首页 > 文章中心 > 传感器设计论文

传感器设计论文

传感器设计论文

传感器设计论文范文第1篇

关键词:阵列传感器混沌电路开关电容A/D转换信号采集

引言

随着机器人技术和复杂检测系统的出现,人们对触觉传感器提出了更高的要求。随着触觉阵列规模的扩大,希望A/D转换速度加快,而原先在小规模阵列触觉传感器系统中采用的共用A/D转换器的方法,已不能满足大规模阵列触觉传感器信号采集实时性的要求。因此,要想实现高速、高分辨率并且对小信号敏感的大规模阵列触觉传感器信号采集系统,关键部件就是A/D转换器。

本文利用混沌帐篷映射方法和开关电容(SC)技术,设计了一种新型A/D转换器。该A/D转换器的电路具有调理放大、误差补偿和A/D转换功能一体化的优点,并且电路简单、便于集成、功耗小;能以很高的性能价格比实现多路触觉传感器输出信号的并行采样和A/D转换。

1阵列触觉传感器信号采集系统的组成

模拟式阵列触觉传感器信号采集系统的原理电路见图1。该系统由m×n阵列传感器、列读取电路、行扫描电路、n个ADC电路、时序控制电路和计算机等组成。在时序控制电路的控制下,行扫描电路对m行阵列触觉传感器发送周期性激励信号;而列读取电路则周期性地并行读入n列输出信号。读n个信号经n个A/D转换器,把模拟信号转换成格雷码序列直接送到计算机;计算机完成格雷码向二进制码的转换,接着在时序逻辑的控制下,读取下一行的n列信号并进行A/D转换。计算机在获得1帧m×n触觉传感器信号后,就可以进行信号处理了。图1中除A/D转换器需要特殊设计外,其余各电路都有现有的产品,没有特殊要求。

2混沌开关电容A/D转换器的设计

2.1混沌开关电容A/D转换的原理

利用开关电容技术进行误差补偿的基本原理是电荷的再分配。电容失配误差利用开关转换储存起来,结果由电容上电荷的再分配而得到补偿。混沌帐篷映射是一种离散非线性系统,其映射关系为:

这一映射可以看到由两步组成:先将区间[0,1]伸长2倍,然后再压缩成原区间[0,1]。如此反复迭代操作,最终导致相邻点的指数分离,从而进入混沌状态。这种映射对初始值(系统的输入信号)的放大与通常的线性放大方法不同:线性放大倍数为一常数,而且受工作范围限制;而处于混沌状态的帐篷映射系统,是在有界的区间内,迭代1次将信号放大2倍,反复有限次迭代后,可以将微弱信号放大到可观测的水平,而不会出现溢出再现象。显然,这是一种非线性放大。帐篷映射系统的输入值Vin对应于系统的初始状态x0。x0可以二进制小数表示:

为了得到离散帐篷映射的迭代输出与x0的关系,引入另一种非线性映射——离散贝努利移位是映射:

这一映射的作用是每迭代一次,就将二进制位t1、t2、t3、……向左依次移出一个二进制位,即

对于贝努利移位映射,令bn=sgn(x''''n-0.5),作为贝努利移位映射的第n次迭代输出,由于bn=tn,且bi(i=0,1,2,…)是一个二进制序列;对于帐篷映射,令gn=sgn(xn-0.5),则gi是与bi对应的格雷码序列,即

根据上述和初始时刻x0=x''''0=Vi,可得:

因此,通过将帐篷映射迭代输出的格雷码序列gi(i=0,1,2,…),转换成贝努利移位映射的二进制序列bi(i=0,1,2,…),可推算出初始值(输入信号的二进制数字量),即

