有特定功能的产品。

(2)纳米科技概念的提出与发展

最早提出纳米尺度上科学和技术问题的是著名物理学家、诺贝尔奖获得者查德.费曼1959年他在一次著名的讲演中提出:如果人类能够在原子分子的尺度上来加工材料、制备装置,我们将有许多激动人心的新发现他指出,我们需要新型的微型化仪器来操纵纳米结构并测定其性质。那时,化学将变成根据人们的意愿逐个地准确放置原子的问题

1974年,Taniguchi最早使用纳米技术(Nan?otechnology)一词描述精细机械加工。70年代后期,麻省理工学院德雷克斯勒教授提倡纳米科技的研究,但当时多数主流科学家对此持怀疑态度。

纳米科技的迅速发展是在20世纪80年代末90年代初。80年代初发明了费曼所期望的纳米科技研究的重要仪器一一扫描隧道显微镜(STM)、原子力显微镜(AFM)等微观表征和操纵技术,它们对纳米科技的发展起到了积极的促进作用。与此同时,纳米尺度上的多学科交叉展现了巨大的生命力,迅速形成为一个有广泛学科内容和潜在应用前景的研究领域1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩与第五届国际扫描隧道显微学会议同时举办,〈〈纳米技术》与《纳米生物学》这两种国际性专业期刊也相继问世一门崭新的科学技术一纳米科技从此得到科技界的广泛关注。

(3)纳米科技的重要意义一一为什么会出现“纳米热”?

德国科学技术部早在1996年就对纳米技术市场做了预测,估计到2010年能达到14400亿美元美国《商业周刊》将纳米科技列为21世纪可能取得重要突破的3个领域之一(其它两个为生命科学和生物技术?从外星球获得能源)从1999年开始,美国政府决定把纳米科技研究列入21世纪前10年11个关键领域之一。2000年2月美国总统克林顿宣布联邦政府将以4.95亿美元优先实施新的“全美纳米科技计划(NNI)”国家科技委员会为此还专门成立了由各部门专家组成的“纳米科学与工程技术小组”(IWGN),提出了研究报告《国家纳米技术倡议》报告形成后,总统科技助理写信给国会称:纳米技术将与信息技术或生物技术一样,对21世纪经济、国防和社会产生重大影响,可能引导下一场工业革命(Leadingtothenextindustrialrevolution),应把它放在科学技术的最优先地位(Toppriority)

纳米科技的陡然升温不仅仅是尺度的缩小问题,实质是由于纳米科技在推动人类社会产生巨大变革方面所具有的重要意义所决定的纳米科技将促使人类认知的革命首先,纳米科技的科学意义体现在:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,在介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性突破的,在这一尺度下,充满了原始创新的机会。因此,对于还比较陌生的纳米世界中的尚待揭示的科学问题,科学家有着极大地好奇心和探索欲望

其次,由于纳米科技是对人类认知领域新疆域的开拓,人类将承担对新理论和新发现重新学习和理解的任务而一旦对这一领域探索过程中,形成的理论和概念在我们的生产生活中得以广泛的应用,那么,人类将建立迥异于我们肉眼所能观察到的物质世界的新观念,它将极大地丰富我们的认知世界并给人类社会带来观念上的变革

第三,从人类未来发展的角度看,可持续发展将是人类社会进步的唯一选择纳米科技推动产品的微型化?高性能化和与环境友好化,这将极大节约资源和能源,减少人类对其的过分依赖,并促进生态环境的改善。这将在新的层次上可持续发展的理论变为现实提供物质和技术保证纳米科技将引发一场新的工业革命由于量子效应,微电子器件的极限线宽一般认为是0.07微米(70纳米)根据美国半导体工业协会预计,到2010年半导体器件的尺寸将达到0.1微米(100纳米),这正好是纳米结构器件的最大长度。小于这一尺寸,所有的芯片需要按照新的原理来设计为了突破信息产业发展的瓶颈,我们必须研究纳米尺度中的理论问题和技术问题,建立适应纳米尺度的新的集成方法和新的技术标准。而在这一尺度 上制造出的计算机的运算和存储能力将比目前微米技术下的计算机性能呈指数倍的提高,这将是对信息产业和其它相关产业的一场深刻的革命。同样,生命科技也面临着在纳米科技影响下的变革所以,人们认为纳米科技是未来信息科技与生命科技进一步发展的共同基础正如美国《新技术周刊》指出:纳米技术是21世纪经济增长的一个主要的发动机,其作用可使微电子学在20世纪后半叶对世界的影响相形见绌。

