首页 > 文章中心 > 高分子材料的发展现状

高分子材料的发展现状

高分子材料的发展现状

高分子材料的发展现状范文第1篇

关键词:高分子材料;功能;研究现状;发展前景

前言

在我们的日常生活中,材料随处可见,材料的发展水平直接影响我们的生活质量。高分子材料在我们日常生活的应用中拥有很多的优势,与现代化生产非常吻合,同时它也产生了很高的经济效益等,因此它在工业上发展的十分迅速。在过去,20世纪60年展起来的功能高分子材料是属于那时的一个新兴领域,这个新兴领域同时渗透到能源和电子以及生物三大领等。而如今,21世纪的科技不断创新,也有了新型有机功能高分子材料,它们在人们的生产和生活中扮演着一个越来越重要的角色。

1 功能高分子材料的定义

功能高分子材料是指同时兼顾有两种性能的复合高分子材料,性能一:传统高分子材料的所体现出来的性能,性能二:某些特殊功能的基团所体现出来的性能。一般说来,具有传递信息、转化能量和贮存物质作用的高分子及其复合材料为功能高分子材料,或者还可以理解为具有能量转换的特性、催化特性、化学反应活性、磁性、光敏特性、药理性、导电特性、生物相容性、选择分离性等功能的高分子及其复合材料,同时还具有原有力学性能的基础。

2 功能高分子材料的工程实际应用

目前,在工程上应用较广泛而且具有重要应用价值的一些功能高分子材料主要分为以下几种:光功能高分子、液晶高分子、电功能高分子、吸附分离功能高分子、反应型功能高分子、医用功能高分子、环境降解功能高分子、高分子功能膜材料等。下文中具体从这几方面阐述:

(1)光功能高分子材料。指在光的作用下能够产生物理变化,如光导电、光致变色或者化学变化,如光交联、光分解的高分子材料,或者在物理或化学作用下表现出光特性的高分子材料。光功能高分子材料主要应用在电子工业和太阳能的开发利用等方面。

(2)液晶高分子材料。液晶高分子是一种新型的功能高分子材料,它是分子水平的微观复合,由纤维与树脂基体在宏观上的复合衍生而来,也可以理解为在柔性高分子基体中以接近分子水平的分散程度分散增强剂(刚性高分子链或微纤维)的复合材料。强度高、模量大是液晶高分子材料的主要特点,它在复合材料、纤维和液晶显示技术等方面的应用非常广泛。

(3)电功能高分子材料。电功能高分子材料主要表现为在特定条件下表现出各种电学性质,如热电、压电、铁电、光电、介电和导电等性质。根据其功能划分,主要包括导电高分子材料、电绝缘性高分子材料、高分子介电材料、高分子驻极体、高分子光导材料、高分子电活性材料等。同时根据其组成情况可以分成结构型电功能材料和复合电功能材料两类。电功能高分子材料在电子器件、敏感器件、静电复印和特殊用途电池生产方面有广泛应用。

(4)吸附分离高分子材料。吸附分离功能高分子按吸附机理分为化学吸附剂、物理吸附剂、亲和吸附剂,按树脂形态分为无定形、球形、纤维状,按孔结构分为微孔、中孔、大孔、特大孔、均孔等,吸附分离功能高分子主要包括离子交换树脂和吸附树脂。

(5)反应型功能高分子材料。反应功能高分子是有化学活性、能够参与或促进化学反应进行的一种高分子材料。它是将小分子反应活性物质通过共价键、离子键、配位键或物理吸附作用结合于高分子骨架,主要用于化学合成和化学反应。

(6)医用功能高分子材料。在生物体产生生理系统疾病时,一些特殊的功能高分子材料有对疾病的诊断、治疗、修复或替换生物体组织或器官,增进或恢复其功能的作用,此类特殊的功能高分子材料称为医用功能高分子材料。一般来说,医用功能高分子材料多用于对生物体进行疾病的诊断和疾病的治疗以及修复或替换生物体组织或器官和合成或再生损伤组织或器官,具有延长病人生命、提高病人生存质量等作用,在医疗方面被广泛应用。

