首页 > 文章中心 > 等离子纳米技术

等离子纳米技术

等离子纳米技术

等离子纳米技术范文第1篇

关键词:纳米材料;物理方法;化学方法

1引言

纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《nanostructured materials》正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(bui1ding blocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。本文简单综述了纳米材料合成与制备中常用的几种方法,并对其优劣进行了比较。

2纳米材料的合成与制备方法

2.1物理制备方法

2.1.1机械法

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的fe-18cr-9w合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的zno纳米颗粒。

2.1.2气相法

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50 nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,φ82mm的ge在6gpa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

2.1.3磁控溅射法与等离子体法

溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

2.2化学制备方法

2.2.1溶胶—凝胶法

溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。stephen等利用高分子加成物(由烷基金属和含n聚合物组成)在溶液中与h2s反应,生成的zns颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。marcus jones等以cdo为原料,通过加入zn(ch3)2和s[si(ch3)3]2制得了zns包裹的cdse量子点,颗粒平均粒径为3.3nm,量子产率(quantum yield,qy)为13.8%。

2.2.2离子液法

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。jiang等以bicl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的bi2s3纳米花。他们认为溶液的ph值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80 nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶bi2s3纳米棒。

2.2.3溶剂热法

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。lou等采用单源前驱体bi[s2p(oc8h17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系bi2s3纳米棒,且该方法适于大规模生产。liu等用bi(no3)3•5h2o、naoh及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72 h制得了长达数毫米的bi2s3纳米带。

2.2.4微乳法

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm- 800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液

。自那以后,微乳理论的应用研究得到了迅速发展。1982年,boutonnet等人应用微乳法,制备出pt、pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

4结论

纳米材料由于具有特异的光、电、磁、催化等性能,可广泛应用于国防军事和民用工业的各个领域。它不仅在高科技领域有不可替代的作用,也为传统的产业带来生机和活力。随着纳米材料制备技术的不断开发及应用范围的拓展,工业化生产纳米材料必将对传统的化学工业和其它产业产生重大影响。但到目前为止,开发出来的产品较难实现工业化、商品化规模。主要问题是:对控制纳米粒子的形状、粒度及其分布、性能等的研究很不充分;纳米材料的收集、存放,尤其是纳米材料与纳米科技的生物安全性更是急待解决的问题。这些问题的研究和解决将不仅加速纳米材料和纳米科技的应用和开发,而且将极大地丰富和发展材料科学领域的基础理论。

参考文献

[1]lu y,liaw p k,the mechanical properties of nanostructured materials.jom,2001,53(3):31.

[2]gary stix,微观世界里的大科学,科学,2001,(12):1820.

[3]张璐,姚素薇,张卫国,等.氧化铝纳米线的制备及其形成机理[j].物理化学学报,2005,2(11):12541288..

[4]李英品,周晓荃,周慧静,等.纳米结构mno2的水热合成、晶型及形貌演化[j].高等学校化学学报,2007,28(7):12231226..

[5]ledenstoy n n,crystalline growth characteristics,mater prog,1998,35(24):289.

[6]王结良,梁国正,纳米制备新技术研究进展[j].河南化工,2003,(10):7l0.

[7]王林等:纳米材料在一些领域的应用及其前景[j].纳米科技,2005,(4),690.

[8]刘建伟,刘有智,超重力技术制备纳米氧化锌的工艺研究[j].化学工程师,2001,(5):2122.

[9]姚斌,丁炳哲,纳米材料制备研究[j].科学通报,1994,39:1656.

[10]刘海鹏等:纳米技术及其在精细化工中的应用[j].纳米科技,2005,(4),1820,360.

[11]张万忠,李万雄,纳米材料研究综述[j].湖北农学院学报,2003,23(5):397340.

[12] takaki s,yatsuya s.nanoparticle produced by sputtering[c]//14th international congress on electron microscopy[j].cancun,mexico:[s.n] 1998:469470..

[13]杜芳林,崔作林,张志锟,等.纳米铜的制备、结构及催化性能[j].分子催化,1997,18(3):4648..

[14]魏胜,王朝阳,黄勇,等.蒸发冷凝法制备纳米al粉及其热反应特性研究[j].原子能科学技术,2002,36(4):367370..

[15]张立德,纳米材料研究简介[j].物理教学,2001,23(1):25.

[16]苏品书,超微粒子材料技术[j].湖北:武汉出版社,1989:56.

[17]王泽红等:caso晶须制备技术及应用研究[j].矿冶,2005,(2),3841.

[18]戴静等:硼酸盐晶须在复合材料中的应用[j].化工矿物与加工,2005,(10),3638,.

[19]jiang jie,yu shuhong,yao weitang,et al.morphogenesis and crystallization of bi2s3.nanostructures by an ionic liquidassisted templating route:synthesis,formation mechanism,and properties[j].chem.mater.,2005,17(24):60946100..

