首页 > 文章中心 > 热能动力工程

热能动力工程

热能动力工程

热能动力工程范文第1篇

关键词:电厂;热能动力工程;探讨

中图分类号:TU984 文献标识码:A 文章编号:

1 电厂热能动力工程容易出现的问题

损耗湿汽的因素:第一,湿润的气体发生膨胀,其中有些因气温降低而变成了水,从而不能做功;第二,这些液态水的流速小于气流速度,从而会降低气体的速度,也会产生一定的动能损耗;第三,液态水都粘在管壁上了,既产生水的损耗又产做了无用功,使叶轮做功减少;第四,遇冷的水蒸汽使得汽量减少,而且还会损害叶轮的边沿,尤其是会造成其背面弯处产生腐蚀。

防止湿汽损耗的要点:第一,实现过程中热能再利用;第二,加装减湿互环节;第三,使用带收集液态水功能的喷管;第四,增强其抗腐蚀作用。整体装置运行过程中,要实现好各部件间的效果,还可以使泵装置、速度控制装置的运行,因为这些过程可能产生无用功,造成机械能损耗。

气体沿轴流动的装置中,一般是蒸汽从气压强的入口端进入、而从气压弱的出口端流出,这等同于对整个装置的转轴产生一个沿轴方向的力,其方向由气压强处指向气压弱处。从而使转轴发生偏转,通常称这个力为沿轴推力。

级间工况变化的特点:第一,当临界点未出现时,其流量同各级间的压力呈一定非简单正比的关系;第二,当临界点出现时,其流量同各级间的压力呈正比关系,而且同其它参数没有关联。

沿轴方向的推力特点:第一,蒸汽凝结成水时,推力变大;第二,液态水与叶轮发生撞击时,推力也变大;第三,负载增大,推力变大;第四,负载被甩时,推力变大。第五、叶片老化,推力变大。

2 合理利用重热现象

热电厂兼具发电和供热作用,“热电联产”的能量生产方式在环保、节能方面优势明显。所谓重热现象,指的是多级汽轮内一小部分的上一级损失,可在之后的各种被利用。重热系数则指的是相比于汽轮机理想焓降,各级理想焓降之合的多出值,所占汽轮机理想焓降的比例。充分利用重热现象,可使得整个效率比各级平均效率要大,而这一现象利用是在级效率降低的基础上完成的,只能将一部分损失回收,一般情况下,其重热系统保持在0.04与0.08之间,且并非越大越有利。这就要求,热电厂中对于重热现象的利用,应当以选取合理的重热系数为前提,结合自身热能与动力工程实际,来确定合理的重热系数,从而使机组更好地服务于热电厂运行。

3 恰当的调配选择与工况变动

并网运行机组在遇到电网频率变动(外界负荷变化所致)的情况下,会以自身的差异动态特性为依据,来进行增减负荷的自动启动,进而用于电网周波的维持,这样的一个完整过程就被称作是一次跳频。其特点是频率调速快,但发电机组随调整量不同而存在差异,且为有限的调整量,增加了值班调度员的控制难度。而当电力系统发出电力或负荷存在较大变化时,运用一次调频难以实现常规频率恢复时,就需要采用二次调频的方式。一般情况下,二次调频包括手动与自动调频两种形式,其中自动调频方式因在运用特性表现出诸多特性而成为普遍推广的二次调配形式。在热电厂中,恰当选择调配方式,对于提高其自身运行水平十分必要,立足对并网运行机组的正确认识和状况掌握,避免因错误调配方式,所造成的热能与动力工程运用效用低下。此外,焓降变化同汽轮机工况变化存在密切联系,当全开第一阀,增加工况流量时,压会随之增大,相比于焓降,调节级要减小,反之则呈现同上述相反的变化。而在关闭第二阀,全开第一阀时,相对于焓降,调节级到达最大中间级,此时,如发生工况变动,则中间级的压力比与焓降均维持不变。这为我们实际工况的调节提供了依据,结合所需得到的焓降变化,来进行恰当的工况变化,来更好地满足热能与动力工程在热电厂中的运用需要。