式(7)中{Vin}表示输入信号的二进制数字量。gi(i=0,1,2,…)就是经过帐篷映射完成了对输入信号的非线性放大和A/D转换的格雷码形式的数字量。

2.2混沌开关电容A/D转换电路的实现

利用并关电容技术进行电路设计,有其独特的优点:电路的性能与电容无关,只取决于电容之比,两个电容比值的误差小于1/1000,因此电路运算精度高;电路便于实现大规模集成,因而电容体积小、工作可靠、成本低,功耗小(一个开关电容A/D转换器功耗4mW)等。这些优点对模拟式阵列触觉传感器信号采集系统最有利,因此该系统需要大量的ADC。

图2混沌开关电容A/D转换电路

基于帐篷映射的开关电容A/D转换电路如图2所示。运放A1、A2及周围的电路完成帐篷映射,即完成对输入信号的非线性放大和A/D转换;C4、C5、A3及周围的电子模拟开关组成保持电路,输出信号V0为输入信号的格雷码形式的数字量。图3为电路时序控制逻辑。

图2电路,当启动信号为高电平时,电子模拟开关指向“1”端,输入信号Vi接通。延时t1时间后,D触发器产生一个脉冲信号,这时,若0≤Vi≤0.5,则电子模拟开关S1指向“2”端,C1、C3和A2及有关的电子模拟开关构成一个开关电容比例延时器,如图4所示。在(n-1)T时,Vi给C1充电,充电电荷为C1Vi(n-1),C3被短路,V02(n-1)=0;在nT时,C1中电荷转移到C3中,充电电荷为C3V02(n),由电荷守恒原理,其差分方程为:

C1Vi(n-1)=C3[V02(n)-V02(n-1)]=C3V02(n)(8)

式(8)经过Z变换可得该电路Z域传递函数:

H(Z)=V02(Z)/Vi(Z)=(C1/C3)Z-1(9)

若取C3=0.5C1,则有:

H(Z)=V02(Z)/Vi(Z)=(C1/C3)/Z-1=(C1/0.5C1)Z-1=2Z-1(10)

可见,图4的电路具有起放大作用的比例延时功能,实现了对输入信号的翻倍,即实现了y=2x的运算;同时对C4充电,当下一个“o”脉冲为高电平时,C4中电荷转移到C5中,这时开关S0指向“2”端,把输出信号Vo反馈到输入端,给C1充电,实现迭代运算。经过n次迭代后,使Vi信号入大,直到可观测为止。

同理,当0.5≤Vi≤1时,Vi向C2充电,电子模拟开关S2指向“2”端,这时,C2、C3和A2构成另一个开关电容比例延时器,把式(9)中的C1换成C2,就是这个比例延时器的Z域传递函数。“e”脉冲为高电平时,C2中电荷Q=C2Vi转换到C3中,若取C3=0.5C2,就实现了y=2(1-x)的运算;当下一个“o”脉冲为高电平时,C4中电荷转移到C5中,这时开关S0指向“2”端,把输出信号Vo反馈到输入端,给C2充电,实现迭代运算。经过n次迭代后,使Vi信号放大到可观测为止。

这样,经过一个周期T,完成了对Vi一个样点的采集。如此周而复始地进行A/D转换工作。D触发器输出的信号就是格雷码序列:

将gk序列和初始条件b0=Q0代入式(6)中,就得到贝努利二进制序列bk(k=0,1,2,…)。当然,只要把ADC的输出信号Vo(格雷码序列)送入计算机,转换成二进制数字量的工作,可由计算机通过软件来实现。

3实验结果

利用图4的信号系统对5×7应变式微型阵列传感器输出的信号进行非线性放大和A/D转换实验,实验结果见表1。表1中为第4行7个传感器输出信号进行A/D转换的结果。实验结果表明,基于帐篷映射的开关电容A/D转换器可有效地实现对小信号的放大和A/D转换。

4结论

本文利用混沌电路对小信号敏感及它具有的非线性变换的独特性能,设计了混沌帐篷映射开关电容新型A/D转换器。这种A/D转换器适用于机器人模拟阵列触觉传感器输出信号的A/D转换。它集调理放大和A/D转换于一体,具有电路简单、易于集成及功耗小的特点。开关电容电路只有二相时钟,电路性能只取决于两个电容之比而与电容绝对值无关,因而电路运算精度高、成本低。利用该A/D转换器可实现多路触觉信号的并行采样和A/D转换,以满足大规模阵列传感器信号的实时采集要求。实验结果证明了本方法的有效性。

