首页 > 文章中心 > 正文

污水处理厂实现低碳运营的技术途径

污水处理厂实现低碳运营的技术途径

低碳(lowcarbon)意指较低(更低)的温室气体排放[1]。温室气体是指在地球大气中能让太阳短波辐射自由通过,同时吸收地面和空气放出的长波辐射(红外线),从而造成近地层增温的微量气体。温室气体在大气中所占的比重十分微小,不足1%,但它们一方面使大气层保持更多的热能,增加地表气温,产生温室效应;另一方面,一些温室气体如N2O、CFCs会上升到平流层,与那里的臭氧反应并破坏臭氧层。温室气体增加导致的气候变化正在对人类社会产生日益明显的影响,减少温室气体排放、控制气候变化已经成为国际社会的共识,绝大部分行业都在进行碳排放评价研究及碳减排对策的制订。城镇污水处理虽然是人类社会活动中一个很小的行业,却是一个重要的碳排放源,发达国家越来越重视城镇污水处理行业的碳减排。城市是低碳经济发展最主要的实施平台,污水系统作为城市重要基础设施之一,用以收集、输送、处理、再生和处置污水,在低碳经济中扮演着多重“角色”。首先,污水系统是完成城市减排目标的主体,根据住房和城乡建设部统计数据,截至2009年年底,全国城镇累计建成污水处理厂1993座,总处理能力已超过1×108m3/d[2];其次,污水系统又是碳排放行业,污水处理设施建设需要消耗大量高能源高碳密度原材料产品,在污水输送和处理的运行过程中,亦直接或间接造成温室气体的排放[3],现就污水系统中污水输送、污水处理和污泥处理等方面的温室气体排放进行分析研究,并提出控制对策。

1城镇污水处理与碳排放关系

1.1污水输送过程中碳排放在污水输送过程中,温室气体的直接排放的主要途径是排水管道厌氧环境产生CH4,间接排放则包括污水提升所用电耗等。有研究表明[4],污水在压力管道中停留的时间越长,产生的CH4量越大,管道的管径越大,产生的CH4量越大,压力管道中的CH4浓度接近甚至超过标准状态下CH4的饱和浓度22mg/L,这些溶解于污水中的CH4,通过放气阀、有压流转换为重力流或者进入污水处理厂后,释放到空气中。澳大利亚的研究表明[5],如污水处理厂进水全部为压力管道输送,则污水输送系统产生的温室气体量是污水和污泥处理过程中产生的温室气体总和的12%~100%。

1.2污水处理过程中碳排放污水处理是温室气体的主要分散排放源之一。就污染物去除过程而言,主要产生CO2、CH4和N2O,对能量供给过程来说,发电、燃料生产会排放CO2。污水处理的温室气体可分为直接排放和间接排放两种类型。直接排放是指污水处理过程中排放的温室气体,间接排放主要是指污水处理消耗的电能、燃料和化学物质在生产和运输过程中排放的温室气体,除此以外,还包括尾水排放至自然水体中污染物降解产生的温室气体。

1.2.1直接排放由图1可知,好氧处理过程中,污水中的有机碳被微生物通过分解代谢、合成代谢和物质矿物化,在把有机物氧化分解成CO2和H2O等,以满足自身生长和繁殖过程对物质和能量的需要。应该指出,在新细胞合成与微生物增长过程中,除氧化一部分有机物外,还有一部分细胞物质也被氧化分解以供应能量,即进行内源呼吸,内源呼吸也排放H2O、CO2、NH3等气体。有机物的厌氧分解过程可划分为两个阶段:酸性发酵阶段和碱性发酵阶段,分别由两类微生物群体完成。厌氧发酵具有两个主要特点:(1)有机物一旦转化为气态产物后,污液中构成BOD和COD的化学物质(主要是有机碳)即转变为CH4和CO2,仅积蓄少量的微生物细胞;(2)由于有机物最终的转化产物中含有大量的CH4,它是一种温室气体,应尽量避免排入大气环境,同时它也是一种高热值气体,可采取措施回收利用。如图3、图4所示[7],污水生物脱氮的基本原理是在硝化菌及反硝化菌的作用下,将污水中的含氮化合物转化为气态氮化物的过程,其中包括硝化作用和反硝化作用两个反应过程。N2O通常被认为是不完全硝化作用或不完全反硝化作用的产物。