纳米科技不仅对信息和生物技术产业产生革命性的影响,而且也促使传统产业的“旧貌换新颜”。这是纳米概念在国内炒得沸沸扬扬的重要原因之一目前纳米技术已经渗透到某些传统产业中,如染料、涂料、食品等。比如通过纳米材料的研究,我们在化纤制品中加入纳米微粒,可以除昧杀菌通过纳米技术的运用,使建筑物外墙涂料的耐洗刷性由原来的1000多次提高到1万多次,老化时间也延长了两倍多。这种对传统材料进行纳米改性的技术,企业应用的投入不大,而且市场前景广阔。

鉴于纳米科技对未来工业的革命性影响和对传统产业技术改造的广泛性,发达国家的企业为开拓巨大的潜在市场,正加强技术储备,努力占领战略制高点。

目前我国出现的“纳米热”,因纳米科技本身所蕴含的对人类生产生活的巨大推动作用,有其产生的必然性,而且这股热浪对于纳米科技在中国的蓬勃发展有着积极的促进作用。但是我们也应该看到,纳米科技作为国际上刚刚兴起的一门新兴的学科领域,有许多重大的基础问题还未解答,其全面走向应用尚需时日,因此,对于“纳米热”应予正确引导,防止将纳米科技的概念庸俗化

二、纳米科技的研究领域

由于纳米科技的多学科交叉性质,因此,纳米科技的研究对象涉及诸多领域,它的基础研究问题又往往与应用密不可分我们可以根据纳米科技与传统学科领域的结合而细分为纳材料学、纳电子学、纳生物学、纳化学纳机械学与纳加工等等,但这种与学科紧密联系的分类方式,无法简单便捷地勾勒纳米科技的大致轮廓,各类之间而且又有交叉和重叠因此,为使大家对纳米科技有直观的了解,我们将介绍纳米科技中有代表性的纳米材料、纳米器彳牛、纳米检测与表征三类功用性很强的研究领域料是指材料的几何尺寸达到纳米级尺度水平,并且具有特殊性能的材料。其主要类型为:纳米颗粒与粉体纳米碳管和一维纳米材料、纳米薄膜、纳米块材。纳米材料由于其结构的特殊性,如大的比表面以及一系列新的效应(小尺寸效应、界面效应、量子效应和量子隧道效应)决定了纳米材料出现许多不同于传统材料的独特性能,进一步优化了材料的电学热学及光学性能对于纳米材料的研究包括两个方面:一是系统地研究纳米材料的性能、微结构和谱学特征,通过和常规材料对比,找出纳米材料特殊的规律,建立描述和表征纳米材料的新概念和新理论;二是发展新型纳米材料。目前纳米材料应用的关键技术问题是在大规模制备的质量控制中,如何做到均匀化、分散化稳定化。

(2)纳米器件。

纳米科技的最终目的是以原子、分子为起点,去制造具有特殊功能的产品。因此,纳米器件的研制和应用水平是进入纳米时代的重要标志。

如前所述,纳米技术发展的一个主要推动力来自于信息产业。

纳电子学的目标是将集成电路的几何结构进一步减小,超越目前发展中遇到的极限,因而使得功能密度和数据通过量率达到新的水平。在纳米尺度下,现有的电子器件把电子视为粒子的前提不复存在,因而会出现种种新的现象,产生新的效应,如量子效应利用量子效应而工作的电子器件称为量子器件,象共振隧道二级管、量子阱激光器和量子干涉部件等与电子器件相比,量子器件具有高速(速度可提高1000倍)、低耗(能耗降低1000倍)高效高集成度、经济可靠等优点。