[20]靳刚:纳米生物技术和纳米医学[j].纳米科技,2005,(3),25.

[21]梁勇:纳米微料在医学中的应用[j].中国粉体工业,2005,(3),35.

[22]赵荣祥,徐铸德,李赫,等.离子液介质中硫化铋单晶纳米棒制备与表征[j].无机化学学报,2007,23(5):839843..

[23]刘跃进,李振民,水热法合成云母氧化铁结晶条件[j].化工学报,2004,55(5):20.

[24]张立德,纳米材料与纳米结构[j].北京:化学工业出版社,2000.

[25]顾惕人,朱步瑶等.表面化学[m].北京:科学出版社,1994.

[26]lou wenjing,chen miao,wang xiaobo,et al.novel singlesource precursors approach to prepare highly uniform bi2s3 and sb2s3 nanorods via a solvothermal treatment[j].chem.mater.,2007,19(4):872878..

[27]liu zhaoping,liang jianbo,li shu,et al.synthesis and growth mechanism of bi2s3 nanoribbons[j].chem.eur.j.,2004,10(3):634640..

[28]陈为亮等:化学还原法制备纳米银粉的研究[j].纳米科技,2005,(4),3740.

[29]张登松,施利毅,纳米材料制备的若干新进展[j].化学工业与工程技术,2003,24(5):3236.

等离子纳米技术范文第2篇

关键词:纳米材料的特性;制备方法;应用

DOI:10.16640/ki.37-1222/t.2016.13.198

1 纳米材料的特性

当物体的粒子的直径减小到纳米这一数量级时,能够使一些材料的声、、电、磁、热性等呈现一些新的特性。对纳米体材料的一些特性可以用“更轻、更高、更强”进行概括。

2 制备方法

2.1 物理制备纳米材料的方法

在早期常将较粗的固体物质进行粉碎,如超声波粉碎法、蒸气快速冷却法、蒸气快速油面法等方法。随着时代的方法近年来出现了一些新的方法,如旋转涂层法,通过控制转速来获得不同空隙的颗粒.然后再在其表面积一层膜,最后经过热处理的方法得到纳米颗粒的阵列。

(1)真空蒸发获得纳米材料。利用电弧高频加热对需要处理的固体材料进行加热,使之形成等离子体,然后对该材料进行骤冷,最后凝结成纳米材料。纳米材料的微粒径可通过改变通入气体的种类或压力等方法进行控制。具体操作过程是将需要蒸发的材料放人柑锅中,先更高程度的真空,然后向里面注人少量的惰性气体,然后再加热,最后蒸发形成纳米微粒。

(2)利用等离子体蒸发凝聚获得纳米材料这种方法是把一种或多种固体颗粒注人到等离子体中,使之蒸发,再通过骤冷装置获得纳米微粒。

2.2 化学制备纳米微粒的方法

化学法制纳米材料的方法是通过适当的化学反应,把分子或原子制备成纳米物质,其中包括化学气相沉积(CVD)法、化学气相冷凝法(CVC)等。

(1)化学气相沉积法是目前最广泛的方法,这种方法是在一个加热的衬底上,通过几种气态元素形成纳米材料的过程,这种方法可以可分成热分解反应沉积的方法和化学反应沉积的方法。使用这种方法能均匀的对整个基体进行沉积。缺点是衬底的温度比较高。随着科技的进步,由此产生了许多的新技术,比如等离子体增强化学气相沉积方法及激光诱导化学气相沉积的方法等。

(2)化学气相冷凝法制备纳米材料是通过热解有机高分子获得纳米颗粒。

(3)化学沉淀法的方法是通过在金属盐类的水溶液中适当控制条件使沉淀剂与金属离子进行反应,产生难溶化合物形成沉淀,然后经分离、热分解得到纳米微粒。化学沉淀法有多种如直接沉淀法、共沉淀法等。

2.3 物理化学方法制纳米材料

一般在实践情况下是不会只用物理或只用化学方法进行制作纳米材料的,很多是结合了物理和化学两种方法的,主要方法有

(1)热等离子体法是用等离子体将金属等粉末融化后进行蒸发然后再冷凝,从而制成纳米微粒,这种方法是制作金属台金系列纳米微粒比较有效的方法。比如用电弧的方法混合等离子体,它能有效的弥补了传统法存在的一些缺陷,如等离子枪功率小、使用年限比较短和热转化的效率比较低等一些缺点。

(2)利用激光加热蒸气的方法,这种方法是用激光快速加热热源,使反应物分子内部能够很快地吸收能量和传递能量,气体在很短的时间内就能反应的长大和终止.这种方法可以很快生成表面洁净纳米的颗粒。