4 有效的节流调节

节流调节不存在调节级,在第一级就可完成全周进汽,当工况变化时,各级温度只有减小的变化,且表现出较好的负荷适应性,适用于基本负荷大机组和小容量机组,表现出较差的经济性,体现在节流损失方面。在热电厂实际运行当中,可应用弗留格尔公式,来保障热能与动力工程的有效运用,结合该公式的应用条件,来就同流量下各级的比焓降、压差进行推算,进而对相应的零部件受力情况和功率效率加以确定,并对汽轮机是否正常流通进行监视,即在流量已知的基础上,以运行时组前各级压力的公式符合度为依据,来对流动部分面积的变化情况作出判断。可以说,依靠弗留格尔公式的应用,保障了机组内节流调节的有效性,为热能与动力工程在热电厂中的有效运用提供了基础条件。

5 减少调压调节损失

调压调节增加了机组对负荷的适应性和自身运行可靠性,促进了部分负荷下机组经济性的提高,为热能与动力工程在热电厂中的实际运用提供了条件,但同时,调压调节亦存在不足,如高负荷区域下实施滑压调节不负荷经济性要求;动叶栅内大机组蒸汽做功后,存在机械能的转化,会造成蒸汽的余速损失;鼓风损失与斥气损失等。这些调压调节损失的存在,亦表示着热电厂热能与热电厂动力工程的运用损失,但这部分损失,很大程度上是由机组运行机理决定的,而非简单的系统故障和人为失误,需要依靠先进工艺的引进,技术上的突破来减少损失。这就要求我们应当在调压调节损失方面,积极探索,研发出更具科技含量的产品,拜托现有的能量损失限制,从而使热电厂热能与热电厂动力工程的运用更具先进性和前瞻性。

6 减少湿气损失

湿气损失是热电厂能耗损失的重要组成,减少湿气损失,对于热能与动力工程在热电厂中的有效运行十分必要。分析湿气损失的产生原因,主要包括如下方面:在湿蒸汽膨胀过程中,蒸汽发生部分凝结作用,造成蒸汽量的大大减少;蒸汽流速远高于部分水珠流速,在水珠牵制下,大量动能被消耗;湿蒸汽过冷现象等。湿气损失的直接危害就是动叶进汽边缘遭受损伤,叶顶背弧处所受冲蚀尤为严重。为减少湿气损失,在热电厂实际运行中,可采取如下措施:应用去湿装置;应用中间再热循环;提升机组抗冲蚀能力;应用带有吸水缝的喷灌等。在汽轮机运行过程当中,除要克服推力轴承与支持轴承的摩擦力外,还应启动调速器和主油泵,这些动作的完成均需要消耗一定的能力损失,即机械损失。这时,就可考虑轴流式汽轮机的应用,一端引入高压蒸汽,另一端排除低压蒸汽,这样无形中就形成了高压向低压的指向力,降低了能量消耗,保证了热能与动力工程在热电厂中运行的高效性。

7 结束语

热电厂采用供热式机组,在电能供应之余,还利用汽轮机排汽或抽气来满足用户生活和生产所需热量,相比于一般发电厂“热、电分产”的形式更具先进性和前瞻性。但着眼于热能与动力工程在热电厂中的基本运用,仍表现出众多问题,制约着热电厂能量利用率的进一步提升。因此,对热电厂中热能与动力工程的有效运用进行探讨十分必要,对于热电厂的性能优化与长足发展具有积极的现实意义。保证热能与动力工程在热电厂中的有效运用,是当前摆在电力行业面前的重要课题,借鉴本文内容,着眼于实际问题,来实现热能与电力工程针对性的运用强化,进一步提升热电厂运行效率。我们有理由相信,只要我们协同合作,在工作中一丝不苟,熟练掌握实操技术,热电厂的发展前景必将十分广阔。

参考文献:

[1] 王文才.热能动力设计研究[J].中国新技术新产品,2011,(22).

[2] 高雷.热电厂中的热能与动力工程[J].山西建筑,2010,(5).

[3] 郑飞飞.关于热能与动力工程的讨论[J].中国科技博览,2012,(1).