(7)环境降解高分子材料。高分子材料在发生降解反应的条件有许多,如机械力的作用下发生的降解称为机械降解,此外在化学试剂的作用下可发生化学降解,在氧的作用下可发生氧化降解,在热的作用下可发生热降解,在光的作用下可发生光降解,在生物的作用下可发生生物降解等。具有此类功能的高分子称为环境降解高分子材料。

(8)高分子功能膜材料。高分子功能膜是一种具有选择性透过能力的膜型材料,同时也是具有特殊功能的高分子材料,一般称为分离膜或功能膜。使用功能膜分离物质具有以下突出的优点:具有较好的选择性透过性,透过产物和原产物位于膜的两侧,便于产物的收集;分离时不发生相变,同时也不耗费相变能。从功能的角度,高分子分离膜具有识别物质和分离物质的功能,此外,它还有转化物质和转化能量的其它功能。利用其在不同条件下显出的特殊性质,已经在许多领域获得应用。

3 功能高分子材料的发展前景

人类赖以生存和发展的物质基础离不开材料,材料的发展关系到社会发展和国民经济以及国家的安全,同时也是体现国家综合实力的重要标志。高新技术和现代工业发展的基石离不开高分子材料,国民经济基础产业以及国家安全不可或缺的重要保证同样也离不开高分子材料。而功能高分子材料由于其优越性,使得其在材料行业中发展迅速。

未来材料科学与工程技术领域研究的重要发展方向离不开功能高分子材料,材料、信息和能源理所当然的被评为新科技革命时代的三大根基,信息和能源发展离不开材料领域中功能高分子材料作为它们物质基础所起到的重要作用,新型功能高分子材料的研究与发展主要取决于现代学科交叉程度高这一特点。在传统的三大合成材料以外,陆陆续续又出现了具有光、电、磁等特殊功能的高分子材料以及功能高分子膜,同时也出现了生物高分子材料,隐身高分子材料等许多具有特殊功能的高分子材料,与此同时功能高分子材料的发展速度依然保持着加快的状态,显然它们对新技术革命影响非常之大。这些新型的功能高分子材料在我们的尖端科学技术领域和工农业生产以及日常生活中扮演着越来越重要的角色,21世纪人类社会生活必将与功能高分子材料密切相关。

4 结束语

功能高分子材料是一门研究高分子材料变化规律以及实际应用技术的一门学科,在高分子材料科学领域中的发展速度是最快的,同时也是与其它科学领域交叉最为密切的一个研究领域。它是以高分子物理、高分子化学等相关学科为基础,同时与物理学和生物学以及医学密切联系的一门学科。因此学习这门学科能让我们很好的将高分子学科的知识综合运用起来,进而使我们对高分子学科有更深刻的认识,让我们受益匪浅。

参考文献

[1]张青,陈昌伦,吴狄.功能高分子材料发展与应用[J].广东化工,2015,42(06):119-120.

[2]武帅,鲁云华.功能高分子材料发展现状及展望[J].化工设计通讯,2016,42(04):82.

[3]赖承钺,郑宽,赫丽萍.高分子材料生物降解性能的分析研究进展[J].化学研究与应用,2010,03(01):1-7.