为制造具有特定功能的纳米产品,其技术路线可分为“自上而下”(TopDown)和“自下而上”(Bot?tomUp)两种方式“自上而下”是指通过微加工或固态技术,不断在尺寸上将人类创造的功能产品微型化;而“自下而上”是指以原子、分子为基本单元,根据人们的意愿进行设计和组装,从而构筑成具有特定功能的产品。这种技术路线将减少对原材料的需求,降低环境污染

科学家希望通过纳生物学的研究,进一步掌握在纳米尺度上应用生物学原理制造生物分子器件,目前,在纳米化工厂、生物传感器生物分子计算机、纳米分子马达等方面,科学家都做了重要的尝试

(3)纳米结构的检测与表征。 能,发现新现象,发展新方法,创造新技术,必须建立纳米尺度的检测与表征手段。这包括在纳米尺度上原位研究各种纳米结构的电、力、磁光学特性,纳米空间的化学反应过程,物理传输过程,以及研究原子、分子的排列组装与奇异物性的关系

扫描探针显微镜(SPM)的出现,标志着人类在对微观尺度的探索方面进入到一个全新的领域作为纳米科技重要研究手段的SPM也被形象地称为纳米科技的“眼”和“手”。

所谓“眼睛”,即可利用SPM直接观察原子、分子以及纳米粒子的相互作用与特性

所谓“手”,是指SPM可用于移动原子、构造纳米结构,同时为科学家提供在纳米尺度下研究新现象、提出新理论的微小实验室

同时,与纳米材料和结构制备过程相结合,以及与纳米器件性能检测相结合的多种新型纳米检测技术的研究和开发也受到广泛重视如激光镊子技术可用于操纵单个生物大分子。

三、纳米科技前景的展望

(1)材料和制备

在纳米尺度上,通过精确地控制尺寸和成份来合成材料单元,制备更轻更强和可设计的材料,同时具有长寿命和低维修费用的特点;以新原理和新结构在纳米层次上构筑特定性质的材料或自然界不存在的材料,生物材料和仿生材料实现材料破坏过程中纳米级损伤的诊断和修复

(2)微电子和计算机技术

纳米结构的微处理器的效率将提高一百万倍,并实现兆兆比特的存储器(提高1000倍);研制集成纳米传感器系统

(3)环境和能源。

发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境;制备孔径1nm的纳孔材料作为催化剂的载体,有序纳孔材料和纳米膜材料(孔径10-100nm)用来消除水和空气中的污染;成倍的提高太阳能电池的能量转换效率。

(4)医学与健康

纳米技术将给医学带来变革:纳米级粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后,可主动搜索并攻击癌细胞或修补损伤组织;在人工器官外面涂上纳米粒子可预防移植后的排斥反应;研究耐用的与人体友好的人工组织、器官复明和复聪器件;疾病早期诊断的纳米传感器系统

(5)生物技术

在纳米尺度上按照预定的对称性和排列制备具有生物活性的蛋白质、核糖核酸等,在纳米材料和器件中植入生物材料使其兼具生物功能和其他功能,生物仿生化学药品和生物可降解材料;动植物的基因改善和治疗,测定DNA的基因芯片等

(6)航天和航空

纳米器件在航空航天领域的应用,不仅是增加有效载荷,更重要的是使耗能指标成指数倍的降低?这方面的研究内容还包括:研制低能耗、抗辐照、高性能计算机;微型航天器用纳米集成的测试控制仪器和电子设备;抗热障耐磨损的纳米结构涂层材料

(7)国家安全

由于纳米技术对经济社会的广泛渗透性,拥有纳米技术知识产权和广泛应用这些技术的国家,将在国家经济安全和国防安全方面处于有利地位通过先进的纳米电子器件在信息控制方面的应用,将使军队在预警导弹拦截等领域快速反应;通过纳米机械学,微小机器人的应用,将提高部队的灵活性和增加战斗的有效性;用纳米和微米机械设备控制,国家核防卫系统的性能将大幅度提高;通过纳米材料技术的应用,可使武器装备的耐腐蚀?吸波性和隐蔽性大大提高,可用于舰船、潜艇和战斗机等

