首页 > 文章中心 > 简易热水器

简易热水器

简易热水器

简易热水器范文第1篇

论文关键词:供暖系统,管网

以热水作为热媒的供暖系统,称为热水供暖系统。热水供暖系统是一个具有许多并联环路的管网系统,在环状管网系统中,流量是由几条管路输送到同一个节点,由每条管路达到该节点的流量完全可以任意分配。各环之间的水力工况相互影响,系统中任何一个散热设备的流量发生变化,必然引起其他散热设备流量发生变化,即各散热设备之间的流量重新分配,引起水力失调。目前,热水供暖系统经常采用以下三种管网形式:水平单管式系统,垂直单管式系统,分户水平式系统。各种管网虽然形式不同,但所有管网系统都具有相同的水力特点:

①系统均由立管或水平支管构成环状,系统环路大小因用户形式而异,管路长度变化范围大,即各管路系统阻抗变化范围大,水力失调不易调节。

②各管路阻力损失因相应阻抗大小变化而变化。同时管网系统形式是竖向环网,在重力作用压头影响下,各层资用压力变化范围大,容易产生竖向失调,各立管也容易产生水平失调。

③不同建筑、不同房间室温要求和不同散热形式对供暖系统调节与控制要求不同。系统运行过程中流量调节变化范围增大,也会产生运行过程中的水力失调。

在热水采暖里,有重力循环和机械循环两种。靠水的密度差进行循环的系统,称为重力循环系统。机械循环以电动机带动水泵为动力,密度差所产生的重力作用压头相对来说是很少的,单管系统一般是可以不考虑的。机械循环系统除了膨胀水箱的连接位置与重力循环系统不同外,还增加了循环水泵和排气装置。

机械循环热水供暖系统主要有垂直式系统和水平式系统。其中垂直式系统又有上供下回,下供下回,中供式,混合式热水供暖系统。同时又有单管和双管之分。单管系统一般有单管顺流式,单管跨越式,和跨越式与顺流式相结合的系统形式。在单管系统中,最常用的一种布置方式是上供下回单管顺流式系统。其特点是立管中全部的水量顺次流入各层散热器,顺流系统形式简单、施工方便,造价低,是国内目前一般建筑广泛应用的一种型式,其缺点是不能进行局部调节,容易产生上热下冷现象。为了消除热网水力失调,避免大流量小温差不经济运行状况可以增加跨越管。

目前跨越管有3种形式如下:

图a.这是最简单的跨越管形式,由于无阀门可调,故散热器流量与立管的流量之比为常数。根据有关资料(或按当量长度法计算),当跨越管与立管、散热器支管管径相同时,散热器的进流系数为0.4左右。根据有关统计,此时散热器的散热量仅下降约5.5%左右。即跨越管的作用不明显。如缩小跨越管的管径,则进一步削弱了跨越管的作用。

图b.增设跨越管后,由于散热器出口温度下降,传热系数降低,需适当增大散热器面积。为了不增大面积,有些人主张在跨越管上安装阀门,必要时可关闭该阀门以保证散热器的散热量。这种观点不正确。跨越管上安装阀门后,散热器的进流系数约为0.6。就是说即使阀门全开,散热器的散热量仅下降2.5%,不单未起到调节的作用,反而削弱了跨越管的作用。

图c.由以上两种情况可见,要想提高散热器的调节性能,关键是要进一步降低散热器的进流系数,因此在散热器支管上装设调节阀是有利的。当该调节阀全部打开的时候,散热器的进流系数约为0.4,此时散热器的散热量下降5.5%。若将阀门略关小些,很容易满足减小散热量10%-15%。

在单管系统中,最常用的一种布置方式是上供下回单管顺流式系统。其特点是立管中全部的水量顺次流入各层散热器,顺流系统形式简单、施工方便,造价低,是国内目前一般建筑广泛应用的一种型式,其缺点是不能进行局部调节,容易产生上热下冷现象。但是这种情况必须是人为手动调节,不能根据外面气温变化或者室内热量需要自动调节,为了加强管网系统的调节功能,有条件的可采用平衡阀及平衡阀智能仪表取代调节性能差的闸阀或截止阀,更有条件的建筑入口处加装热量调节和计量装置,改善系统调节能力,节约能量。

参考文献:

〔1〕贺平,孙刚.《供热工程》. 北京:中国建筑工业出版社,1993

〔2〕秦绪忠,江亿.《供暖空调系统的稳定性分析》.暖通空调,2002

简易热水器范文第2篇

优点:储水式电热水器的安全性能高,安装简单,可提供多个用水点同时用水,使用方便。

缺点:储水式电热水器一般的体积较大,占用空间,使用前需要预热,不是即开即有,加热水温较高,易产生水垢,清洗麻烦。

速热式电热水器优缺点:

优点:速热式电热水器功率较大,加热快速,无需等待,即开即有。没有预热时的热能量散失和剩余热水的能量消耗,更加节能省电。热水器大多体积小,重量轻,易安装。冷水直接通过加热体后便被加热,水垢不易逗留,使用寿命更长。

缺点:速热式电热水器功率大,对线路要求高,在冬天难以保证能提供足够的热水。

简易热水器范文第3篇

一、管壳式换热器的工作原理

管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。

工作原理和结构 图1 [固定管板式换热器]为固定管板式换热器的构造。A流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体 (A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m(℃)。

二、管壳式换热器的形式与结构

管壳式换热器是把管子与管板连接,再用壳体固定。它的形式大致分为 固定管板式、釜式浮头式、U型管式、滑动管板式、填料函式及套管式等几种。根据介质的种类、压力、温度、污垢和其他条件,管板与壳体的连接的各种结构特点,传热管的形状与传热条件,造价,维修检验方面等情况来选择设计制造各种管壳式换热器。

1.固定管板式换热器

固定管板式换热器的两端管板,采用焊接方法与壳体连接固定。这种换热器结构简单;喜爱相同的壳体直径内,排管最多,比较紧凑;在有折流板得壳侧流动中,旁路最小,管程可以分成任一偶数程数。由于两个管板呗换热管相互支撑,与其他管壳式换热器相比,管板最薄,不仅造价低而且每根管子内侧都能进行清洗。

2.浮头式换热器

浮头式换热器针对固定管板式换热器的缺陷在结构上做了改进,两端管板只有一端管板与壳体固定,而另一端的管板可以在壳体内自由移动,该端称为浮头。这类换热器壳体和管束对膨胀是自由的,故当两种介质温差较大时,管束与壳体之间不产生温差应力。浮头端设计成可拆结的构,是管束可以容易地插入或抽出(也有设计成不可拆的),这样为检修、清洗提供了方便。但结构较为复杂,而且浮头端操作时无法知道泄流情况,所以在安装时要特别的注意其密封限制。

3.U型管式换热器

U型管式换热器仅有一块管板。 它是将管子弯成U型,管子两端固定在同一块管板上。由于壳体和管子分开,管束可以自由伸缩,不会因管壁、壳壁之间的温度差而产生热应力,热补偿性能好。管程为双管程,流程较长,流速较高,传热性能好,承压能力强。U型管式换热器,一般使用高温高压的情况下。尤其在压力较高的情况下,在弯管段壁厚要加厚,以弥补弯管后管壁的减薄。

如壳程需要经常清洗的管束,则要求采用正方形排列,一般情况下都按三角形排列,管程为偶数。

壳程内可按工艺要求设置纵向隔板组成双壳程换热器,以增加壳侧介质流速,提高换热设备的传热效果。纵向隔板安装在平行于传热管方向(纵向隔板按工艺要求决定)

4.填料函式换热器

对于一些腐蚀严重,温差较大而经常要更换管束的冷却器,采用填料 函式换热器要比浮头式或固定式换热器优越的多。它是具有浮头式换热器的优点,有克服了固定式换热器的缺点,结构较浮头简单,制造方便,易于检修清洗。

填料函式换热器的管板也仅有一端与壳体固定,另一端采用填料

函密封,它的管束也可以自由膨胀,所以也不需要考虑由于管壁、壳壁温度引起的热应力。且管程和课程都能清洗,加工制造叫浮头简便,且造价较低。但由于填料密封处易于泄露,故壳程压力不能过高,也不易于壳程内为易挥发、易燃、易爆和有毒介质的场合。

目前所使用的填料函式换热器都较小,使用在直径700mm以下,大直径填料函式换热器采用的很少,尤其在操作压力及温度较高的条件下就更少

简易热水器范文第4篇

关键词:换热器;石油化工;应用及维护

石油化工的生产是一个比较复杂的过程,每一个环节都是极为复杂的,如果没有将这些环节中的换热工作做好,就会影响着产品的质量,也容易出现安全事故。换热器主要的作用进行进行温度的转换,将温度比较高的流通传达给温度比较低的流体,这样就可以保证受热的均匀性。换热器必须有一定的安全性和稳定性,否则就会产生泄露,造成的危害是无法预料的,因此在使用换热器的过程中,要做好应用维护工作。