[4] 陈威.电厂优化运行中汽轮机能损相关问题的探讨[J].中国新技术新产品,2010,(5) .

热能动力工程范文第2篇

关键词:热电厂;热能;动力工程

热电厂采用供热式机组,在供应能源过程中还采用汽轮机排气或抽气,不断满足用户生产与生活中所需要的热量需求。其与一般的发电厂热电分产形式相比,不仅具有较高的应用成效,而且这项技术具有时代前沿性与创新性。但是,我国现阶段的热能与动力工程在热电厂中的运用依然存在诸多不足。因此,其严重制约了热电厂能量的充分利用。基于此,文章将对热电厂中热能与动力工程的实践应用情况进行分析探讨。

1 热电厂的发展运行情况概述

热电厂在我国工业生产中发挥了重要的作用,其主要在发电过程中使运行的锅炉产生蒸汽,然后将这部分蒸汽传输到汽轮机中,通过汽轮机的转动运行,从而带动电动机进行发电。在此过程中,汽轮机中排出的气体会进入到凝汽器的冷端设备中,从而使水由气态物质转变为液态物质。这种经过物理转化的水资源会通过凝结水泵进入到输水泵中,然后返回到锅炉内部。从我国发电厂利用蒸汽不断进行循环发电的这一运行原理来看,其充分实现了环保节能的预期效果。

2 基于热电厂中的热能与动力工程分析

2.1 热电厂中的热能与动力工程的运行转化分析

在大部分热电厂中,都采用火力发电的形式进行能量转化,而在此过程中最重的环节就是能量转化。通过对热电厂的实际运行工作原理分析发现,热电厂在运行中,热能会与动能之间进行相互转化,动能经过汽轮机的发电作用之后会转化为电能,另外一部分能量会经过汽轮机被传输出去。但是,在此能量转化过程中,有很大一部分热能将会损失。因此,导致热电厂的运行能耗不断上升,运行效率不断降低。

在热电厂中最重要的能源就是煤炭,经过处理的煤炭会变为煤灰,利用皮带传输技术将煤灰传输到锅炉中,当煤灰充分燃烧之后就会释放巨大的热量,从而变为水蒸气,锅炉经过一次加热之后,形成的水蒸气会进入高压缸内部。因此,为了不断提高锅炉的加热效率,可以对其进行循环加热处理。在此技术处理环节,能够促使水蒸气进入到中压缸内部,此时便可利用这一部分蒸气促使汽轮机设备运转,使其产生巨大的电能[1]。

2.2 热电厂中热能与动力工程分析时的选址问题

除此之外,在研究热电厂热能与动力工程时,需要注意热电厂的选址问题。由于热点厂的运行负荷性质与负荷大小等因素都会严重影响热电厂的实际装机容量。因此,这一因素导致我国现阶段热电厂的实际机组运行规模要比火力发电厂的主流运行机组容量更小。由于热电厂的重要功能就是放热与发电,因此需要不断增大热电厂锅炉的实际运行容量。但是,受制于原材料与技术水平的局限性,热电厂在选址时要尽量选在热负荷中心位置以及城镇中人口密度较大的区域,为了保证热电厂供热系统能够科学、稳定运行,还需要建立完善的热力管网。

2.3 热电厂中热能与动力工程运行时的机组变工情况分析

汽轮机设备在运行过程中,其功率会不断发生变动,而在此过程中,蒸气的运行参数也会随着锅炉中燃料的燃耗变化情况,在不断发生变化。文章通过研究发现,凝气设界运行工况发生变化以及电网的实际运行频率发生变化,还有汽油机内部通流部产生污垢等,都会导致热电厂中的热能与动力工程产生变工情况[2]。

(1)首先第一次对并网运行的发电机组进行调频时,电网会随着外部运行负荷的不断变化而产生相应的变化,此时热电厂中每一个发电机组都会结合自己的实际运行特性,利用系统调速运行装置适当增减汽轮机的运行负荷,从而使热电厂的电网系统能够科学运行。