表1A/D转换实验结果

传感器(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)(4,7)

测量值/mV0806718824617025

计算值/mV0.080.266.4187.5242.3168.924.7

格雷码

gog1…g6g700000000000111110001100100101000001000010011111000000101

传感器设计论文范文第2篇

知识与技能:通过实验探究,知道磁敏传感器的工作原理及应用;能分析、设计、制作简单的磁敏传感器.过程与方法:学生组装和调试磁敏传感器,经历科学探究过程,学习科学研究方法,培养学生的实践能力、团队合作能力和创新思维能力.情感态度与价值观:通过自己设计、制作简单的磁敏传感器,体验科技创新的乐趣,体会到传感器在生活、生产和科技中的理论意义和实践意义,激发学习兴趣.

2学习任务

任务1:制作防盗报警器.任务2:制作位置传感器.任务3:制作模拟电梯关门控制电路。

3问题与方案

通过阅读教材与实验探究完成以下问题:(1)什么是霍尔效应及应用?(2)单、双干簧管的检测方法有哪些?(3)磁敏元件在控制电路中起什么作用?(4)用干簧管与霍尔开关设计、制作简易的磁敏传感器.能画出方案图并说出工作过程.

4探究过程

4.1熟悉器材

具体器材如下:磁敏元件,稳压电源,负载[电位器、定值电阻、12V或6V直流电动机、蜂鸣器、小灯泡、SRD-05V或JZC-23F(12V)的直流电磁继电器],MF-47型万用表,DT830B型数字万用表,逻辑非门74LS14或74LS04,三极管(S9013,S9018,S8050等),面包板等.

4.2实验探究

4.2.1制作防盗报警器

利用干簧管、电磁继电器、霍尔开关、非门的特点进行设计.所做的作品和市场销售的“门磁”相同,灵敏度高,简单实用,形象、直观地演示了磁敏传感器工作原理及磁控开关的应用.(1)干簧管与继电器制作的防盗报警器,小灯泡为“6.3V,0.15A”,根据负载选取电源电压,J和Ja是5V继电器,J为线圈,Ja为常闭触点.将小磁铁嵌入在活动门的上方边缘上,将常开干簧管嵌入在门框内,让两者相对靠近,即门处于关闭状态,此时干簧管内两簧片闭合.接通电路,继电器线圈得电,常闭触点Ja动作断开,工作电路不接通;当有人开门时,磁铁与干簧管远离,两簧片断开,线圈失电,Ja触点释放复位闭合,工作电路接通,蜂鸣器发声报警,红灯亮.(2)干簧管与非门制作的防盗报警器,采用74LS04非门,R为2.2kΩ电位器或电阻箱,首先按图将元件接插在面包板上,接上5V电压,再调试电位器R,当其阻值在1~2kΩ时,蜂鸣器发声报警,然后用小磁体靠近干簧管,报警声停止.本电路工作过程为:当门关闭时,永磁体使干簧管接通,非门输入端A与电源负极相接,处于低电平,则输出端Y为高电平,蜂鸣器不发声;当开门时,没有磁场作用,干簧管不通,非门输入端A高电平,则输出端Y低电平,蜂鸣器通电发声报警.(3)制作霍尔防盗报警器,R为5kΩ电位器(或电阻箱),采用74LS04非门,首先按图将元件接插在面包板上,接通5V电源,调试电位器,当R为2~4kΩ时,蜂鸣器发出报警声,再将小磁铁靠近霍尔开关平面,报警声立刻停止.本作品在生活中应用是:将小磁铁固定在门的上方边缘上,将霍尔开关固定在门框的边缘上,让两者靠近,即门处于关闭状态,霍尔开关输出为低电平,非门输出端Y为高电平,蜂鸣器达不到工作电压不报警;当门被撬开时,霍尔开关输出为高电平,非门输出端Y为低电平,蜂鸣器接通发出报警声.