高分子材料的发展现状范文第2篇

关键词 高分子材料 现状 可持续发展

中图分类号:TQ317 文献标识码:A

1高分子材料的相关概念

1.1高分子材料的基本概念及来源

高分子材料(macromolecular material),以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料。按来源可分为分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等

1.2高分子材料的分类

高分子材料按照特性分为橡胶、纤维、塑料、胶粘剂、涂料和高分子基复合材料等,其中前三种被称为高分子的三大材料。

橡胶是一类线型柔性高分子聚合物。其分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。

2高分子材料科学的发展进程

2.1高分子材料科学的发展历史

高分子学科的建立,至今不到80年。从远古时期开始,人类就已经学会使用天然高分子材料,比如天然的树脂、橡胶、棉花、木材等。

20世纪20年代,才出现高分子科学的概念。到了20世纪30年代,高分子材料工业才步入发展阶段,而到了20世纪50年代配位聚合的出现极大地推动了高分子材料的发展。进入20世纪下半叶,高分子取得了一系列突破性的进展,比如聚烯烃的多元聚合,设计合成嵌段,超支化等聚合物等。

2.2高分子材料科学的发展现状

进入21世纪,单单从一个大方向来描述高分子材料的发展现状是不可取的也是不全面的,所以将简单分为几个领域分别介绍目前的发展现状。

在电气工业领域,高分子材料也有杰出的表现。随着时代的发展,高分子材料在电子、家电和通信领域。我国电气生产大国,全行业对高分子材料需求量较大用量。高分子材料轻质、绝缘、耐腐蚀、表面质量高和易于成型加工的特点正是生产各种家用电器的最佳材料,而家用电器是人们的必须生活用品,所以高分子材料在电气工业的发展是会一直进行下去的。

在机械制造领域更加少不了高分子材料。比如,目前世界不少轿车的塑料用量已经超过 120千克/辆,德国高级轿车用量已经达到300 千克/辆。可见在汽车制造方面,高分子的发展还是比较成熟,系统的。并且可以预见,随着汽车轻量化进程的加速,塑料在汽车中的应用将更加广泛

高分子材料还在航空航天,建筑工程,医疗,包装行业等众多领域发展已经比较成熟,并且正在朝着一个更加规范,更加科学,更加和谐的方向稳定发展

2.3高分子材料科学的发展前景

高分子材料科学代表的是一种前沿技术,其发展趋势也必然要适应社会发展的潮流和最先进工业发展的需求。

2.3.1精细化

随着时代的发展,精细化必然成为材料的主流趋势,未来将纳米技术融入其中也是势在必行的。高分子材料的纳米化可以依赖于高分子的纳米合成,这既包括分子层次上的化学方法,也包括分子以上层次的物理方法。利用外场包括电场、磁场、力场等的作用,采用自组装或自合成等方法,靠分子间的相互作用,构建具有特殊结构形态的分子聚集体。

2.3.2绿色友好化

在强调可持续发展的21世纪,任何事物都在渐渐转型,高分子材料也不例外。实现绿色友好化,需要在材料的合成,生产,运用三方面全方位实现。现在的高分子合成材料对石油的依赖性特别强,寻找可以替代石油的其它资源,则成为21 世纪的高分子化学研究中的一个迫切需要解决的问题。调节原子和分子在物质中的组合配置,控制物质的微观性质、宏观性质和表面性质,就可能使某种物质满足某种使用要求,这种物质就能作为材料来使用。

2.3.3智能化

在这个智能材料的时代,高分子化学同样承担着不可替代的作用。智能材料是材料的作用和功能可随外界条件的变化而有意识的调节、修饰和修复,如若实现,也必然会对人类发展发挥巨大的作用。

3结语

本文通过比较浅层次的语言向大家介绍了高分子这门前沿科学,相信在今后的生活中,随着科技的发展,技术的进步,越来越多的人会认识高分子材料,并投入到这门与人类生活息息相关的科学研究中去。

参考文献

[1] 富彦珍,王雅珍,李青山,马立群,高分子化学实验微型化的研究与实践[J].高等工程教育研究,2004(03).

[2] 杨利庭,赵敏,高俊刚.改进实验教学培养应用性理科高分子人才[J].高等理科教育,2007(02).

[3] 何平笙,杨小震.“分子的性质“软件用于高分子科学教学实验[J].高分子通报,2000(01).

[4] 王亚男,李婷婷,徐聪.浅析目前我国高分子化工材料的发展现状[J].人力资源管理,2012(5).