(2)另外针对热电厂的电力系统进行调节级处理,当热电厂的全部设备处于正常运行工况时,系统中的实际电流就会不断上升。与此同时,系统中的瞬时电压会不断上升,此时就会不断减小调节级的比焓降。当系统部分设备处于正常运行工况时,调节级的比焓降就会上升到中间级的最大值。在此过程中,热电厂的设备运行工况同样也会发生明显的变化。但是,处于中间级的压力比却不会随之发生变化。因此,调节级的比焓降也不会发生明显变化。相反,在最末级,压力比会随着系统运行流量的不断增大而相应减小,但是调节级的比焓降却会不断上升[3]。

3 热电厂中的热能与动力工程运行特点分析

在热电厂中热能与动力工程运行过程中,需要进行喷管调节与节流调节和系统设备的调压调节。因此,只有了解其各自的调节适用场合以及调节特点,才能不断提高热能与动力工程机组的实际运行效率。经过实践研究发现,机组运行负荷在不同的调节阀中产生的最大流量并不相等,而且当系统有调节级且其实际的运行负荷在1以下时,机组调节阀开启的实际数目与时间变化存在一定的关系。在此过程中,当机组的实际运行工况发生变化时,调节级汽室温度变化较为明显,而且会导致机组设备适应性变差[4]。但对机组中的喷管进行调节时,能够保证机组设备在运行过程中,迅速达到预定参数值,并使系统中的运行负荷进行科学调配,保证了热电厂热能与动力工程相关设备能够良好运行。

4 结束语

综上所述,对热电厂中的热能与动力工程进行高效运用,能够不断提升我国电力行业的总体发展水平。而“热电联产”同样也是摆在我国电力企业面前的重要发展课题。文章通过上述分析研究,发现热电厂中的热能与动力工程的开展需要立足于实际,注重热能与动力工程运行效率的不断提高,只有在协同配合工作之下,提升技术操作水平,才能不断提高我国热电厂中热能与动力工程的运行效率。

参考文献

[1]孙祚琦,王君 .热能与动力工程在热电厂中的应用[J].科技创新与应用,2016,6:125.

[2]孙斌.热电厂中热能与动力工程的有效运用[J].科技传播,2016,7:133-134.

[3]屈小亮,吴建,李亚军.热电厂中热能与动力工程的有效运用分析[J].科技创新与应用,2015,31:146.

热能动力工程范文第3篇

【关键词】:热电厂;热能与动力工程;变工况;应用

中图分类号:TM6 文献标识码:A 文章编号:

在热电厂中,热电机组在运行过程中把热能转变成为动能,通过汽轮发电机后,一部分转变为电能,另一部分通过汽轮机转送出去,在这过程中,会发生蒸汽的热损失及焓降。热能与动力工程在热电厂的的应用,有利于减少热量消耗,提高能量的利用率。

一、热电厂热电机组变工况的原因

热电厂热电机组在运行过程中,引起机组变工况的因素较多,可以从以下几个方面找原因:(1)电大量储存,加上外界所需的用电功率时刻在变化;(2)锅炉燃烧不稳定,使进入汽轮机的蒸汽参数发生动态的变化;(3)凝汽设备工况变化,使凝汽器压力产生变化。在机组工况发生较大的波动时,就要综合考虑以上各个因素,具体情况具体分析。

机组的变工况特性:当变工况前后机组未达临界状态时,机组的流量与机组前后压力平方差的平方根成正比;变工况前后级组均为临界状态,通过级组的流量与级前压力成正比,与级后参数无关。

在多级汽轮机内上一级损失一小部分可以在以后各级中得到利用,这种现象称为多级汽轮机的重热现象。将各级的理想焓降之和大于汽轮机理想焓降部分占汽轮机理想焓降的份额叫做重热系数。由于重热的利用可使整个的效率大于各级的平均效率,但是它是以降低级效率为前题,只能回收热损失的一部分,所以重热系数论文格式范文越大越好。重热系数一般为0.04~0.08。由于重热现象的存在,使全机的相对内效率高于各级平均的相对内效率,可使机组回收其损失的一部分,充分的利用重热现象,合理的选取重热系数,对提高对机组的认识有很大的帮助。