4.2.2制作干簧管位置传感器(自动停车的磁力自动控制电路)

用于玩具车接近磁铁时自动切断电源的自动控制电路,电源电压3~4.5V,R为200~500Ω电阻,M为6V直流电动机,VT为三极管9013,8050,9012等.开启电源开关S,三极管VT基极有偏置电流,VT处于饱和导通状态,玩具直流电动机M转动.当磁铁靠近H时,触点闭合,将基极偏置电流旁路,VT截止,电动机停止转动,保护了电动机及避免了大电流放电.

4.2.3制作模拟电梯关门控制电路

参考电路,VT为三极管9012,9014,9013等,J为12V电磁继电器,小灯泡为6.3V,接6~11V电源,按图接插电路元件,调试电位器,当R2阻值达到8~10kΩ,R1达到2.2kΩ,电流达到45mA时,用磁铁靠近霍尔开关,电流达到50mA时再微调R2与R1,电流稍高于50mA时,线圈得电,触点动作,电动机转动,绿灯亮;磁铁离开时,电动机停转,绿灯熄灭,同时红灯亮,蜂鸣器发声报警.模拟了电梯门关闭时,电梯才能运行,不关闭时红灯亮,蜂鸣器报警,此电路灵敏度高、可操作性强。

5探究结果

传感器设计论文范文第3篇

【关键词】温度 at89s52 nrf9e5

1 引言

由于在局部的温度通常具有不一致性,因此在检测环境温度时,传统的单一测点测量温度的方法并不能够准确说明实际的温度信息。在同一环境中,对多点进行温度测量,能够有效解决这一问题,使得温度测量更加准确。但是多点温度测量的温度测量点比较分散,如果使用传统的有线布线方式的话,则系统设计复杂,十分麻烦。本论文设计了一种基于无线传输的温度采集系统,采用了nrf9e5无线芯片,主控芯片采用的是at89s52单片机,温度测量的传感器为ds18b20[1]。

本论文首先介绍系统整体设计方案,然后分别简要介绍硬件电路设计以及部分软件程序设计。

2 系统方案

无线数据传输按照传输方式的不同,可以分为:点对点、点对多点以及多点对多点。本论文所设计的系统由主控芯片51单片机、主接收器以及多个测量终端组成。每个测量终端都是通过无线传输模块nrf9e5传递数据,进而形成无线传输的温度采集系统。系统框图如图1所示。

将相应的温度传感器分布在所要测量环境的不同位置,就能够精确评估环境温度。然后再将这些测量得到的温度经过无线通信模块发送到主控芯片上,主控芯片对数据进行处理和显示。

3 硬件电路设计

3.1 无线数据传输模块

nrf9e5具有和8051相互兼容的微控制器,但是时序和指令都与其有些差别。nrf9e5与cpu的数据交换是通过串口来进行的。

nrf9e5和其他模块通信主要是通过自身内部的并行口和内部的spi口。nrf9e5与nrf905等具有一样的功能。收发器在与微控制器进行数据交换的过程中,主要是通过片内的spi和并行口。在要传输通信的数据准备好之后,就能够产生中断,供微控制器使用。

3.2 温度测量电路

温度检测的方法有很多,比如采用热电偶等。但是本论文采用的是ds18b20温度传感器。该温度传感器采用的是one-wire总线,即只采用一根信号线与单片机进行连接。该测温传感器能够测量零下55度到125摄氏度的温度范围,同时分辨率能够达到0.5摄氏度。工作电压范围很宽,一般为3.0至5.5v。

3.3 主控芯片

本论文设计的数据采集器使用的主控芯片是at89s52单片机。msc-51单片机是八位的非常实用的单片机。本论文所使用的at89s52单片机就是基于这款单片机的。msc-51单片机的基本架构被atmel公司购买,继而在其基本内核的基础上加入了许多新的功能,同时扩展了芯片的容量以及加入flash闪存等等。51内核的单片机具有很多优点,因此无论是在工业上还是在一些电子产品上应用都很多。全球也有许多大公司对其进行扩展,加入新的功能。即使是在今天,51单片机仍然在控制系统中占据很大市场。