1.2.2间接排放城镇污水处理厂处理污水消耗的电能、燃料和化学物质在生产和运输过程中排放温室气体,以及尾水排放至自然水体中污染物降解产生的温室气体。具体排放途径如表

1.1.3污泥处理过程中碳排放污泥处理处置的碳排放主要也包括两方面:一是污泥处理处置过程直接排放;二是处理处置设施运行能耗间接造成的碳排放[8]。从全球尺度来看,前者主要来自大气中已存在的CO2,只是通过碳吸收—存贮—释放的循环过程又回到大气环境中,属于中性碳,对于碳减排的影响有限。从碳源上讲,运行能耗的碳排放来自于化石能源,属于典型的碳减排领域。污泥处理处置技术以脱水—填埋、生物堆肥、厌氧消化、干化焚烧为主。在目前现行的几种主流污泥处理处置方式中,填埋1t湿污泥(含水率60%)会造成500kg的碳排放量,在各种处理处置工艺中其碳排放量最大;厌氧消化技术碳排放量约在28~35kg/t;生物堆肥和热干化—焚烧的碳排放量强度分别在25~30kg和150~180kg左右[9];从处理过程的碳排放角度来看,厌氧消化和好氧生物堆肥的碳排放量较脱水填埋产生的少。

2城镇污水处理厂低碳运行的技术途径

2.1合理规划污水收集输送系统污水系统规划最为关键的问题是科学选择收集、处理、排水体制和模式,实际规划中应在综合考虑城市规模和布局、受纳水体位置、环境容量等因素的基础上,评估不同方案并统筹考虑污水再生利用和污泥资源利用的方向和规模。就污水收集系统而言,其作用是将污染物输送至污水处理厂,而管道淤积将增加CH4的产生,管道渗漏将影响污水管道的污染物输送能力。因此必须提高输送系统的效率,建立日常养护制度,借鉴国外先进养护技术和修复技术,减少管道污染物沉积量和渗漏量是污水收集系统低碳运行的关键。如对于处理家庭、工业、小型社区或服务区产生的污水,采用污水分散收集与处理的方案[10],进行现场收集与就近处理,既有利于污水的再生回用,又可降低污水长距离输送过程中的能耗和CH4排放。

2.2污水处理过程中的碳减排途径

2.2.1好氧处理过程中温室气体的控制从理论上讲,污水中的有机碳素物质均能被强氧化剂氧化成CO2的形式排入空气中,因此,好氧处理中温室气体减排实质就是减少或固定污水处理中CO2。CO2的固定方法主要有物理法、化学法和生物法[11]。大多数物理法和化学法能量消耗较大,而且物理法固定的CO2最终都需结合生物法将其转化为有机碳;生物法固定CO2主要是依靠植物和微生物,在污水处理中植物生长一般受到限制;微生物固定CO2的研究目前主要集中在光能自养型微生物(微藻类和光合细菌)和化能自养型微生物(氢-氧化细菌)对CO2固定与转化[12],但通常具有较高固碳能力的光合细菌和氢-氧化细菌由于需要光照或严格厌氧和供氢,限制了其在反应器或水中的应用。李艳丽等[13]通过生物技术手段从海水及其沉积物中选育到在普通好氧条件下具有固碳能力的非光合微生物菌群,并通过电子供体和无机碳源结构的优化,显著提高了其对无机碳的同化能力,好氧条件下固碳菌液的最高碳同化效率可达110mgCO2/L•d;同时,通过分子生物学手段研究发现在不同培养条件下,菌群的群落结构发生很大改变。经过测序、序列比对及构建系统发育树后发现,在已测序的16个显著条带中,11个是不可培养微生物,即其只能以共生方式存在,混合培养时,固定CO2的效果可能是多种菌共同作用的结果。所以,利用非光合微生物菌群控制好氧处理中的CO2减排这可通过如下途径来实现:(1)通过生物技术分离或长期驯化得到在普通好氧条件下具有固碳能力的非光合微生物菌群,通过电子供体和碳源结构的优化,提高其在污水处理中的固碳效率。(2)研究与优化固碳微生物菌群的结构和配比,提升固碳效率。