1 换热器的主要类型和原理介绍

在石油化工中使用比较广泛的换热器是单相流换热器,这种换热器一般是用在气体到气体、液体到液体和液体到气体的换热中,流体在换热的过程中,不会出现相变的现象,在石油化工生产中,主要的形式是对流传热,利用对流传热的方式需要使用螺纹管、内波外螺旋管和波纹管,波纹管和内波外螺旋管的主要作用是增加壁面的扰动,而螺纹管的主要作用就是将表面传热的效果增大。厚壁波纹管和内波外螺旋管在加工方式上是比较相近的。在石油化工生产的过程中,换热器的应用是极为重要的,也是不可或缺的一种设备,换热器的主要作用就是换热,加热、预热、蒸发、制冷和过热,换热器就是在温度上进行一系列的变化。

温度在发生变化的时候,有着多种方式进行操作,例如复合型换热、蓄热式换热、表面式换热和流体连接式换热,这些方式在石油化工生产中是经常使用的,但是无论是什么样的方式都是离不开换热器的,换热器的种类也是非常多的,按照换热器的结构进行划分主要有固定管板式换热器、浮头式换热器、板式换热器和U形管板换热器,但是在使用的过程中,一定要注意一些事项,否则会给具体的使用带来很大的问题,需要注意的问题如下:(1)要保持网管的清洁,不管是在什么时候,工作之前和工作之后都要将网管清洁好,这样就可以最大程度的避免出现网管堵塞的现象,这样换热器就无法正常的使用。(2)在软化水的使用上要严格的把关,在对软化水进行处理的过程中,一定要做好软化罐和水质的检查工作,这两者都会影响着软化水的质量,在确定合格之后,才能够使用。

2 换热器在石油化工中的应用及维护

2.1 螺旋缠绕管式换热器的简单介绍

2.1.1 结构特点

这种换热器主要是对管束、壳体和中芯管构成,在管板与管热管相连接之后,就要使用焊接技术进行固定。在壳体和两端的接头上会有流体进出。除此之外,还有缠绕管束的影响,缠绕管束主要是由螺旋管缠绕形成的,必须要保证层与层之间是保持着一致的,在缠绕方向上也要是相反的,最大程度的保证流体的均匀分布,避免出现短流的现象,在使用的过程中,也容易产生很多的危险性因素,需要引起我们的注意。

2.1.2 性能优势

这种换热器可以最大程度的保证质量,对应力可以实现自动化的消除,如果是大温差的一些工艺,使用缠绕管束结构,可以最大程度的提高设备的使用寿命。对螺旋缠绕管进行表面处理,可以最大程度的保证污垢的降低率,在沉降速度上也会加快。螺旋缠绕管式换热器在结构上是极为简单的,重量也较轻,可以腾出更多的空间,这样就会节省大量的费用,在维护费用上也会大量的减少。

2.2 浮头式换热器的简单介绍

浮头式换热器主要是由浮头部分构成的,这一结构可以按照不同的要求进行设计,在设计的过程中,一定要满足壳内自由的浮动,保证管束和壳体是绝对自由的,这样在温差较大的时候,壳体和管束之间就不会产生较大的温差应力。浮头端也可以自由的进行拆卸,这样管束既可以设计成为可拆卸的,也可以设计成为不可拆卸的,在检修的过程中也是极为便利的,清洗也十分的方便。

浮头换热器的浮头部分结构,按不同的要求可设计成各种形式,除必须考虑管束能在设备内自由移动外,还必须考虑到浮头部分的检修、安装和清洗的方便。钩圈对保证浮头端的密封、防止介质间的串漏起着重要作用。随着浮头式换热器的设计、制造技术的发展,以及长期以来使用经验的积累,钩圈的结构形式也得到了不段的改进和完善。钩圈一般都为对开式结构,要求密封可靠,结构简单、便于制造和拆装方便。浮头式换热器以其高度的可靠性和广泛的适应性,在长期使用过程中积累了丰富的经验。尽管受到不断涌现的新型换热器的挑战,但反过来也不断促进了自身的发展。故迄今为止在各种换热器中扔占主导地位。