(3)利用辐射合成法来制作纳米颗粒,这种方法是用用辐射台成法制备纳米材料,它的制备工艺一般是比较简单的,可以在常温常压下进行操作,制备周期时间比较短,生成的粒度比较容易易控制,生成的效率也是较高的,使用这种方法不仅可制备纯度比较高的金属粉末,还可制备各种氧化物纳米粒子以及纳米复台材料,所以纳米材料的辐射法制备近年来得到了很大的发展。

3 纳米技术的一些技术应用

(1)纳米材料的用途十分的广泛,比如目前在许多医药领域使用了纳米技术,这样能使药品生产非常的精细,它直接利用原子或者分子的排布制造一些有特殊功能的药品。由于纳米材料所使用的颗粒比较小,所以这种药品在人体内的传输是相当方便的,有些药品会采用多层纳米粒子包裹,这种智能药物到人体后可直接并攻击癌细胞或者对有损伤的组织进行修复。纳米技术也可以用来监测诊少量血液,通过对人体中的蛋白质的分析诊断出许多种疾病。

(2)在家电方面,选用那么材料制成的产品有许多的特性,如具有抗菌性、防腐抗紫外线防老化等的作用。在电子工业方面应用那么材料技术可以从扩大其产品的存储容量,目前是普通材料上千倍级的储器芯片已经投入生产并广泛应用。在计算机方面的应用是可以把电脑缩小成为“掌上电脑”,使电脑使用起来更为方便。在环境保护领域未来将出现多功能纳米膜。这种纳米膜能够对化学或生物制剂造成的污染进行过滤,从而改善环境污染。在纺织工业方面通过在原始材料中添加纳米ZnO等复配粉体材料,再通过经抽丝、织布,最终能够制成除臭或抗紫外线辐射等特殊功能的服装,这些产品可以满足国防工业要求。

(3)最新型的纳米侦察卫星是采用的是纳米元件和按照纳米进行加工方的方法组装而成的,它的质量小于10kg。纳米卫星的体积虽然只有一般比麻雀稍微大一点,但是却拥有非常强大的运算能力,在太空中数十颗甚至数百颗这样的纳米卫星连接在一起就可以织成“天网”,形成纳米卫星侦察系统,能够实现对全球各个地区的覆盖和侦察,在军事上是的应用是非常的重要的,能实现军队对高空无“死区”的侦查。纳米飞行侦察系统属于是一种比较微型化的飞行系统,它能够携带多种探测侦查设备,他们具有非常高的信息处理和导航和通信的能力。该系统的其主要功能是对敌方进行秘密的部署,关键时候可以到敌方信息资源库和相关武器系统的内部或附近地区进行监视敌方的情况,与此同时也可对敌方的各种雷达、通信设备等实施有效监视和干扰。它能够附着在敌方的建筑物或者机械设备上进行监听,有时也可以直接把敌方目标的位置坐标传送到我方发送到我方的炮兵发射基地进行发射导弹,这能够有效地引导精确制导武器进行有效地攻击。当然除了可以放在飞行的纳米飞行器上,还有其它理性的的纳米传感器和侦查设备。他们的体积一般都比较小不容易被发现,内部都装有非常敏锐的传感器。还有一些传感器广泛的分布在一些武器装备的表面,这种传感器叫做环境传感器,它能够察觉比较细微的外部环境的一些“刺激”,用来对武器系统进行调整。潜艇的蒙皮改用纳米材料以后能够灵敏地察觉水流、水压等一些极为细微的外部环境环境的变化,同时及时反馈给潜艇的中央控制系统,实现最低限度地降低噪声,通过对水波的变化的“察觉”能够判断来袭的敌方鱼雷,使潜艇及时有效的进行规避;这能用比较低辐射功率完成“敌我识别,能有效的避免免误伤自己。

(4)纳米材料技术现在已广泛应用于遗传育种中,该技术能够结合转基因技术并且已经在培育新品种方面取得了很大的进展。这种技术是通过纳米手段将染色体分解为单个的基因,然后对它们进行组装,这种技术整合成的基因产品的成功率几乎可以达到100%。经过实践证明,科研人员能够让单个的基因分子链展现精细的结构,并可以通过具体的操纵其实现分子结构改变其性能,从而形成纳米图形,这样就能使人们可以在更小的世界范围内、更加深的一种层次上进行探索生命的秘密。

(5)纳米材料技术在发动机尾气处理方面的应用,目前有一种新型的纳米级净水剂有非常强的吸附能力,它是一般净水剂的20倍左右。纳米材料的过滤装置,还能有效的去除水中的一些细菌,使矿物质以及一些微量元素有效的保留下来,经过处理后的污水可以直接饮用。纳米材料技术的为解决大气污染方面的问题提供了新的途径。这种技术对空气中的污染物的净化的能力是其它技术所不可替代的。