下面对本论文所使用的单片机作简要介绍。这款单片机具有最大能够支持的64k外部存储扩展,同时还具有8k字节的flash空间。该单片机具有4组i/o口,分别是从p0到p3,同时每组端口具有8个引脚。每个引脚除了能够作为普通的输入和输出端口外,还具有其它功能,也就是我们通常所说的引脚复用。其还具有断电保护、看门口、计时器和定时器。51单片机一般的工作电压是5v。

4 软件设计

4.1 通信协议

本系统为单点对多点的无线通信,主接收器在可靠通信范围内分别与每个数据终端通信。主接收器与每个数据终端都有一个唯一的地址,因此在通信过程中必须明确接收方的地址。系统通信协议定制如表1所示。

4.2 温度测量程序

本论文采用的温度传感器是one-wire总线的器件,与主控芯片进行一根数据线连接,就能够同时实现数据和时钟信号的双向传输。但是这样就要求主控芯片的时序必须具有严格的要求。在出厂之前,每个器件的rom上都光刻上64位的编码,这个编码地址序列是唯一的,我们可以通过这个编码地址序列来进行多

点的组网。但是本论文所设计的温度采集系统,在每一个结点只是用一个温度传感器,因此在程序中并不需要读取其rom编码。

5 总结

在实际的温度测量过程中,测量单点的温度往往并不能够准确反映实际温度信息,需要对同一环境进行多次测量,同时要对多个温度节点进行测量。但是多点温度测量的温度测量点比较分散,如果使用传统的有线布线方式的话,则系统设计复杂,十分麻烦。本论文设计了一种基于无线传输的温度采集系统,采用了nrf9e5无线芯片,主控芯片采用的是at89s52单片机,温度测量的传感器为ds18b20。本论文首先介绍系统整体设计方案,然后分别简要介绍硬件电路设计以及部分软件程序设计。

参考文献

[1]马祖长,孙怡宁,梅涛.无线传感器网络综述[j].北京:通信学报,2004,25(4):15-17.

[2]郑启忠,耿四军,朱宏辉.射频socnrf9e5及无线数据传输系统的实现[j].单片机与嵌入式系统应用,2004(8):51-54.

[3]季一锦,尹明德.一种基于nrf9e5的无线监测局域网系统的设计[j].国外电子元器件,2004,(12):22-25.

[4]盛超华,陈章龙.无线传感器网络及应用[j].微型电脑应用,2005,21(6).10-13.

传感器设计论文范文第4篇

关键词 AT89S52单片机;智能小车;避障循迹系统

中图分类号 G2 文献标识码 A 文章编号 1674-6708(2017)184-0047-02

智能小车本身属于轮式机器人研究的一个分支,其本身在国内外机器人研究领域都存在着较高关注度,而在本文基于单片机的智能小车避障循迹系统设计展开的研究中,笔者选择了AT89S52单片机作为系统微控制器,并应用了4组QTI红外传感器,而这一设计经过实践验证了该智能小车避障循迹系统的可行性与可靠性。

1 系统总体设计

在本文进行的智能小车避障循迹系统设计中,智能小车避障循迹系统主要由控制电路板、电机、传感器模块、底盘部件等结构组成,图1为本文设计智能小车避的车体结构俯视图,结合该图我们就能够更为直观了解本文的总体设计思路。

在智能小车避障循迹系统的总体设计中,笔者将AT89S52单片机作为这一设计的核心,并通过这一核心进行电源模块、时钟电路、复位电路、传感器模块、伺服电机模块的控制,这其中的伺服电机模块主要用于智能小车的基本巡航动作,而传感器模块则主要用于控制小车沿黑色轨迹线行驶,而通过图1我们能够发现智能小车本身选择了三轮结构车体,这就使得智能小车本身的灵活循迹实现能够得到较好支持[ 1 ]。