2.2.2厌氧处理过程中温室气体的控制厌氧过程其实质是指微生物细胞将有机物氧化释放的电子直接交给底物本身未完全氧化的某些中间产物,同时释放能量并产生不同的代谢产物。所以,在污水达标排放的前提下,厌氧处理中的温室气体减排这可通过如下途径来实现:(1)将厌氧反应所产生的CO2引入固碳系统,通过微生物的作用固定CO2。(2)强化乙酸的产生而减少CH4的产生。通过产氢产酸微生物对污水进行厌氧发酵,可将其中的有机成分尽可能转化成乙酸,在达到污染控制目标的同时,为二阶段发酵法生产高附加值的生化产品提供给足够的可溶性碳源。(3)强化H2的产生而减少CH4的产生。目前国内外在厌氧产氢污泥驯化、不同基质的产氢潜能、厌氧发酵产氢的影响因素和厌氧发酵产氢数学模式等方面的研究已取得了一定进展[14],但尚有许多理论和技术难题需要解决。应加大在该方向的研究力度,尽早实现厌氧发醉产氢工业化应用。(4)强化厌氧过程中CH4的产生,发展沼气工程。一般污水厂厌氧消化气中CH4的含量约为60%~65%,燃烧热值约为21~23MJ/m3,是优良的燃料。污水厂可利用沼气烧锅炉,为污泥消化池加热或者为污水厂生活提供炊事、采暖、洗浴的热源;沼气发电机发电[15]和沼气燃料电池发电[16]以其低排放,低污染,节约能源,废物资源再利用等优点而倍受各国政府的关注,开发沼气发电成为CH4减排的一项重要措施。

2.2.3污水脱氮过程中N2O的控制目前对不同污水处理工艺过程中N2O的释放情况缺乏系统的研究资料,很难优选出一种N2O释放量低的工艺;且污水种类多样、成分复杂,为降低N2O释放量而对污水的水质进行调控存在着较大的难度。因此,N2O的减排及控制问题主要从以下两方面进行:(1)运行工况的优化。根据污水处理中N2O产生与释放的主要影响因素分析[17],得出控制N2O减量的策略:保证污水处理中硝化系统有较高的DO(>0.5mg/L),反硝化系统尽量避免溶解氧的存在;保证高C/N(>3.5)、较大的SRT(>10d)和适当的pH值(6.8~8);尽量避免系统中NO-2N等物质的积累,减轻某些化学物质(如H2S、甲醛、乙烯、重金属离子等)对硝化及反硝化菌酶系统的毒性作用等。(2)微生物种群的优化与调控。污水生物脱氮过程中微生物种群及关键酶活性影响和决定了N2O的产生[18]。可应用分子生物学手段确定出污水生物脱氮体系中硝化菌及反硝化菌的主要种群及关键酶的活性,然后通过投加或固定N2O释放量低的基因工程菌的方式进一步优化污水处理系统中的微生物种群结构,从而控制N2O的产生和排放。

2.3污泥处理处置能源化利用途径我国在城市污泥处理、处置及资源化方面的技术才刚刚起步,目前仍然采用以土地利用为主,其他利用方式为辅的资源化方式,形式比较单一,而且利用率也不高,与国外先进国家相比尚有较大差距[19]。国外发达国家目前较成型的技术有:污泥发酵产沼气发电、污泥燃烧发电、污泥热解与制油技术,还处在研究试验阶段的污泥制氢技术[20]。

2.3.1污泥发酵产沼气该技术共分为两个阶段:第一步将污泥厌氧消化,即污泥在厌氧条件下,由兼性菌和专性厌氧菌(甲烷菌)降解有机物,分解最终产物为二氧化碳(CO2)和甲烷(CH4);第二步是燃烧甲烷气使发动机转动,将消化气的能量转变为轴动力,然后用发电机使之转化为电能。厌氧消化产甲烷不仅投资、运行、管理程度不高,而且从COD中所转化的能量(50%~60%)适中。所需要的技术和设备较为简单,非常容易实现工程化。有实例研究表明[21]污水处理厂所产生的CH4燃烧后产生的能量足够污水处理厂运行中曝气、污泥脱水及污泥焚烧所需。