现在我国已经建立十多条的纳米材料和技术的生产线。纳米复合材料、纤维的改性、纳米材料在能源和环保等方面的应用与开发已在我国兴起。国内纳米技术注册的公司已经近百个,一些知名的企业家对纳米技术的关注,已经为我国纳米技术产业注入了新的活力。相信在不久将来,纳米材料技术将会应用很快的应用于我国的船舶行业。

4 结语

目前世界上的的纳米物质和产品的种类非常的多,制作方法上也是五花八门,但总体上看还很不完整.从纳米材料的发展角度看,需要开发一些比较简单的,能够大规模进行生产的方法.从对纳米颗粒的基础来看,需要开发能够进行严格控制其微粒尺寸的制备方法.这些工作的进展将有助于以后更好的开发纳米材料的用途,从而创立新的电子学材料、光学材料、传感器等。

参考文献:

[1]曹茂盛.纳米材料导论[M]纳米材料应用,2014(6)

等离子纳米技术范文第3篇

纳米技术正全力推动着化学工业未来的发展。随着一些纳米技术的工业产品问世以及所显示出的诱人前景,现在“纳米技术”已经成为家喻户晓的名词。纳米技术能在<100nm的水平上合成、处理和表征物质,这是一个涉及多门学科的广阔领域,它包含有:纳米材料(nanomaterials)、纳米生物技术 (nanobiotechn010gy)、纳米电子学(nanoelechonics)和纳米系统(nanosystem),如纳米电子机械系统nems和分子机械(m01ecular machine)等。而纳米技术在化学工业中的应用,主要是新型催化剂、涂料、剂,过滤技术以及一些最终产品,诸如纳米多孔材料制品和树状聚合物制品已成为化学工业的创新点。

一、化学反应和催化方面应用

化学工业及其相关工业,特别是一些化学反应起着关键性作用的产业盛行用纳米技术来改进催化剂性能。纳米多孔材料中的沸石在原油炼制中的应用已有很长历史,纳米多孔结构新型催化剂的发展,为许多化学合成工艺的创新提供了机会,或者使化学反应能在较温和条件下进行,大幅度地降低工艺成本。例如用此类催化剂可以将甲烷有效地转化为液体燃料,作为柴油代用品,而现用的方法比较昂贵。

纳米粒子催化剂的优异性能取决于它的容积比表面率很高,同时,负载催化剂的基质对催化效率也有很大的影响,如果也由具有纳米结构材料组成,就可以进一步提高催化剂的效率。如将si02纳米粒子作催化剂的基质,可以提高催化剂性能10倍。在某些情况下,用si02纳米粒子作催化剂载体会因sio2材料本身的脆性而受影响。为了解决此问题,可以将sio2纳米粒子通过聚合而形成交联,将交联的纳米粒子用作催化剂载体。

在能源工业中,shenhua集团公司、hydrocarbon技术公司和美国能源部在中国进行煤液化项目建设,采用了纳米催化剂,取得了20亿美元效益。此工艺可以生产非常清洁的柴油,在中国许多地方它可与进口原油或柴油(以全球平均价格计)竞争。燃料电池也是纳米催化剂起重要作用的领域,当前工业样品应用的是铂催化剂,约2nm宽。

二、过滤和分离方面应用

在过滤工业中,纳米过滤(简称纳滤,nanofiltration)广泛应用于水和空气纯化以及其它工业过程中,包括药物和酶的提纯,油水分离和废料清除等。还可以从氮分子中去掉氧(氧与氮分子大小差别仅0.02nm)。应用此方法生产纯氧可不需要采用深冷工艺,因而可以降低成本。法国于2000年在generale des eamx建成世界上第一座用纳滤技术生产饮用水的装置,所用聚合物膜其孔径略<lnm。与传统净化工艺相ll,虽然电能消耗较高,但带来一些其它的好处,如不需要用氯。

由于可以精确地控制孔径,所以具有可观的近期应用前景。美国pacific northwest国家试验室已经创制一类称之为samms结构,为在介孔载体上自组装的单层结构,含有规整的1-50nm的圆柱形孔,孔上用自组装方法涂上活性基团单层,可用于不同领域。已经利用samms成功地从水溶液和非水溶液中萃取出各种金属和有机化合物。

纳米多孔材料的吸收和吸附性能也提供了在环境治理方面应用的可能性,如去除重金属(如砷和汞等)。使用其他纳米材料的过滤技术也取得了长足进步。例如入rgomide纳米材料公司开发的用直径为2nm纤维制成的高产率系统,可以过滤病毒、砷和其它污染物。

一些聚合物—无机化合物复合材料也可用作气体过滤系统,而且效率也很高。如有一种用排列成行的碳纳米管(nanotllle)制成的膜,由于纳米管与气体分子间互不作用,可以高产率地分离出气体。此种材料可满足高流速低压气体的分离需要。此种膜可以从气流中去除co2,或从co中分离h2。这种技术可应用于新一电厂、煤液化工厂或气体液化厂。