在部分进汽的级中,喷管分组布置,可分为工作弧段和非工作弧段,鼓风损失发生在非作弧段。旋转的动叶片每一瞬间都会处于喷管工作弧段或非工作弧段,在非工作弧段,动静轴向间隙中充满了停滞的蒸汽,当动叶片转到非工作弧段时,会像鼓风机一样,将这些停滞的蒸汽从叶轮的一侧鼓到另一侧,这要消耗部分有用功,这部分能量损失为鼓风损失。与鼓风损失相反,斥汽损失发生在喷管工作弧段,刚从非工作弧段转到工作弧段的动叶栅内充满了停滞的蒸汽,喷管中流出的蒸汽须首先排斥并加速这些停滞蒸汽,要消耗部分动能,为湿汽损失。

产生湿汽损失的原因包括:一,湿蒸汽在膨胀时,一部分蒸汽凝结成水滴使做功的蒸汽量减少;二,一些水珠其流速低于蒸汽流速,高速汽流被低速水珠牵制,消耗部分动能造成损失;三,水珠撞击喷管背弧扰乱主流造成损失,撞击动叶背弧阻碍动叶旋转消耗叶轮的有用功;四,湿蒸汽的过冷现象也是造成湿汽损失的理由之危害:损伤动叶进汽的边缘,特别叶顶背弧处冲蚀。减少湿汽损失的措施包括:采用中间再热循环;采用去湿装置;采用具有吸水缝的空心喷管;提高抗冲蚀能力。汽轮机运行时,要克服支持轴承和推力轴承的摩擦阻力,还要带动主油泵、调速器,这都将消耗一部分有用功而造成损失,为机械损失。

二、热电厂中热能与动力工程的应用

喷管调节的特点及适用场合包括:1,各调节阀所通过的最大流量不一定相等;2,有调节级,e

节流调节的特点及适用场合包括:1,无调节级,第一级全周进汽;2,变工况时各级温度变化较小,负荷适应性较好;3,变工况存在节流损失,经济性较差;4,适用于小容量的机组和带基本负荷的大机组,级组的临界压力是指当级组中任一级处于临界状态时级组的最高背压级组包含的级数越多,其数值越小,也即临界压力比的数值越小,弗留格尔公式的应用条件:级组级数应不小于3~4级;同一工况下,通过级组各级的流量相同;在不同工况下,级组中各级的通流面积应该保持不变。弗留格尔公式的实际应用:可用来推算出同流量下各级级前压力求得各级的压差、比焓降,从而确定相应的功率效率及零部件的受力情况;监视汽轮机通流部分是否正常,即在已知流量的条件下,根据运行时各级组前压力是否符合弗留格尔公式,从而判断通流部分面积是否转变。

调压调节增加了机组运行的可靠性和对负荷的适应性,提高了机组在部分负荷下的经济性,高负荷区滑压调节不经济,适用于单元大机组蒸汽在动叶栅中做功后,以余速动能离开动叶栅,它是未能在动叶栅中转换为机械功的一部分动能,称它为这一级的余速损失,工作喷管所占的弧段长度与整个圆周长派的比值表示部分进汽的程度。

在轴流式汽轮机中,通常是高压蒸汽由一端进入,低压蒸汽由另一端流出,从整体来看,蒸汽对汽轮机转子施加了由高压端指向低压的轴向力,使汽轮机转子存在向低压端移动的趋势,这个力就叫转子的轴向推力。轴向推力的变化规律为:新蒸汽温度降低、汽轮机发生水冲击时、负荷突增时、甩负荷时、叶片结垢时,轴向推力都增大。

总之,总结热电厂热电机组热能与动力工程之间的关系及变化情况,掌握变工况时的各种情况,懂得其产生理由,在工作中正确判断处理各种异常情况,可以使操作技术更精湛,提高技能;热能与动力工程在热电厂的的应用,有利于减少热量消耗,提高能量的利用率。明白各种调节方式及适应场合,对提高运行技能水平也具有极大的帮助。

【参考文献】:

[1]刘杰;热能与动力工程在热电厂的运用分析[J].科技传播.2012年17期

[2]黄景利; 热电厂中的热能与动力工程[J].黑龙江科技信息.2010年第27期

热能动力工程范文第4篇

【关键词】热能与动力工程;热电厂;应用;探索

热电厂的主要功能是实现热能转化为动能,然后动能经蒸汽技术推动发电机工作,其中有些动能转化为电能,而另一些则消耗在这个转换中,因此,会产生的热损耗与焓降。研究其产生的相关原因,可有助于节能降耗,以及技术的更新。

一、降低热能损耗的措施及手段

对于在热电转换过程时出现的某些现象、技术或方法、为什么会热能损耗及降耗的技巧等概括如下。

重热现象:也就是说重复利用热能,在汽轮机中前一次损耗的热能,能够被下一次运行所应用,这就是所谓的重热。在每次运行中所产生的焓降累加后超过总体运行是所产生的焓降再除以整体运行所产生的焓降所得到的结果称之为重热系数。虽然各级热能的利用效率都高于单次的利用效率,然而这是以节能降耗为基础的,这能说部分热量得到了利用,并不追求高重热系数。通常在4%至8%之间。正因为如此,重复利用热能可提高每次运行的能量利用率真,降低能量的损耗。合理的利用热能,控制好恰当的系数,既有利于能量利用率,也能增强操作人员对机组的熟悉程度。

二、导致变工况的因素及特点

当机器启动后,产生变工况的原因也有很多,但主要有以下各种因素:

第一、电能的不方便存储,况且由于其他方面所引起的电功率不稳定;第二、锅炉运行的情况也非一直不变的,从而导致汽轮机的运行情况产生无规律变化;第三、凝汽装置的工况也不稳定,使得其中的气压时时改变。第四、另外还有诸多原因:如用电的频率、通气设备的老化等。当机器运行情况有很大变化时,就要考虑以上各个因素了,具体情况具体分析,最终维护机器的稳定运行。

两次调频:对于电网运行时,其系统中负载产生大的波动,单次调频难以满足平息波动的需要,而再次进行频率控制。其方式有两种:手动操作与自动操作。

手动调频:电能产生的过程中,技术维护工依据装置的改变来调整机器的状态,维持其频率稳定,但其据点显得易见,响应迟缓,面对大的调频情况时,通常难以实现。再者,24小时超长时间维护对维护人员来说操作时间长,强度高。

自动调频:利用自动控制技术来实现自动调频是当前的主流技术,它是依靠在发电设备与控制系统中加装自动调节设备,从而解决整个运行中产生的频率波动,能将其变化幅度控制在很低水平。这种自动控制系统是其整个自动化系统的重要控制装置,它负责整个系统的调频、维持功率稳定及整体调节等功能。

汽轮机运行状况的改变,每次运行中焓降也随之改变,调节过程中不关闭阀门的工作情况,其随着流量变大,压力比变大,而焓降变小。与些相反的情况。流量变少,焓降则变大。中间级状态时,当阀门处于一开一闭的情况,焓降增到最大,此时,即使工作状态发生改变,其压力也保持稳定,此时,焓降也保持稳定。最后一级,流量变大,压力变小,但此时焓降变大。清楚各级各个参数的变化对维护系统运行有很大的作用。

喷管的作用特征与应用场所:第一,每个阀门的流量峰值并非完全一样;第二,在调节级时,e小于1,但t根据阀门运行的个数产生改变;第三,负载只加载一部分时,有些装置运行效率较好;第四,运行情况发生改变时,室内环境改变时,其负载难以适应;第五,每种型号的发电装置都能应用于这种系统叫做同步器。其发挥的功能包括:单一启动时,能保持整个装置稳定运行,且达到额定功率。当有负载时,可以让整个系统在满负载情况得到较好的运行。两台机组同时启动时,可用这种装置调控整个机组的功率,实际各部分的负载均衡,但维持整个装置的频率稳定,实现两次调频。