2.3.2污泥燃烧发电污泥直接焚烧发电这种方式的能量转化效率高达80%左右,但污泥焚烧在工程实施时所需的设备较多,污泥焚烧厂的兴建规模也很大。具体地说,首先是要对高含水率(95%~97%)的污泥进行机械脱水处理或以堆肥方式蒸发水分;其次是投资焚烧、发电设备[22]。这种方式能量转化效率虽然高,但所需设备成本很高,所以实际应用的工程实例并不多见。

2.3.3污泥热解制油技术热分解技术不同于焚烧,它是在氧分压较低状况下,对可燃性固形物进行高温分解生成气体产油分、炭类等,以此达到回收污泥中的潜能。热解制油就是通过热分解技术,将污泥中含碳固形物分解成高分子有机液体(如焦油、芳香烃类)、低分子有机体、有机酸、炭渣等,其热量就以上述形式贮留下来。污泥中的炭有约2/3可以以油的形式回收,炭和油的总回收率占80%以上;而热解制油技术中油的回收率仅有50%。但由于热解法只需提供加热到反应温度的热量,省去了原料干燥所需的加热量,能量剩余较高,大约为20%~30%(一般在污泥含水率80%以下的情况下)[23]。

2.3.4生物制氢污泥制氢技术主要有:污泥生物制氢,污泥高温气化制氢,以及污泥超临界水气化制氢[24]。三种制氢技术相比较,超临界水气化制氢技术具有良好的环保优势和应用前景,目前已积累了一些试验研究结果。该技术是一种新型、高效的可再生能源转化和利用技术,具有极高的生物质气化与能量转化效率、极强的有机物无害化处理能力、反应条件比较温和、产品的能级品位高等优点。与污泥的可再生性和水的循环利用相结合,可实现能源转化与利用以及大自然的良性循环。在超临界水中进行污泥催化气化,污泥的气化率可达100%,气体产物中氢的体积分数甚至可以超过50%,且反应不生成焦炭、木炭等副产品,不会造成二次污染,具有良好的发展前景。

2.4污水处理厂的节能途径污水处理厂能耗成本占污水处理厂运营维护成本的40%~80%,外部能源(煤等化石燃料)发电产生CO2排放。换言之,以消耗大量外部能源消除污水中含能物质(COD)的最终结果实际上是一种污染的转嫁方式。污水处理厂能耗分布见图5。由图5可知,能耗分布主要集中在污水提升、曝气供氧、污泥输送与处理和混凝沉淀等部位,因此污水处理厂的节能工作应从上述部位出发,降低能耗,进一步减少CO2的排放。节能途径主要有:工艺的优选实现系统节能、高效的装置实现设备节能、无害高效的药剂实现原料节能、排放物的资源化实现产出物节能、管理模式创新实现管理节能。

3结论

城镇污水处理中碳排放的主要产生环节有:

(1)污水输送过程中管道厌氧环境产生CH4、污水提升所用能耗等;

(2)污水好氧处理中有机碳氧化分解为CO2,厌氧处理中有机物酸性发酵产生少量CO2、碱性发酵最终转化产物中含有大量CH4,脱氮处理中不完全硝化作用或不完全反硝化作用产生N2O;

(3)污泥处理处置过程直接排放温室气体、处理处置设施运行能耗等。

针对上述污水处理与碳排放的关系,基于目前的研究情况,污水处理厂实现低碳运行可采取的的技术途径:

(1)在方案选择中注重污水输送、污水处理和污泥处理的全过程整体性考虑;

(2)注重分析污水输送的方式,减少管道污染物沉积量和渗漏量,有条件的地方采用污水分散收集与处理的方案;

(3)优化处理工艺:好氧处理———非光合固碳微生物技术;厌氧处理———强化中间产物(乙酸或H2)的产生或发展沼气工程;脱氮过程———优化运行工况和调控微生物种群等;

(4)污泥处理过程的能源资源回收利用技术:污泥发酵产沼气发电、污泥燃烧发电、污泥热解与制油技术、污泥制氢技术等。