由精密控制尺寸的纳米管组成的膜在分离生物化学品方面也具有很大潜力。

三、复合材料方面应用

在复合材料中使用纳米粒子可以提高材料强度,降低材料的重量,提高耐化学品、耐热和耐磨耗能力,而且还可赋于材料一些新的性能,诸如导电性,在光照和其他幅照下改变其反应性能等。

以粘土为基础的纳米复合材料在不久将来会有很大的市场。以碳纳米管为基础的新型结构复合材料的开发也为期不远,它的主要问题是成本较贵,要用好的填料(单壁纳米管)。大规模应用较大而不太完善的碳纳米纤维可望在2004年实现,此发展可能会给纳米粘土复合材料的应用形成冲击。

一些公司计划扩产纳米粘土也反映出其发展潜力。如nanocor公司已转产纳米粘土,每年2万吨。许多主要聚合物公司也在开发纳米复合材料技术。rtp公司已将有机粘土/尼龙纳米复合材料制成薄膜和片材。triton

system公司应用纳米二氧化硅与一种聚合物材料制成纳米复合材料,开发成一种涂装材料。其它honeywell,ube工业和unitika等公司已工业规模生产尼龙纳米复合材料用作包装hbp材料,nanocor最近与三菱气体化学公司联合

制造并出售hbp包装材料。用于食品和饮料行业。bayer打算用尼龙6纳米复合材料制造多层包装膜,此膜的氧穿透率减少l/2,透明度和韧性有提高。近期,人们关注的另一种纳米复合材料的填料物质,是一种较为复杂的分子多面齐聚物(polyl、cdral 01ig(meric silsc5quioxanes,poss)。hybrid塑料公司称其可以大量生产poss,并与塑料生产厂商和用户进行合作。

四、涂料方面应用

在涂料行业ctj。纳米粒子已经起着很大的作用,但是,类似于能生成抗刮痕和不粘表面的涂层的溶胶—凝胶单层(solgcl monlolaycr)还在研究。用树状聚合物可以弥补不足,并且可与纳米粒子技术结合应用。

以纳米粒子为基础的涂料具有各种优异的性能,比如:强度、耐磨耗、透明和导电。拜耳公司与nanogntc公司合作开发导电和透明的涂层。纳米粉体是难以储运的,美国海洋部门采用微型凝聚(microscale ngglomerate)方法,即在应用时用等离子(一种热的离子化气体)技术或热喷涂技术,使粉体被融熔,形成涂层。拜耳公司与hansa metallwerke公司用纳米粒子进行抗水和抗灰尘涂料开发。据中国环氧树脂行业在线()记者了解,2002年basf公司推出一种用纳米粒子和聚合物制备的喷涂涂料,在干燥时自组装成一种纳米结构的表面,呈现出类似荷叶的效应,即当水落到表面上,由于与表面的互粘性甚小,可以形成水珠而流去,并把灰尘带走。

inframat公司用纳米涂料作为船壳防污涂料。以防止海藻、贝类附着生长。此种涂料很坚硬。但并不发脆。该公司的纳米氧化铅-氧化饮基陶瓷涂料已获得美海军部门400万美元订货,主要用于涂装潜水艇的潜望镜。应用纳米粒子技术可以制造氧化铝纳米粒子,用于地砖的抗划痕涂层。nanogate公司为西班牙地砖制造商提供纳米粒子涂料,使之容易清洗,并还为眼镜工业提供抗划痕涂料。

用纳米粒子强化的涂料还可能在生物医用方面应用。例如铜的纳米粒子可以降低细胞在表面上生长,从而解决移植上的一个主要问题。

五、添加剂和树状聚台物的作用

在复合材料领域中,纳米粘土和poss已经取得进展。在不远的将来,碳纳米管可能产生较大影响。但是,各种不同形状的树状分子结构以及它能易于功能化的性能,可以创制特殊结构的复合材料,使之具有各种性能。早在上世纪90年代中期,bertmeijer教授就阐明了树状聚合物的结构,它是一群小分子,或是小分子的容器。一个“树状聚合物箱”(i)endrimer box),如同有一个硬壳建于软性树状聚合物周围。如果一个小分子,如染料分子进入树状聚合物中,即可被封装在空穴中。通过对其末端基因的化学改性,全部或部分烷基化,树状聚合物就可以形成与线型聚合物可化学兼容的物质,以改进混合性能。在此情况下,树状聚合物的作用在于创建了分子微观环境,或是在塑料原料中形成“纳米观口袋”(nanoscopic pocket)来聚集染料分子。作为一种形态的、结构的或是界面改性剂,树状聚合物还可提高材料韧性,而对其加工性没有影响。在材料共混和复合中,它们还起着材料组分间的兼容剂和粘接剂的作用,因此可用于工程塑料添加剂。树状多支链聚合物已经被用作环氧树脂的增韧剂,加入重量比5%的树状聚合物可显著提高材料的坚韧性。通过可控相分离工艺,可以使树状聚合物良好地分散在树脂中,树状聚合物和树脂作用可以使接枝在树状结构上的环氧基团的化学键得到加强。杜邦公司制造和应用多支链结构物质作为聚合物共混中的添加剂,可以改善聚合物的加工性能。dsm公司已经将多支链的聚丙烯亚胺(ppl)聚合物工业化,主要用于廉价塑料和橡胶制造中作为添加剂,降低粘度。在涂料、油墨和粘合剂生产中也可应用。美国宇航局向dow corning公司和matcrials electrochemical