四、发达国家在纳米科技方面的研究水平和部署状况

美国前总统克林顿2000年在加州理工学院的演讲中说:“纳米技术能在原子和分子水平上操纵物质想一下这样的可能性:强度为钢10倍的材料而重量只有钢的一小部分;把国会图书馆的所有信息压缩进一个只有一块方糖大小的器件中;能检测出只有几个细胞大小的肿瘤。有些目标可能在20年后才能实现,但这正是联邦政府应该承担的重要责任”正是由于纳米科技对国家未来战略的重大影响,发达国家的政府和企业纷纷投入大量人力、物力和财力进行纳米科技的研究和产业化

(1)发达国家在纳米科技领域内的发展水平。

当前,美国已在纳米结构组装体系、高比表面纳米颗粒制备与合成,以及纳米生物学方面处于领先地位,在纳米器件纳米仪器超精度工程陶瓷和其它结构材料方面略逊于欧共体。日本在纳米器件和复合纳米结构方面有优势,在分子电子学技术领域仅次于德国德国在纳米材料、纳米测量技术、超薄

(2)发达国家对纳米科技领域的部署美国于2000年2月宣布启动“国家纳米科技计划(NNI)”,在2001年财政年度拨款4.95亿美元以加强研究实力。政府实施这项计划的根据是:今天的纳米技术就像50年代的晶体管一样,其科研和工业化的应用将进一步促进美国经济的发展;为美国培养新世纪的技术人才;增强美国国际科技竞争力的需要;节约资源能源,保证美国未来的可持续发展;纳米技术是开发未来微型武器的技术基础,是国防工业的未来参与这项计划的机构包括国家科学基金会(NSF)、国防部(DOD)能源部(DOE)国立卫生研究院(NIH)国家航空航天局(NASA)商务部(DOC)以及国家技术标准研究所(NIST)这项计划将优先支持5个方面:基础研究;创新性应用项目;成立10个纳米中心(已建成6个)和网络;基础设施;人员教育与培训、研究纳米技术所引起的伦理法律及社会问题。

德国拟建立或改组六个政府与企业联合的研发中心,并启动部级的研究计划。

法国最近决定投资8亿法郎建立一个占地8公顷、建筑面积为6万平米拥有3500人的微米鈉米技术发明中心,配备最先进的仪器设备和超净室,并成立微米纳米技术之家,专门负责申请专利和帮助研究人员建立创新企业

日本除继续推动早已开始的纳米科技计划外,每年投资2亿美元推动新的国家计划和新的研究中心建设。

西方国家的目标在于在基础和应用基础研究领域作前瞻性的部署,取得知识产权,占领战略制高点,并与企业结合,迅速推动已有科研成果走向市场并获得战略优势。

五、我国纳米科技的发展状况我国对纳米科技的重要性已有较高的认识,并给予了一定的支持。国家科技部、国家自然科学基金委员会、中国科学院等部门从“八五”、“九五”开始就设立了“攀登计划”项目和相关的重点、重大项目,1999年科技部又启动了有关纳米材料的“国家重点基础研究”项目。我国通过这些项目对纳米科技领域资助的总经费大约相当于700万美元,与发达国家相比,投入经费相差很大

我国的纳米科技研究,特别是在纳米材料方面取得了重要的进展,并引起了国际上的关注1995年,德国科技部对各国在纳米技术方面的相对领先五等级,前四个等级为日本、德国、美国、英国和北欧

从受资助项目来看,我国的研究力量主要集中在纳米材料的合成和制备,扫描探针显微学,分子电子学以及极少数纳米技术的应用等方面。但由于条件所限,研究工作只能集中在硬件条件要求不太高的一些领域虽然我国科学家在纳米碳管纳米材料的若干领域已取得一些很出色的研究成果,但国家在纳米科技领域的总体水平与美、日、欧相比,差距还是很大的,尤其是在纳米器件方面差距更为明显