节流控制的作用特征与应用场所:第一,没有调节控制环节,气体全部进入;第二,工作运行状况发生改变时,温度也维持较稳,负载能良好的运行;第三,工作运行状况发生改变时,流量消耗,效益不好;第四,其可应用于容量较小或带正常负载的巨型装置。所谓的临界压力表示的是当机组处于临界运行情景时,产生的压力时,且与级数呈负相关关系。从某个角度上说,其数值通常相对较小。其相关的公式应用的前提条件包括:装置中就有三级以上的级数,相同工况,其每级流量值一样,不同工作情况时,就保持其流通截面相同。这个公司的运用可能于各级的装置的压力值,从而可以获得他们之间的差值、比焓降,再根据这种参数来分析整个系统的运行情况。可通过这些来获得汽轮机是否运行正常,在告知流量值时,各级测得的压力值符合相关公司否?再依此确定流量的变化。

三、容易出现的问题

损耗湿汽的因素:第一,湿润的气体发生膨胀,其中有些因气温降低而变成了水,从而不能做功;第二,这些液态水的流速小于气流速度,从而会降低气体的速度,也会产生一定的动能损耗;第三,液态水都粘在管壁上了,既产生水的损耗又产做了无用功,使叶轮做功减少;第四,遇冷的水蒸汽使得汽量减少,而且还会损害叶轮的边沿,尤其是会造成其背面弯处产生腐蚀。

防止湿汽损耗的要点:第一,实现过程中热能再利用;第二,加装减湿互环节;第三,使用带收集液态水功能的喷管;第四,增强其抗腐蚀作用。整体装置运行过程中,要实现好各部件间的效果,还可以使泵装置、速度控制装置的运行,因为这些过程可能产生无用功,造成机械能损耗。

气体沿轴流动的装置中,一般是蒸汽从气压强的入口端进入、而从气压弱的出口端流出,这等同于对整个装置的转轴产生一个沿轴方向的力,其方向由气压强处指向气压弱处。从而使转轴发生偏转,通常称这个力为沿轴推力。

热能动力工程范文第5篇

关键词:热电厂;热能动力工程;性能;合理运用

【分类号】TM621

随着我国城市化进程的不断加快,能源紧缺情况越来越严重,为了缓解紧张局势,热电厂应运而生。热电厂和传统的电厂相比较更具有优势,主要是因为其中的热能动力工程可以将热量和电能区分开来,但在实际应用的过程中,热电厂中存在的问题也日益突出,如何解决其中存在的问题,合理的应用热电厂热能动力工程中的性能已经成为当前人们关注的焦点。

一、热电厂热能动力工程性能运用中存在的问题

(一)损耗湿汽的原因

热电厂热能动力工程性能在应用的过程中,会损耗湿气,产生此种情况的主要原因有以下几点:第一,当湿润的气体能够产生膨胀之后,若是气温低于正常温度,气体就会产生液化,进而变成水,这样就会导致性能应用不成功;第二,液态水流动的速度和正常的气流速度相比是较小的,所以会产生动能损耗;第三,当液态水和管壁接触之后,水会被消耗,而且性能运行所做的功是没有用处的,这样就会使得叶轮做功被消减[1];第四,当水蒸气和比较冷的空气相接触的时候,汽量会逐渐变少,而且叶轮的边沿还会受到损害。

(二)防止湿汽损耗的要点

相关人员针对湿汽损耗进行了深入地研究,找出了几点防止要点,具体有以下几点:第一,对使用中的热能进行二次利用;第二,在进行喷灌选择的时候,应该选择含有对液态水进行收集功能的喷灌设备;第三,采取有效的措施提高抗腐蚀的能力;第四,注重各部件之间的[2]。

(三)各级间变工况的变化要点

在各级变工况进行变化的时候,相关人员应该对其临界点进行计算,在计算的过程中,应该联系实际情况,对不同临界值状态下变工况的变化情况进行深入地分析。若是变工况的变化和临界值不吻合,就应该改变计算比例,从而确保计算和实际情况。

二、热电厂热能动力工程性能的合理运用

(一)对各类工况进行调和

热能动力工程性能在运行的过程中,应该对不同的工况进行调和,对工况产生的变化进行及时掌握。处于并网运行态势下的机组,若是其外部衔接的电网更换频率较高,那么机组就会采用自身所具有的差异动态,对负荷进行适当的增加或者是减少,从而确保电网周波可以保持在平衡状态下。这样完整的改变,可以被当做是跳频[3]。机组运行中产生的跳频,对调解速率的要求比较高。但是,已经设置好的调整量会和实际情况产生差异,当此种情况发生之后,调控的难度就会增加。