高分子材料的发展现状范文第3篇

【关键词】质子导电性;无机非金属材料;发展;应用

科技的高速发展,使更多高性能的材料的发现和应用成为可能。无机非金属材料以其优良的耐腐蚀性等特点被应用在防腐工程特别是管道防腐之中,这种材料其实又称陶瓷材料,有传统陶瓷与精细陶瓷之分。无机非金属材料具有其他材料无法比拟的优点,在声、电、光、磁等方面都具有特殊的功能,其中质子导电性无机非金属材料十分具有研究价值。

1 质子导电性的无机非金属材料发展概述

关于质子导体的研究早在20世纪初就已经出现并寻找到了银离子导体,其中还具有现今为止常温下最高的导电率的导体。但是银离子导体在性能上很不稳定,价格又很高,很快就被后来出现的铜离子导体给取代。铜离子导体中存在着迄今为止具有最高导电率的固体电解质,因为其具有与银离子导体相似的性质,价格有比其低很多,故收到了人们普遍关注,之后又发现了其他的离子导体,质子导电体是在20世纪70年代被发现的[1]。最近几年全球都十分关注能源相关的研究领域,具有质子导电性的无机非金属材料在功能上又十分特别,所以对这一领域的研究一直未中断过。

到目前,已经被发现的质子导电性的无机化合物主要包括:水合物型、氢键型、β-Al2O3型、氢嵌入型、晶格缺陷型,下面对这几种类型简单加以介绍。

水合物型的导电体,它的构造之中含有一些结晶水,如果在通电的状态下,水分子之间就会通过质子传递来导电。这一类型的导体如果在室温的条件下,导电率会相当高,而如果温度在此基础上升高,其结构之中的结晶水很容易流失,导电率就会明显的下降。

氢键型的质子导体是通过氢键连接离子团或者分子,使其形成链状或者是骨架类的结构,同样可以在通电的条件下,利用质子传递导电。氢键在高温时容易遭到破坏,使其本来连接在一起的结构分解,导电率会相应的降低。

β-Al2O3类的质子导体可以分为三种类型,而当制备的方法不一样的时候,又可以分成两种不同的类型。这其中的各种类型都具有高低不同的导电率,出现这种不同是由于结构中的质子能量降低,形成低能扩散的途径[2],所有的类型在温度升高时都会降低其导电的效率。

氢嵌入型的质子导体中H+体积很小,对于部分晶体晶格的间隙可以很轻易的嵌入其中,在通电的条件下,H+会在晶体间隙之中进行定向的移动,从而导电。氢嵌入类型的导电体导电是通过电子进行导电为主,其质子的导电性很低,所以应用的价值也不大。

晶格缺陷型的质子导体,比之前的几种具有质子的导电性质的无机化合物发现的要晚,那些含氢的导体在高温的状态下会降低其导电性或者导电性直接消失,所以不适合在高于300摄氏度的状态下应用。后来发现的氧化物烧结体在一定条件下呈现电子导电性,但是当处于高温状态下,会产生水蒸气或者氢气,这时其电子的导电性就会降低,而质子的导电性反而增加,温度如果达到一定的标准,就能够基本上完全显示质子的导电性[3]。由于这种材料可以在高温状态下导电,所以在应用价值方面很高,也在现实中得到相应的应用,并取得一定成就。

2 质子导电性无机非金属材料的应用

2.1 氢传感器

一些陶瓷以SrCeO3、CaZrO3、BaCeO3作为母体,它们是固体的电解质,其中一端的H2压力较大,是负极,而另外一端的H2压力则较小,就是正极,从而形成了氢浓差电池。可以用测试电池对这种氢传感器进行检验,这样的电池性能稳定,又是固体的电解质,所以使用起来特别方便。