2 系统硬件设计

在本文研究的智能小车避障循迹系统硬件设计中,这一设计主要包括伺服电机模块、循迹传感器模块、电源模块等3部分内容。

2.1 伺服电机模块

对于智能小车避障循迹系统硬件的伺服电机模块设计来说,这一设计采用了360°伺服舵机,而这一伺服舵机的选择就使得智能小车避障循迹系统能够实现连续的位置或速度控制。对于伺服电机模块中的360°伺服舵机来说,其本身存有红、黑、白3条输入线,这3条输入线分别负责伺服舵机的电源、接地、信号控制。在智能小车避障循迹系统硬件的伺服电机模块中,其本身还存在着1个基准电路和1个比较器,这一构成就使得伺服电机模块能够更好实现智能小车的控制[ 2 ]。

2.2 循迹传感器模块

对于智能小车避障循迹系统硬件的伺服电机模块设计来说,循迹传感器模块也是这一设计的重要组成之一,而这一循迹传感器模块本身包含着传感器的选择、小车循迹策略两部分部分内容。

2.2.1 传感器的选择

对于传感器的选择这一循迹传感器模块的设计来说,这里笔者选择了QTI传感器用于循迹传感器模块的设计,这一传感器本身属于红外传感器范畴,其本身通过对反射光强度的接收,实现不同颜色物体的探测,而通过探测QTI传感器就能够自动输出不同的电平信号,为智能小车避障循迹的实现提供有力支持[ 3 ]。

2.2.2 小车循迹策略

对于小车循迹策略这一循迹传感器模块设计组成来说,这一设计的实质就是QTI传感器安装位置的选择,这里笔者将QTI传感器的SIG信号线与智能小车平台的相应I/O口进行了连接,并保证了这一连接使用了不同颜色的信号线,这就为后续排查错误等工作的展开提供了有力支持。在小车循迹策略设计中,我们实现了两级方向控制传感器信号的智能小车控制,这种控制设计就使得智能小车能够在两级传感器支持下实现轨迹的较好控制与纠正,这就使得智能小车的循迹可靠性得以较好提升[ 4 ]。

3 系统软件设计

除了硬件设计外,软件设计同样也属于智能小车避障循迹系统的重要组成,这一设计主要包括机器人基本动作实现、循迹功能的实现两部分内容。

3.1 机器人基本动作实现

对于智能小车避障循迹系统软件设计的机器人基本动作实现中,我们首先需要考虑智能小车运行时轮子的旋转情况,这里我们以智能小车的前进为例,智能小车前进时从左轮看该轮为逆时针旋转,而从右轮看则恰恰相反,而由此我们就能够得出智能小车运行方向和速度情况,通过改变智能小车车轮的参数控制,就能够实现智能小车的加减速控制。

结合智能小车车轮参数控制、加减速控制的相关认知,笔者在C语言设计中将智能小车的两个车轮速度作为形式参数,并应用left与right进行了定义,这样我们就能够顺利完成机器人基本动作实现这一智能小车避障循迹系统软件设计。

3.2 循迹功能的实现

在智能小车避障循迹系统软件设计的循迹功能实现中,想要实现智能小车避障循迹系统软件设计的循迹功能,我们首先需要得出QTI传感器的循迹策略表,这样才能够通过调用move函数实现基于QTI传感器的智能小车自主循迹,表1为QTI传感器的循迹策略表局部,而结合该表我们能够发现结合这一思路,我们就能够实现智能小车不同循迹功能的扩展,不过介于篇幅原因,本研究不予详细论述[ 5 ]。

4 结论

在本文就基于单片机的智能小车避障循迹系统设计展开的具体研究中,笔者对这一智能小车避障循迹系统的总体设计、硬件设计、软件设计进行了详细论述,而结合这一系列论述完成的设计在实际的测试证明中取得了智能小车运行灵活、可靠、稳定、识别能力较强的结果,但具体测试中笔者也发现QTI传感器的安装高度出现问题会直接影响智能小车的无法巡线或抖动厉害的情况出现,而智能小车全速行驶突然停下很容易导致翻车问题的出现,用于轨迹引导的线颜色较淡时智能小车的避障循迹往往容易出现问题,这几点需要引起大家重视。总之,本文基于纹机的智能小车避障循迹系统设计展开的研究具备着较高的可行性,希望能够为相关研究人员带来一定启发。

参考文献

[1]顾群,蒲双雷.基于单片机的智能小车避障循迹系统设计[J].数字技术与应用,2012(5):23.