目前,我国拥有一支比较精干的纳米科技研究队伍,他们主要集中在中国科学院的有关研究所,北京大学清华大学中国科技大学南京大学复旦大学等国内一批知名高校为集中本系统内的纳米研究的主要力量,北京大学和中国科学院还相继成立了各自的纳米科技研究中心。

2000年10月1日,中央十五届五中全会通过《中共中央关于制定国民经济和社会发展第十五个五年计划的建议》,明确提出了将新材料和纳米科学的进展作为“十五”规划中科技进步和创新的重要任务这为我国21世纪初纳米科技的快速发展奠定了重要的基础

六、对策与建议

发展我国纳米科技的重要意义在于:首先,纳米科技将在21世纪对我们的社会、经济以及国家安全产生重大影响具有知识经济时代特征的21世纪,将是生命科技和信息科技高速发展和广泛应用的时代而纳米科学和技术将促进包括生命科技信息科技在内的几乎所有技术的飞速发展西方发达国家对此正在积极筹划,以期达到知识垄断。目前西方的国家和企业已将纳米核心技术列为绝对的国家机密和商业机密,严格限制对我国的出口其次,发展纳米科技将极大提高我国的科技竞争力纳米科技兴起于80年代初,对于世界各国来说都属全新的科技领域,尽管我国与发达国家尚有不小差距,但我们在纳米材料领域基本与国际先进水平保持同步,只要措施得当,我们完全有可能赶上发达国家的步伐第三,纳米科技将促进我国传统产业的改造由于现实的纳米科技,尤其是纳米材料在改造传统产业方面所表现的投入少、见效快?市场前景广阔等特点,在以传统产业为主的我国企业内比较容易推广,因此,纳米科技的应用已得到我国企业界的广泛响应,这为纳米科技在中国发展奠定了重要的动力基础。

有鉴于此,为增强我国的国际科技竞争力和经济竞争力,促进第三步发展战略的顺利实施,保障我国未来的可持续发展和国家安全,必须大力加强纳米科技的研发工作,动员多学科、跨部门和跨行业的力量参加到这一领域中来

我国纳米科技存在的问题主要表现在多学科交叉融合程度不够、缺乏重要的实验设施基础研究薄弱、信息交流少。为克服和解决这些问题,使我国能够抓住机遇,迎头赶上,为此建议:

1.应在国家层次上确定我国纳米科技的发展战略,制订我国的纳米科技发展的近期中长期规划兼顾基础研究、应用研究和开发研究的协调发展,推动科技成果产业化,协助有关部门尽快制定与纳米科技相关的产品技术标准

2.成立部级的“纳米科技专家咨询小组”。协助政府做好我国纳米科技战略的制订和研究开发工作

纳米技术的重要性范文第5篇

南北高校各有优势

2011年,北京科技大学、北京航空航天大学、大连理工大学、苏州大学和南京理工大学五所高校开始招收纳米材料与技术专业本科生。五所大学中,北京科技大学、北京航空航天大学和大连理工大学三所北方高校在材料科学上属传统名校,而南方院校苏州大学和南京理工大学把纳米材料成果产业化,形成了自己的特点。

北方三所高校算是材料科学与工程领域传统名校,值得注意的是,它们却均未设置专门的纳米材料研究机构,更多的是依托原有的强势学科,在传统材料研究领域引入纳米科技,寻求突破。

北京科技大学

北京科技大学原名北京钢铁学院,曾被誉为“钢铁摇篮”,其材料科学研究侧重点是金属材料。除了材料学院这个重点学院外,从事材料科学研究的还有新金属国家重点实验室、高效轧制国家工程研究中心、国家材料服役安全科学中心等机构,侧重点也不局限于金属材料,在无机非金属、高分子、生物医药材料等方面亦有建树。