2.2 含有氢化合物的传感器

这种测试电池可以测试氢的含量,特别是可以在高温状态下测试空气中的氢化物,比如空气中的碳氢化合物或者水蒸汽等等。可以通过电动势的计算得出空气中水蒸气的含量,也可以在工业中加以应用,比如在工业烧结的过程中,为了提高熔融金属的品质,去除其中的氢,就可以应用这种传感器测定其中的氢含量。

2.3 燃料电池的应用

燃料电池多采用氧离子导体作为其电解质,现在的燃料电池也会采用质子导体作为固体电解质,后者相比前者而言,在使用上要方便许多。因为质子导体作为电解质的这类燃料电池,它的燃料电极之上根本没有水产生,所以燃料不需要进行循环[4]。而且,如果从热处理的角度来进行考虑,燃料电池中具有碳氢化合物的,如果产生氢气就会当作燃料被消耗,剩下的物质可以产生其他有用的产品。

2.4 可以应用在蒸汽电解产生氢气中

用质子导电性的无机非金属材料方法,可以获取极高纯度的氢气,那是由于这样的电池之中,质子是唯一可以由正极移动到负极去的导电体。

2.5 氢分离与氢泵

可以利用质子导电性的无机非金属材料制作出氢泵,只需要进行一步操作,就可以在高温的状态下将气体的混合物之中的氢气分离出来,而且分离的速度和效率很方便控制。

2.6 应用于蒸汽泵中

常温常态下的水蒸气可以通过在阳极进行放电从而产生质子,这些质子可以移动到阴极那里去,并且在阴极发生反应,通过空气中的氧气生成水或者是氢气等等。可以利用这种蒸汽泵去调节和控制高温封闭环境的湿度,也有人在高放射条件下的同位素浓缩中进行这一方法的应用研究。

2.7 氢化或者脱氢中的应用

用具有质子导电性的无机非金属材料作为固体电解质,与其他化学反应比较,在进行氢化和脱氢时,优势很明显。被进行氢化或者是脱氢反应的化合物,与生成产生的氢气是相互分离的,可以用电流对反应的速率进行有效的控制,电极电势不但可以控制氢的化学性,还可以控制催化性以及选择性。

3 总结

具有质子导电性的无机非金属材料在应用中与其他非质子的材料相比,都具有一定的优势。随着人们对其关注程度的加深,这种材料在今后的前景将更加广阔,相关研究会更全面系统,应用也会更广泛。

【参考文献】

[1]张义顺,李小雷.传统无机材料的现状及新材料的发展趋势[J].焦作工学院学报(自然科学版),2000(6):471-474.

[2]孟凡桂.材料化学专业无机非金属材料课程教学的实践与探索[J].广州化工,2010(2):205-207.

高分子材料的发展现状范文第4篇

自从实施改革开放政策以后,我国的工业水平的发生了突飞猛进的变化,发电机制造业也开始向国际市场进军,并取得了在国际市场占有了一席之地,我国发电机制造行业技术水平也在不断的进步。但是,近年来,国内发电机制造水平遇到了瓶颈,原材料的发展,特别是发电机绝缘材料方面滞后制约着国内发电机制造水平的进一步提高。国内有关绝缘材料、发电机的科研院所和企业,在进行绝缘材料的研究制造和使用过程中缺乏沟通、各自为政,绝缘材料的现状不容乐观,与世界发达国家存在一定的差距。同时发电机行业对绝缘材料的要求很高,因此必须对绝缘材料的工艺进行改进,以促进国内绝缘材料的发展,进一步提高国内发电机制造水平。

1我国粉云母带的现状及分析

目前,在绝缘材料的研究开发及改进工作方面,我国取得了较好的成绩。尤其在有关绝缘材料的科研院所、发电机制造企业、绝缘材料制造企业、等方面取得了很大的突破。如:1997年桂林电器科学研究所开始研制高导热多胶粉云母带,也取得了较大进展;从1989年开始,哈尔滨大电机研究所经过3年多的反复试验研制出了高云母含量云母带。