[2]陈海洋,李东京.基于单片机的智能循迹避障机器人小车设计[J].科技风,2014(20):99.

[3]钱圉,李娟.基于单片机的循迹避障智能小车系统的设计[J].电子制作,2015(6x).

传感器设计论文范文第5篇

关键词: 六维力传感器; 均值标定矩阵; 静态解耦; 条件数

中图分类号: TN911.7?34; TP212 文献标识码: A 文章编号: 1004?373X(2013)19?0145?03

0 概 述

传感器的结构设计是多维力传感器研究中的关键问题,国内外学者提出并研究了多种多维力传感器的结构,如: 三垂直筋结构、八垂直筋结构、十字梁结构、筒形结构和非径向三梁结构等。Stewart平台具有刚度高、对称性好、结构紧凑以及解耦特性好等优点,特别适合作为六维力传感器力敏元件结构[1?3]。本文研究的传感器是一种带有柔性铰链的Stewart 型六维力传感器, 研究这种传感器的静态解耦算法[4?5],为其实用及产业化奠定重要的实验基础。该种传感器不仅在机器人领域具有广阔的应用前景,而且在风洞测力试验、火箭发动机推力测试及医疗等方面有着广泛的应用。

1 传感器原理和设计及标定系统

1.1 传感器的原理

六维力传感器的测力原理为:通过对Stewart平台6个传感器的检测,再通过标定矩阵解耦合,从而得到六维力的输出。

如图1所示,传感器采用对称布置,主要有5个结构参数:上平台半径[R1,]上平台定位角[θ1,]下平台半径[R2,]下平台定位角[θ2]及平台高度[h。]传感器的性能指标则由该传感器4个相互独立的结构尺寸决定:上下平台半径[R1,R2,]平台高度[h]及上下平台定位角之差[θAB。]

根据螺旋理论,对上平台列出平衡方程:[i=16Fi×Si=F+T] (1)

式中:[Fi]为第[i]个传感器受到的轴向力;[Si]为第[i]个传感器的轴线对固定坐标系的单位矢量;[F,T]为作用在上平台坐标中心的力和力矩。

[si=(Bi-Ai)Bi-Aisoi=(Ai×Bi)Bi-Ai] (4)

由以上公式可以看出,传感器的结构参数[G]只与传感器结构尺寸有关。

1.2 传感器的设计

基于Stewart平台的六维力传感器性能指标由4个结构参数决定([R1,R2,h,θAB]),因此结构优化成为设计传感器的重要内容。文献[6]指出,为得到较理想的传感器特性, 优化传感器参数将得到一个优化三角锥。如图2所示。

2 解耦算法

传统的六维力静态解耦算法是基于静态线性标定试验进行的[7]。假设传感器为线性系统的前提下,通过对六维力传感器六个方向进行标定,进而确定标定矩阵,寻求的各广义力与输出信号间的量化关系为:

[F=GU] (7)

式中:[F]为广义力向量;[U]为输出向量;[G]为标定矩阵。

取6个方向的线性无关的广义力分量组成对角阵,即[F=diag(Fx,Fy,Fz,Mx,My,Mz),]在传感器标定过程中,分别在传感器上单独施加定量大小的力,对获取的输出数据进行均值处理,得到输出向量[R,]由式(7)得到标定矩阵为:

[G=F·R-1] (8)