research公司进行项目投资,开发等离子沉积树状聚合物涂料和树状聚合体富勒烯纳米复合材料,以用作微型和亚微型表面。

六、树状聚台物及去污作用

树状聚合物特别适用于去污,它起着清道夫的作用,可以去掉金属离子,清洁环境。改变一种介质的酸度可以使树状聚合物释放出金属离子。而且树状聚合物可以通过超过滤进行回收和冉用。树状包覆催化剂可用此同样方法从反应产物中进行分离。回收再用。密西很大学的生物纳米技术中心计划开发树状聚合物加强超滤方法,作为新的水处理上艺.从水中去掉金属离子。树状聚合物可以在其分子小间或是在它们的经改性的终端基团上捕捉小分子。

使其能适用于吸收或吸附生物和化学污染物。美国军事部门对它的应用前景作了好的评价。

七、纳米保护(nano- protection)方面应用

树状聚合物在护肤膏中作为一种反应型的组分是很有效的。此应用可以扩展到保护衣服。固定的树状聚合物层可以抗洗和耐环境气候条件变化。有一种称之为“类似树状聚合物”(amphilic dondrimcr),它一半是树状聚合物,另一半具有末端结构,用以在保护膜中固定活性树状聚合物。

近年来,“一些部门在研究用纳米粒子来监测和防止化学武器袭击。nanospherc公司不久前推出一个系统,可以用来监测生物武器,如炭疽菌。该系统采用美国西北大学开发的金纳米粒子传感器。altair纳米技术公司和西密西根大学联合开发用二氧化钛钠米粒子为基础材料的传感器,可用来监测生物和化学武器。nanosphere材料公司开发氧化镁纳米粒子用于口罩的过滤层,因为它能杀大细菌(包括炭疽杆菌)。深圳新华元具纳米材料公司和nucrgst公司生产银纳米粒子用于抗菌服。nanobio公司推出一种抗菌液,可以破坏细菌孢子、病毒粒子和霉菌,它的作用是让表面张力发生爆炸性释放,而这种产品对人体组织不起伤害,现在主要用户是美国军事部门。

八、燃料电池方面应用

随着对便携式电子产品电能需求不断增加。要求降低供电元器件的重量和尺寸,由此而开辟广纳米粒子的新市场。

ap材料公司与millennium电池公司合作执行美国军方一份合问。开发纳米级二硼化钛用于高级电池组和其它储能系统。altar公司最近宣布该公司高级固体氧化物燃料电池系列示范试验获得成功,包括联结器、电解质、阴极和阳极等都是由微米和纳米级材料构成。而且,还开发了纳米锂基电池电极材料,其充电和发电率都比当前所用锂离子电池材料快l倍。

有一些公司计划工业生产甲醇基燃料电池,在2004年前后应用于便携式电子设备。在这类电池中,所用催化剂是处在淤浆状态的铂纳米粒子。针对电池应用,brookhaven国家试验室已制成锂-锡纳米晶体合金,用作高性能电极。用氢化锂与氧化锡反应,前者需过量使反应完全。生产的锂—锡合金中含有剩余氧化铿。重复用氢处理最后生成粒径为20~30nm纳米复合材料,形成稳定金属氢化物的其它元素也可用此法制造纳米复合材料,未来的应用不仅在电池领域,还可以用在催化方面。

等离子纳米技术范文第4篇

作为纳米科技的研究热点之一,基因工程近些年来发展得如火如荼。在基因工程中,DNA是生物学家关注的焦点,它的双螺旋结构是如此神奇,诱发了科学家们无限的艺术遐想。

DNA折纸术

2006年3月,英国《自然》杂志上发表了保罗・罗斯蒙德的杰作:一幅精美的二维结构的美洲地图。该作品是由DNA链折叠而成,是一个大约100纳米见方的“折纸作品”,它共包含了200个像素,每个像素均为一条短的DNA链。这是一个连高倍光学显微镜都无法分辨的作品,必须依靠分辨率极高的电子显微镜或原子力显微镜才能观看。