在科研院所、云母原材料的制造企业、云母带制造企业、发电机制造企业等多方面的共同努力下,近10年来粉云母带的发展都取得了很好成绩。从现实情况看,虽然大家所用的粉云母纸、玻纤布、胶粘剂完全相同,但是制成线捧后的电气性能却存在较大的差异,如哈尔滨电机厂有限责任公司制造和东方电机股份有限公司制造制造的二滩电站水轮发电机定子线圈,在绝缘击穿场强方面却有很大的不同,上下差别10~12MV/m,这就说明在同一业界的不同企业有着不同的标准,各有各的工艺要求。

而在同一行业出现不同的标准,主要原因有以下两个方面:(1)云母带制造企业未能充分考虑到自己的产品在不同应用条件,对于产品的要求不同。(2)有部分云母带制造企业出于对技术保密的考虑,不愿意与业内同行分析应用工艺,共同探讨行业内共同标准。这种情况的出现已经影响着绝缘材料的发展,只有制造和应用双方互相合作,才能使进一步的开发与完善绝缘材料等工作,促进其发展。

2我国绕组线的现状及分析

近年来,随着科技的进步,对发电机水平的要求也开始趋于更严格的水平,企业开始在不断的改进电机制造的手段和试验分析方法。目前定子线圈性能通过对外引进电机先进的试验分析方法,同时经过不断的探索研究,已正式步入全面的分析阶段。有一些先进的企业对各种产品质量指标进行了量化,对绕组线的导体和绝缘层上提出了高于现行国家标准的要高标准,为了保证产品质量的长久稳定,在应用前再次对材料进行分析测试,在实际的生产中发挥了线圈最佳的综合性能。

3我国换位适形填料的现状及分析

就目前我国各大电机制造公司所使用的换位适形填料而言,其类型多种多样,材质也各一,具体分为有使用玻璃布补强多胶云母板的,有使用腻子的,有使用舍多胶纤维的三类。而从最新的技术看,出现了一种云母树脂复合板,相比较以前的各类材料,使用效果要好的多。由于传统的设计方法与传统设备的限制,本身的使用必须在一定的温度和足够的压力作用下才具有较佳的流动性,使得新型材料的推广与利用率不高,所以有必要提升云母树脂复合板的品质,或开发更多的适形填料品种,以满足企业的需求。

4我国定子硅钢片漆的现状及分析

从定子硅钢片漆的历史来看,其经历了从全有机漆到半无机漆,从有机溶剂型到水溶型的发展过程,每一个阶段都会取得技术进步与创新,但从使用情况来看,多数硅钢片漆并未得到广泛推广。我国在1994年以后,出现了高无机质含量的新型硅钢片漆,除贮存期较短外,其它性能比较优越,达到了使用的高要求。

5我国磁极线圈匝间绝缘的现状及分析

从我国的现状来看,所使用的磁极线圈匝间绝缘是环氧玻璃坯布,而从国外先进技术来看,磁极线圈匝间绝缘大多采用Nomex上胶纸,相比较而言,我国落后很大一截。随着近几年国外先进技术的引进,Nomex上胶纸也逐渐的进入我国的企业。对比两者,我国传统使用的环氧玻璃坯布存在有以下三方面的缺点:一是在热压过程中,玻璃丝布外缘的玻璃丝随着胶一起被挤出,影响磁极线圈的散热及外观;二是玻璃丝布上所涂树脂的均匀性较差;三是在其底材一玻璃丝布的编织孔中的气泡难以在热压过程中排出,使得粘结力下降;而Nomex上胶纸却凸显出以下优点:具有较高的电气强度、耐温指数、和粘结力以及较低且稳定的压缩率等等,而目前市场上Nomex纸价格较昂贵,但从总体上而言,在使用的同时应大力研制Nomex纸的代用品,最终使成本降下来,性能提得上去。