目前,北科大纳米材料课题组主要研究纳米材料制备与表征、纳米材料改性、功能纳米材料等方面。此外,亦有部分老师研究纳米加工、纳米组装、纳米器件等应用方向。

北京航空航天大学

与北科大不同,北航材料学院在北航不属于重点学院,规模较小,师资力量仅百来人,这决定了北航材料学院的研究方向不会太广。作为航天航空院校,北航材料学院也有自己的优势,正在筹建的航空科学与技术国家实验室(航空领域最高级别实验室),它的侧重点在金属材料、树脂基复合材料及失效分析、先进结构材料、新型功能材料等方面。

在纳米材料上,北航材料学院重点关注纳米器件和纳米涂层。材料学院的纳米材料研究发展趋势可能是纳米技术在航天航空领域的应用。

大连理工大学

大连理工大学的材料学院在金属材料、材料加工方面实力强,基于大连的地理位置,材料学院还开设了五年制金属材料工程日语强化班。不过,纳米材料与技术专业并非隶属于材料能源学部,而是化工与环境学部。因而,大连理工大学的纳米材料研究偏化工类,包括纳米粒子合成化学技术、无机纳米功能材料、纳米复合材料等方向。纳米材料与技术专业开设的专业课中,亦有化工原理、基础化学、材料化学等化工类课程。可以说,这是大连理工大学纳米材料与技术专业的一大特色。

与北方三所高校相比,苏州大学和南京理工大学纳米材料与技术专业的发展方向截然不同。两所南方高校均成立多个纳米材料研发机构,在研究方向上,两所高校侧重于纳米材料器件应用,尝试产业化。这些特点可能与江浙一带出现纳米高新技术企业有关。

苏州大学

苏州大学没有材料科学与工程学院,而是材料与化工学部,研究偏向化工,在无机非金属、高分子材料方面实力不错。纳米材料与技术专业并没有开设在材料与化工学部,而是2010年成立的纳米科学技术学院。除了纳米科学技术学院,苏州大学研究纳米材料的机构还有2008年成立的苏州大学功能纳米与软物质研究院、2011年成立的苏州大学-滑铁卢大学苏州纳米科技研究院。其中,以中科院院士李述汤教授领衔组建的功能纳米与软物质研究院已初具规模,它以功能纳米材料和软物质为研究对象,侧重于功能纳米材料与器件、有机光电材料与器件、纳米生物医学技术等,寻求在纳米器件以及新能源、环保、医用等领域的应用。

南京理工大学

南京理工大学由军工学院演变发展而来,其材料科学与工程学院的材料学研究侧重于金属材料及复合材料。不过,南理工是国内最早开展纳米材料与技术研究的大学之一,正筹建纳米结构研究中心,研究侧重点是与纳米结构材料相关的分析、材料力学、电化学性能评估等。由南理工化工系和南京部分企业共同支持的南京市高聚物纳米复合材料工程技术中心,研究侧重点是纳米材料制备、应用、纳米催化聚合反应、纳米复合材料,该中心已与江苏部分纳米企业开展纳米技术产业化合作。此外,南理工还共建了金属纳米材料与技术联合实验室。

其他高校纳米特色

上海交通大学

上海交通大学材料科学与工程学院在各类相关排名中居首,教职工200多人,研究侧重点包括金属材料、复合材料、塑性成形、轻合金精密成型等,在中国是材料科学与工程学子公认的梦想学府。其材料学院也涉及纳米材料,比如,复合材料研究所部分老师从事纳米复合材料研究,微电子材料与技术研究所从事纳米电子材料研究。此外,上海交通大学还成立了微纳科学技术研究院,研究方向为纳米生物医学、纳米电子学与器件。生物医药工程学院也开展纳米材料的可控合成与制备、纳米生物材料等方面的研究。

清华大学

与北京航空航天大学相似,清华大学材料科学与工程系是学校名气大于院系实力,每年有数百人争夺材料系不足30个研究生名额。材料系建有新型陶瓷与精细工艺国家重点实验室,研究侧重点以陶瓷材料为主,同时涉及磁性材料、复合材料、电极材料和核材料。在纳米材料方面,清华材料系主要研究纳米材料结构、纳米材料合成和微纳米颗粒等。2010年,清华大学成立了微纳米力学与多学科交叉创新研究中心,主要研究微纳米器件、纳米复合材料在电能存储上应用和微纳米设备研发等。