当电力系统中已有的负荷增加的时候,若是采用一次调频(如图一),那么频率的状态想要恢复正常就会非常的困难。当此情况出现之后,工作人员应该进行二次调频,这样就可以将其恢复正常。就一般情况进行分析后可以发现,二次调频可以是手动进行的,也可以是智能进行的,不同途径的调和更适用。

(二)缩减调压的损耗

调节机组之间的压差、运行中产生的负荷,都能够增加适应特性,提高可靠性。还有一部分的负荷在特殊的状态下可以提高经济效益。此种性能的提升,可以为热能动力工程的调节明确思路。但是,不同的调节途径中也存在着一定的问题,比如说,在对高负荷特性的区段进行调解的时候,若是采用滑动态势调节方法,就会损耗大量的成本。在调节中产生的损失,就是热能动力工程性能在运行中产生的损耗[4]。这些损失的产生并不是因为人为故障,还有多种因素的影响,所以想要缩减调压的损耗,就应该坚持不懈的研究新技术,开发新产品,只有从能量上减少损耗,才能提高其先进性。

(三)对重热进行有序的运用

在热能动力范畴中,重热现象的出现是不可避免的,是多层级的汽轮机,较小部分以内的热能损耗。此种重热,在进行后续运转的过程中,还可以进行再次利用。已经拟定好的重热系数,是在与最好的状态进行对比后确定的,理想状态下的焓降,其余留出的部分,就是此种类型的比值。

对重热进行充分地利用,可以提高原有的平均效率,但在应用的过程中,需要注意的是,对重热进行利用只能将一部分的损耗进行回收,对其预设的系数变更应该在0.05以内,要知道,重热的系数越大就越有利。鉴于此种情况,相关人员应该将热能动力工程中的重热进行有效的利用,在利用中应结合实际情况,找出最优的比值,只有这样才能保证机组的正常运行[5]。

(四)应用节流调节

在热电厂架构中的节流调节,并不具备调节级。在已经确定好的层级中,应该对进汽进行完整的确定,如果在这一过程中工况出现变化,各层级已经预设好的初始温度已经随之而发生改变。初始温度只有在负荷符合规定的情况下才适用,而且初始温度对于不同规模架构中的容量机组也是相适应的。

在实际运行的过程中,相关人员应该对各层级之间所产生的比焓降以及压差进行对比。然后在此基础上对各个零配件所承受的压力情况以及状态进行分析,正处于运转态势下的汽轮机,还应对其预设的流通是不是符合规定进行检查,当掌握具体流量和压力的时候,可以计算出变更的面积[6]。

结束语:

综上所述,在我国城市化进程不断加快的过程中,我国对能源的需求量越来越大,能源紧缺问题越来越严重,为了改善此种情况,相关研究人员应该对能源技术进行深入地研究,并对热电厂热能动力工程性能的运用进行不断的探索,找出其中存在的问题,提出有效的解决对策,从而缓解能源紧缺局势,为我国的快速发展奠定良好的基础。

参考文献:

[1]王霞.浅析热电厂热能动力工程性能的合理运用[J].建筑工程技术与设计,2015(18):1220-1220.

[2]周宗香.小议热电厂热能动力工程的性能合理运用[J].建筑工程技术与设计,2014(22):526-526.

[3]王洪民.热电厂热能动力工程的性能合理运用分析[J].中国新技术新产品,2015(7):74-74.

[4]屈花珍.浅析热电厂热能动力工程性能的合理运用[J].建筑工程技术与设计,2015(28):1360-1360.

相关期刊更多

地热能

省级期刊 审核时间1个月内

中国地质科学院水文地质环境地质研究所

建筑热能通风空调

部级期刊 审核时间1个月内

中国科协

热能动力工程

北大期刊 审核时间1-3个月

中国船舶重工集团公司