6有关磁极托板的现状及分析

国内以往大都采用铆接式结构的磁极托板,这种结构的材料利用率一般都比较高。现在也有采用环氧板加工成的整体式托板、玻璃纤维模压的整体式托板等。用环氧板加工成的整体式托板的优势是机械强度在不同的方向均有较高的水平,同时它仍然存在材料利用率低的缺点。模压整体式托板在与纤维平行的方向,托板的弯曲强度、剪切强度都很低。相比较而言,环氧板是更好的选择,针对其材料利用率低的缺点,材料供应商应该通过学习发达国家的物流管理理念,配备必要的加工设备来优化材料的性能,以此满足不同用户更高的需求。

7结语

(1)绝缘材料的研制应从市场与使用者的角度出发,在了解产品的各种用途及具体的应用工艺后进行研发,最终使提供的产品在满足用户的性能和用户的生产工艺过程的双要求。

(2)深入了解绝缘材料的使用状况、制造工艺、技术性能等特点,使绝缘材料发挥最大的能效。

(3)绝缘材料的研制、生产、应用者都应对比国外找差距,对比国内找出路,研发放首位,市场把定位,客户需求圆心位。

参考文献

[1] 张志龙,吴昊,景录如.高导热绝缘复合材料的研究[J].舰船电子工程,2005(6).

[2] 周健,黄祖洪.高导热绝缘柑料在高压电机上的应用意义与前景[J].绝缘材料通讯,1999(6).

[3] 韩晓光,张墩明.无取向硅钢绝缘涂料的研究进展[J].科技信息(科学教研),2008(25).

[4] 付岚贵,高云母.量主绝缘应用研究[J].绝缘材料通讯,1997(4).

[5] 陈林,张军泉.二滩电站水轮发电机定子线圈制造工艺技术研究[J].大电机技术,1999(4).

[6] 赵慧春,王世萍.大型水轮发电机转子绝缘材料和绝缘结构的研究[J].绝缘材料,2003(4).

高分子材料的发展现状范文第5篇

关键词:高分子材料;成型;控制

0 前言

作为一种实际应用效果良好的材料,高分子材料在近期得到了广泛的应用。研究高分子材料成型及控制,能够更好地提升其实践水平,从而有效保证高分子材料的整体效果。本文从概述高分子材料的相关内容着手本课题的研究。

1 概述

现阶段我国在高分子合成材料方面取得了很大的进步,相关行业的生产活动也在不断发展壮大,高分子材料成型加工技术被运用与汽车等工业生产活动之中。高分子合成材料行业已经发展成为我国的重要经济类产业,是国民经济的重要组成部分。由于高分子材料的特性,必须加强对高分子材料的系统性研究,了解高分子材料的成型过程以及控制对策,为高分子材料工业的发展提供依据,是我国科研工作的重要任务。高分子材料成型加工技术属于一门重要的科学,国内外著名的专家学者都对其予以高度关注,将与化学、物理等方面的专业内容融入到高分子材料成型加工技术中,为研究工作的开展提供科学依据。

2 高分子材料的基本成型方法

2.1 挤出成型

高分子材料的基础成型是通过螺杆旋转加压的方式,不间断的将已经成型的材料由有机筒挤出来,挤入到机头中去,熔融物料通过机头口模成型为与口模形状相仿的型坯,然后借助相应的牵引工具把成型的材料不断的在模具中提取出来,并对其进行冷却处理,进而得到相应的形状。挤出成型是一项系统性的工程,由入料、塑化、成型以及定性等过程,每个环节都对高分子材料的成型起到关键性的作用。

2.2 吹塑成型

吹塑就是通过中空吹塑的方式来实现的,主要是依靠气体的压力,来促使处于闭合状态的热熔型胚发生鼓胀,进而形成中空制品的技术过程。吹塑成型是高分子材料成型的另一种主要方式,具有发展快、效率高的特点。吹塑成型的主要加工模式是挤出、注塑和拉伸,是目前常用的三种吹塑方法。