保罗绘制DNA美洲地图所采用的方法大概如下:从M13噬菌体中提取DNA单链;然后,通过计算“裁”出短的DNA单链并着手人工合成;接着,将DNA单链与合成好的DN段混合,处理后得到一个个设计样式的DNA超级大分子,即最终的DNA图形。这项工作的前提是充分了解DNA单链折叠的动力学特征,操作中的关键步骤是通过计算机模拟计算获得上百条特异性的DNA序列。

目前,通过这种DNA“折纸术”已折叠了多种二维纳米结构,如DNA方形、DNA矩形、DNA五角星、DNA笑脸等。近来,采用类似的方法,上海交通大学生命科学研究中心和中国科学院上海应用物理研究所合作也构造出了纳米结构的“DNA中国地图”,相关研究结果已经正式发表在《科学通报》杂志英文版上。

DNA模板印刷

DNA是纳米技术中最常使用的建筑模块,通常被用来控制建造有序的纳米结构,DNA被认为有望成为自下而上制造微型电子线路的基本模块。现在,一组来自美国杨伯翰大学的科学家们正把DNA自组织技术同微制造印刷术结合起来,用来制造纳米通道等纳米结构。当然,这种印刷技术同样也可以被用来绘制纳米绘画作品。这项发现为目前光学印刷术所达不到的尺寸下的纳米加工开辟了新的途径。

该技术的发明者为沃利和贝塞利尔。这是一种利用DNA为模板来定义基底图案的方法。他们把DNA在基底上排列整齐,再在上面沉积一层金属膜。DNA分子起纳米蜡纸的作用,这样一来便在基底上定义了一些小于10纳米的图案。由于金属膜以一定角度沉积,DNA分子的投影定义了基底上的图案,因此,这种方法也被研究人员称为“DNA投影纳米印刷术”。接着,研究人员使用半导体工业中常用的等离子体对图案表面进行刻蚀,在基底上便可得到纳米尺寸的沟槽。如果这种沟槽拼出的图像设计得足够精巧,那么就会构成一幅上乘的纳米绘画作品。

DNA原子力显微镜拼图

原子力显微镜是一种利用原子、分子间的相互作用力来观察物体表面微观形貌的显微技术。它有一根纳米级的探针,被固定在一个极小的微悬臂上。当探针离样品非常近时,其顶端的原子与样品表面原子间的作用力就会使悬臂弯曲,偏离原来的位置。根据该偏离量,原子力显微镜就能间接地探测出样品的表面形貌或原子、分子。

现在,利用原子力显微镜不仅可以看到原子、分子,还可以搬动(操纵)原子、分子。由于DNA分子通常是链状的,因此,利用原子力显微镜探针在基体表面上“拨弄”DNA链,就能够形成各种各样的图线或图形。显然,这是一种纳米绘画创作的好思路。

等离子纳米技术范文第5篇

微型化和智能化始终代表着现代工业和科技的主要发展方向。微电子、微机械、微光学等一连串“微工程”的兴起和发展,将科学技术带进了一个全新世界。

进入21世纪,随着社会的发展和技术的进步,由光学与微电子、微机械、纳米技术互相融合、渗透、交叉而形成的前沿学科―微纳光学,因其独特优势成为目前研究者关注的焦点。

微纳光学在基础研究和设计制造技术方面的进步,变革了传统光学与技术的发展路线,促进了光学系统微型化、集成化的发展,在生命科学、生化、通信、数据存储、新能源利用等领域都表现出巨大的应用价值和市场潜力。

电子科技大学物理电子学院教授、博士生导师付永启,多年从事微纳光学研究,在微细加工、纳米加工、衍射光学、微光学、表面等离子体光学及近场光学等领域取得了多项研究成果,始终参与和推动着“微世界”中的无限精彩。

立足前沿,引领尖端研究

“微纳光学”顾名思义分为微米光学(简称微光学)和纳米光学两部分,即微米和纳米尺度上的光学研究。”付永启在接受采访时,首先谈到了微纳光学的研究情况。

据付永启介绍,微光学是基于微细加工技术、研究微米尺度的微光学元器件设计、制作以及应用的学科。而纳米光学主要研究光的空间传播范围在纳米尺度时的倏逝波特性,并通过基于近场光学结构的纳米探针来描述和控制的过程及应用。

“在纳米光学研究中,作用于近场的光学系统突破了传统的衍射极限限制,能够对纳米光学结构进行空间分辨率在纳米量级的分析;同样,通过基于亚波长光学结构或器件,能够实现高密度的数据存储,不但可以实现微米范围的成像,也可以实现高清晰度的相位合成、单分子探测以及局部区域光谱分析。”

正是这些独特的优势,使微纳光学自产生之日起,便始终处于研究者关注的中心,并愈发活跃。

虽然我国在微纳光学领域已经取得了一定的成果,但同国际相比,无论在基础研究还是应用转化方面都存在一定差距,总的来看原创性技术太少,能够转化为产业、推动光电子产业发展的更少。