2.3 泄露问题

焊接质量是换热器制造上的关键。换热器管子与管板焊接时,在焊缝两侧形成热影响区,这是焊接接头的薄弱部位,容易产生残余变形和残余应力,即容易形成应力腐蚀的基本条件。若遇到腐蚀环境的影响,例如在H2S、OH-等环境中,就会发生应力腐蚀开裂,造成换热器管接头处泄漏。管子与管板之间的缝隙处存在不流动液体,与缝隙外液体形成浓差电池,引起缝隙腐蚀,也会造成换热管接头处泄漏。管子与管板焊接结构的特点是具有排列紧密的小圆形单道焊缝,如果焊接工艺不当,就易造成焊缝根部夹渣、熔合不良、裂纹、气孔等焊接缺陷。在运行过程中这些缺陷受到交变应力的影响便会扩展,使泄漏通道扩大,导致泄漏。

2.4 维护

2.4.1 清洗

换热器运行一段时间或一个周期,就要进行清洗,换热器循环冷却水中含有大量的盐类物质、腐蚀产物和各种微生物,由于未对其进行水处理,换热器运行一段时间后水侧会结有大量的钙镁碳酸盐垢及藻类、微生物淤泥、粘泥等,这些污垢牢固附着于内表面,导致传热恶化、循环压力上升、机组真空度降低,影响机组的运行效率,造成较大的经济损失。

2.4.2 注意事项

①施工人员进入现场必须按规定戴好劳保用品,需要穿胶鞋、胶皮手套、口罩及眼罩;②施工现场要有良好的通风,操作现场要有方便、充足的水源。③在搬运有腐蚀性的药品时,应尽量采用叉车等专用搬运工具。严禁溅入眼、口、皮肤上。如误触,立即用大量清水冲洗,严重者,请立即就医。④施工药品应放在阴凉通风处,并做好"危险品勿动"等醒目标记。

3 结论

综上所述,技术人员应当加深对换热器的了解研究,掌握正确的换热器应用方法与维护策略,以保障换热器的工作效率与质量。充分节约能源,提升生产效益。

参考文献

[1]林林.管壳式换热器结垢和泄漏的传热特性及预测研究[D].东北石油大学,2014.

[2]雷振友.浅析模拟仿真技术在石油化工中的应用[J].环境与生活,2014,16:173.

简易热水器范文第5篇

虽然半水煤气经过除尘、脱硫等净化工序,但不可避免的仍然会携带一定量的尘粒、氧气、硫化氢等物质,与循环热水长期接触就会累积在热水中,溶解了酸性气体的热水pH值偏酸性,会对调温水加热器换热管造成腐蚀。为了解决热水偏酸性的问题,通过向循环热水中补加氨水来调节热水酸碱度。由于半水煤气中含氧,在高温环境下硫被氧化成硫酸根,硫酸根与氨生成硫酸铵或硫酸氢铵。硫酸铵或硫酸氢铵在130℃左右结晶析出,堵塞换热管,造成铵盐腐蚀严重。

其次,饱和热水塔补加的是热的脱盐水,由于脱盐水中含有氯根,长期积累造成氯根超标,与氨生成氯化铵,氯化铵结晶析出也是造成换热管堵塞、腐蚀的原因之一。以上原因造成调温水加热器换热管腐蚀、泄露,由于管程压力比壳程压力高,热水泄露后水汽被变换气携带进变换炉末段,进而造成变换炉末段催化剂水浸、板结、失活,床层阻力增大,变换炉出口CO含量严重超标,给企业带来不小的经济损失。

2改造方案

该方案是用喷水增湿器替代调温水加热器,改造后总汽气比不变,变换炉出口气中CO含量不变。该流程的特点是出低变炉二段的约280℃的变换气经主热交换器降温后,不再进调温水加热器,而是进入新增加的喷水增湿器,用除氧水冷激降温至195℃后进入低变炉三段催化剂床层进行变换反应,后面流程不变。循环热水经热水循环泵加压后经一水加、二水加提温后不再经过调温水加热器,而是直接进入饱和热水塔塔顶。

由于去掉了调温水加热器,饱和热水塔的进水温度随之降低,一般下降6℃,降低了饱和热水塔负荷,饱和热水塔的腐蚀程度也随之降低。同时解决了调温水加热器长期存在的腐蚀问题。具有流程简单、易操作、投资省等特点。

3结论

相关期刊更多

中国检验检疫

部级期刊 审核时间1个月内

国家质量监督检验检疫总局

检验检疫科学

部级期刊 审核时间1个月内

国家质量监督检验检疫总局

检验检疫学刊

部级期刊 审核时间1个月内

国家质量监督检验检疫总局