但是在取广义力向量[F]的时候,由于广义力在标定的过程中取的点数都比较多,并且其力值并不能保证是完全线性的,因此[F]不同会引起[G]的不同,使得标定矩阵存在多种解,因此如何选择[G]成为保证六维力传感器精度的一个重要方面。

2.1 标定矩阵的均值处理

本文根据理论推导和实际验证,提出了一种标定矩阵的均值处理方法,设每个广义力间隔测量的点数为[n,]则根据排列组合原则,广义力分量组成对角阵的个数最多有[n6]种,如式(9)所示:

[F=diag(Fxi,Fyi,Fzi,Mxi,Myi,Mzi)] (9)

式中[i=1,2,…,n。]

广义力的对角阵很多,根据Stewart传感器的结构以及标定装置的实际情况,选择的方式如下:

(1)考虑到标定系统存在摩擦、力传递有小的波动等因素,因此,广义力的取值不能太小,否则,误差在里面起的作用比较大。最小值要大于传感器量程的20%;

(2)广义力中间值要参与标定矩阵的运算,这样算出的标定矩阵具有代表性;

(3)广义力的较大值,一般取满量程的80%~90%,过大的值接近传感器的满量程,由于非线性等因素会存在的误差相对较大。

在已有[F]的基础上,根据式(8)计算对应的[G,]在算出多组[G]的基础上,按照下面的公式计算均值[Gave:]

[Gave=(G1+G2+…+Gi)i] (10)

式中[i]为对应标定矩阵的组数。

2.2 标定矩阵的优劣评价原则

因为平均后的标定矩阵融合了更多的数据信号,因此使得标定矩阵会更加准确,为了进一步证明均值标定矩阵的优势,该文引入了两个评价准则,即实际数据验证和[G]的条件数最小两个标准。

数据验证是把没有参与求解标定矩阵的数据代入式(7)中,比较计算后的值和真实值的区别,误差越小,表明标定矩阵越好。

[G]的条件数最小原则。在传感器性能的评价中有一个重要指标:条件数,条件数越小, 传感器的各向同性越好,并且条件数越小,意味着在有测量值受到扰动的情况下,计算值受影响的程度最小,抗干扰能力最强,数据相对准确。用[cond(G)]表示条件数,表达式如下:

[cond(G)=G·G-1] (11)

3 算法验证

下面根据对传感器实际测量的数据对上面的算法进行验证,验证时,根据前面广义力的选择方法,利用三组数据,来计算出相应的标定矩阵,根据最终的结果来验证算法的优劣。

在解耦分析中,解耦精度是最关心的问题。通过表3的结果可以看出,对标定矩阵进行均值运算后的矩阵其解耦精度最高,传感器的精度可以达到0.5%的水平,而其它解耦方法得到的计算结果在1%的水平。并且通过表4,也可以看出,均值后的标定矩阵其条件数最小,意味着其抗干扰能力相对最好。

4 结 论

本文提出了基于均值标定矩阵的解耦算法,并且给出了相应的评价准则,即解耦精度高和标定矩阵的条件数最小。本文根据实际的测量数据进行了验证,验证结果表明,经过均值后的标定均值,无论在解耦精度还是在条件数方面都是最优的,因此,本文提出的解耦算法是切实有效的,对Stewart型六维力传感器的开发具有指导意义。

参考文献

[1] KANEKO M. Twin?head six?axis force sensor [J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 146?154.

[2] 何小辉,蔡萍.一种小量程六维力传感器的设计与分析[J].传感器与微系统,2012,31(1):20?23.

[3] KIM Gab?Soon, SHIN Hi?Jun, YOON Jung?won. Development of 6?axis force/moment sensor for a humanoid robot′s intelligent foot [J]. Sensors and Actuators A:Physical, 2008, 141(2): 276?281.

[4] 刘芳华,倪受东,张弛.一种新型大刚度高灵敏度的并联六维力传感器设计研究[J].机械设计与制造,2012(1):23?25.

[5] 高峰.Stewart结构六维力传感器设计理论与应用研究[D].秦皇岛:燕山大学,2002.