北京大学

北大材料科学与工程系成立于2005年,教职工10余人,成立之初就把材料科学与纳米技术结合起来,欲在纳米材料与微纳器件方面有所突破。此外,北大成立了纳米化学研究中心,教职工7人直博生却达45人,主要研究领域包括低维新材料与纳米器件、纳米领域的基本物理化学问题。

西北工业大学

西工大是西部材料科学与工程实力最强的院校,其材料学院师资队伍近200人,有凝固技术国家重点实验室和超高温复合材料国防科技重点实验室。因此,其研究侧重点在凝固,复合材料和金属材料的实力亦不俗。在纳米材料方面,西工大成立了微/纳米系统研究中心,致力于航空航天微系统技术、微纳器件设计制造技术、微纳功能结构技术。总之,西工大的纳米材料研究可能集中于纳米器件在航天、航空、航海方面的应用。

留学两大国

纳米技术是交叉学科,包括纳米科技、物理、化学、数学、分子生物学等课程。报考纳米专业或方向的研究生在本科一般学的是材料学、材料物理与化学、凝聚态物理、物理化学等。就留学而言,由于纳米材料处于基础研究阶段,容易;各个国家在纳米材料方面投入大量资金,使得科研经费相对充足,相比于其他专业容易申请奖学金。这两点决定了留学攻读纳米技术专业研究生相对容易。

2000年,美国白宫国家纳米技术计划,美国的纳米技术得到飞速发展。总体上看,美国的纳米技术已经处在纳米技术实用化阶段,而其他各国仍处在纳米技术的基础研究阶段。美国各大高校也争相进入纳米材料各个研究领域——

实力强劲的麻省理工学院在太阳能存储、航空材料、燃料电池薄膜、封装材料耐磨织物和生物医疗设备领域的碳纳米管、聚合纳米复合材料等方面成果显著。

加州大学伯克利分校注重于纳米材料在能源、药物、环境等方面的应用,已卓有成效。

哈佛大学则侧重在生物纳米科技,即生物学、工程学与纳米科学的交叉领域。

康奈尔大学已经在纳米级电子机械设备、碳纳米管应用电池、纳米纤维等方面获得突破。

斯坦福大学重在纳米晶的光学性能、输运性能和生物应用,以及纳米传感器、纳米图形技术等。

普渡大学的纳米电子学、纳米光子学、计算纳米技术,尤其是计算纳米技术全球领先。

纽约州立大学奥尔巴尼分校专注于纳米工程、纳米生物科学,其纳米技术研究中心是全球该领域最先进的研究机构。

莱斯大学在纳米碳材料领域成果显著,在学校的研究人员中,纳米材料研究人员的比重约为四分之一,是美国纳米材料研究人员最多的大学之一。

此外,美国有很多研究纳米技术的实验室,它们比较愿意招中国大学生,这一点也值得注意。

日本算是最早开展纳米技术基础及应用研究的国家,早在1981年,日本政府就建立了纳米技术扶持计划。美国公布国家纳米技术计划前,曾派人去日本做调查。日本纳米技术的研发特点是企业界是主力军,它们试图将纳米技术融入到产业中。比如,日本企业纷纷斥巨资建纳米技术研究机构,同时建立纳米材料分厂实现产业化。此外,企业与大学、科研院所合作,开发纳米技术。比如,富士通和德国慕尼黑大学合作,三菱公司和日本京都大学合作。

与美国在纳米技术基础研究和生物工程技术领域领先不同,日本在精细元器件及材料的制造方面独占鳌头,日本对纳米材料研究的投入不断加大,也使得去日本读纳米专业是一个不错的选择。

Tips:何去何从

纳米材料专业毕业生有三大去处。选择留学深造或进高校、研究院从事研发;进入纳米材料行业企业;进入传统材料企业。