付永启认为,要使微纳科学与技术为人类造福,必须从基础研究做起,打下坚实基础的同时,紧密结合产业领域发展需求,准确把握市场方向,重点攻关,进而带动全面发展。

而付永启的研究成长过程,也恰巧暗合了微纳光学从基础研究到产业应用,以点带面的发展路线。

世界微纳光学蓬勃发展的1990年代,付永启走进了这一领域。

1994年,付永启在中科院长春光机所研读博士,“当时是跟导师一起做国家航天‘921’项目中的一个子项目―‘动态目标发生器’的研究,我主要负责曲面光刻的研究。”那是他接触到微光学并逐渐对微光学元器件的设计制作产生兴趣的开始。

在博士后研究阶段,付永启又接着在衍射光学元件的设计制作方面开展了深入研究。随后为了开阔视野、提升研究能力,付永启于1998年赴新加坡南洋理工大学精密工程与纳米技术中心作研究员,借助当地优越的软硬件条件继续深入开展微光学以及后期纳米光学领域的研究工作。

在新加坡,通过与科研院所及工业界的合作,付永启开展了多个横向和纵向项目研究,接触到了微电子、微机电系统(MEMS)、微纳加工、纳米计量、及生化分析等多学科领域的知识,先后完成了多项重大研究课题,并取得了许多创新性成果。

2001年,付永启将目光专注到了一种新的微纳光学元件一步加工制作方法―聚焦离子束制作技术上,经过两年的反复研究、实验,终于获得成功并使技术逐渐成熟。

付永启利用纳米加工技术实现了微光学元件与光电子元/器件的集成一体化,即利用聚焦离子束技术直接一步将微光学元器件甚至纳米光子元器件与光电子器件集成于一体,从而达到直接控制光束的目的。这一技术摆脱了传统的采用离散光学元件对激光束进行准直或聚焦的方法,不但减少了系统元件数,而且节省了空间,更容易实现系统的轻量化和小型化,对微系统的开发具有重要意义。

同时,他还发现了两种材料,它们在聚焦离子束轰击下具有材料自组织成型特性,该特性可直接用于微光学元件的结构成型。以该技术为基础,能够制作出几种特定的微光学元件,包括微正弦光栅、微闪耀光栅等。

此外,付永启还利用聚焦离子束直接写入法和辅助沉积法成功实现了微光学元件与光电子元/器件的集成一体化,为光学系统的小型化、微型化、平面化提供了制作技术保障。该集成一体化元/器件已经广泛应用于生命科学、生化、通信、数据存储等领域,至今仍在应用,还没有其他方法能够替代。

值得一提的是,聚焦离子束技术在微电子行业的广泛应用,大大提高了微电子工业上材料、工艺、器件分析及修补的精度和速度,目前已经成为微电子技术领域必不可少的关键技术之一。同时,由于它集材料刻蚀、沉积、注入、改性于一身,有望成为高真空环境下实现器件制造全过程的主要加工手段。

毅然回国,助力产业发展

2007年,付永启放弃国外优越的待遇和生活,带着累累硕果和先进理念回国,受聘于电子科技大学物理电子学院。9年的国外工作和生活经历,使付永启真正体会到“国家”二字的含义,而回国发展也正是其心之所向。

随着科技的进步和需求的转变,目前国内微纳光学技术研究主要集中在基于特异性材料的微波天线、隐形技术、纳米光刻等几部分,研究趋势也朝着更加实用性发展,包括军用和民用。而在产业方面,付永启认为应重点结合能源和生命科学等热门领域的需求,积极探索,主动推进,研发出具有代表性的产品,如高效率光伏电池、光热疗法治疗癌症、多通道微型生化传感器等。

在学校和所在团队的支持下,付永启在纳光子结构、元器件及其应用方面取得多项国家自然科学基金项目的资助,目前主要在纳光子结构的精细聚焦及成像研究,包括基于纳光子结构的超分辨聚焦成像、负折射材料的制备及应用、近场表征等方面开展进一步的深入研究,并推进其尽快走向应用。

多年从事理工科学研究的付永启,处处透着浓郁的人文气息。他看重学生的做事态度胜过考试成绩,鼓励学生积极与其他学科的人员交流,在学科交叉中探寻思维方式的改变和新的研究切入点。

他认为创新更加需要自由开放的教育环境和多维度的思维模式,有源之水才能长久,有本之木才会繁茂。

他喜欢历史、地理、天文、摄影等偏重人文的内容,注重精神层面的丰富与充实,并认为这才是人做事的动力和源泉。

相关期刊更多

高等理科教育

部级期刊 审核时间1个月内

中华人民共和国教育部

邓小平理论研究

部级期刊 审核时间1个月内

中华人民共和国教育部

核聚变与等离子体物理

北大期刊 审核时间1-3个月

核工业西南物理研究院