2.3 注塑成型

一般情况下,我国高分子材料加工行业普遍采用的成型方法是注塑成型,其面对的生产对象大都是空间感强、立体式的材料形状,在塑料生产方面具有诸多的优势,受到了企业的广泛关注和应用。注塑成型方式应用的范围相对较广,成型操作所需时间短、多样的花色、生产效率高等等优点,是高分子材料成型最具实用性的方法。

3 现阶段高分子材料成型技术的优化与创新分析

3.1 聚合物动态反应加工技术及设备

现阶段,通过对国内外高分子材料成型技术的研究,大都采用反应加工设备来开展工作,但是,该反应加工设备的原理是在原有的混合、混炼设备上进行完善与优化所生产的产品,其还存在多方面的问题,处于不成熟阶段,传热、混炼过程等都是其中的典型问题。另一方面,设备引进和使用投资大、能耗高,噪音污染严重、密封困难。

利用聚合物动态反应加工技术及设备来创新与优化高分子材料成型加工工作,相较于传统的技术有了很大的进步,加工原理以及设备的组成都有所不同。此种技术的应用,其核心内容是将电磁场条件下的机械振动厂投入到高分子材料的机头挤出操作中,能够实现对化学反应、生成物的聚合结构、制品的各项变化等的控制,起到了良好的应用效果。

3.2 新材料制备新技术

信息与科学技术的不断发展,在各个领域都得到了广泛的应用,为了优化和升级高分子材料成型加工技术,可将信息存储光盘应用到加工技术中,利用盘基来直接实现反应成型技术的构建,整个成型技术形成动态式、链条式的操作流程,树脂的生产与加工、储备与运送,再到盘基的成型,探索出酯交换的链条式生产与加工技术,能有效控制能源的使用率、提高成品的质量。

新材料制备新技术的出现,为高分子材料加工行业的发展提供了发展契机,动态全硫化制备技术也是其中的代表,是我国科学技术不断发展的重要体现,新技术的应用与振动力场具有密切的联系,可以更为直观有效的控制硫化的整个过程,能很好的应对硫化过程中所遇到与相态有关的反转类问题。针对此项技术,科学家应致力于研究与技术相匹配的更具全面化的设备,为我国高分子材料加工水平提供技术支撑。

4 高分子材料在成型过程中的控制

近年来,我国由于综合国力的提升,在科学领域取得了一项又一项瞩目的成绩,其中高分子材料在成型过程中的控制是研究的主要课题之一。高分子材料在一定条件下极易发生结构上变化,温度、外力等都是影响高分子材料所形成的聚合物的结构与形态,同时在外部条件的影响下,高分子材料还会发生聚集形态上的变化,一系列的问题都是现阶段科学家研究的主要问题。通过不断的研究,科学家得出了一系列的成果,实现对新型高分子材料的开发,形成了多元化的高分子材料群体,并投入实际的应用之中,促进了高分子材料工业的发展。通过研究,科学家发现,大部分聚合物多相体系存在不相溶的现象,制约着成型过程中的控制工作,为了改善此类情况,可以适当的融入第三组分。在聚合物生产与加工的过程中,所研制出的产品会处于温度不稳定的环境中,由于制品极易受到温度的影响而发生形态和结构上的变化,进而影响其性能,应加强对制品温度的控制。由于制品的温度会随着时间推移为发生动态上的变化,可见,了解在非等温场条件下,聚合物、共混物制品温度与时间的变化关系是非常关键的,并对变化的规律进行总结,可为成型过程中的形态结构控制提供依据。

5 结语

本文以高分子材料成型方法和控制进行了具体性的分析,我们可以发现,高分子材料的多项优势决定了其在实践中的应用地位,有关人员应该从其客观实际需求出发,充分利用自身有利条件,研究制定最为符合实际的成型及控制实施方案。

参考文献:

[1]杨帆.浅析高分子材料成型加工技术[J].应用科学,2011(08):66-68.