首页 > 文章中心 > 光纤通信的优越性

光纤通信的优越性

光纤通信的优越性

光纤通信的优越性范文第1篇

【关键词】光纤通信 电力系统 前景

随着社会的不断发展,电力系统规模越来越大,电网中大容量变电所以及超高压输电变电所越来越多,这都使得电网综合自动化监控系统以及电网通信系统得到了快速发展。当前,在电力系统中的通信技术主要有微波通信技术,导引线通信技术以及电力载波通信技术等,在上述电力系统的通信技术中,使用最多的是电力载波通信技术。然而电力系统中电力载波通信技术的抗干扰性及系统容量已经不能满足当前电力系统的发展,同时随着光纤技术的不断提高,更重要的是光纤制作成本在不断降低,这使得电力系统中光纤通信在得到了越来越广泛的应用,正逐渐变成电力系统通信的主干技术。

1 光纤中电力系统电气信号的通信过程

光发射机,中继器,光纤以及光接收机共同组成了光纤通信。光纤通信中电信号通过光发射机转变为光信号,而电信号又通过光接收机转变成电信号。利用电调制器实现了将信息向合适信道传输信号的转化,通常情况下将信息转变为数字信号。而通过光调制器实现将电调制器的信号向合适光纤信道传输光信号的转化,通过中继器实现放大信号的目的。光纤传输以后比较微弱的光信号利用光探测器将其转变为电信号,利用电解调器放大光信号,从而实现了将原信号的输出,如此,完成了光纤在电力系统通信中的信号一次传输。

2 电力系统中光纤通信的特征

相对于传统的电力通信方式, 光纤通信具有以下优点:

(1)光纤通信具有非常大的通信容量。当前一般情况下,一对光纤能够满足几百路甚至几千路通过,一根光缆中可以包括几十根光纤甚至几百根的光纤。

(2)由于光纤通常由硅或者玻璃制成,原料来源非常丰富,因此,无疑节约了金属材料的使用。

(3)在电力系统通信中,光纤通信具有非常好的保密性,不易受外界电磁的干扰,同时不怕雷击,防腐蚀,不怕潮湿,敷设也非常方便。

(4)由于光纤通信没有感应性能,因此,对于电力系统通信中容易受到地电位升高影响,暂态过程影响和其他干扰的金属线路之间,光纤通信技术无疑是最为理想的通信技术。

3 电力系统中光纤通信前景趋势

当前,光纤通信经过不断发展已经步入第五代光纤通信阶段,第五代光纤通信具有容量大,信号传输速率大的优势。随着社会的飞速发展,全球性的信息化程度愈来愈高,这无疑对光纤通信的通信距离,通信容量,通信速率的要求越来越高。因此,电力系统中光纤通信的前景主要包括以下几个方面:

3.1 光纤传送网新技术

当前,和诸如传输40GE/100GE的网络具有紧密关系的高速传输技术主要要看了40Gbit/s与100Gbit/s两种技术,这两种传输技术主要包括了编码的调制技术,非线性抑制技术,色散的补偿技术以及OSNR保证对策。未来为了确保电力系统中长距离光纤通信技术,光纤传输网新技术主要包括了FEC技术(即多种增强前向纠错技术),新型的调制编码技术,动态增益均衡技术,喇曼放大技术,利用具有电均衡效用的接收机以及功率调整技术等等。为了实现大容量光纤通信,频分复用技术,波分复用技术,偏振复用技术,时分复用技术以及码分复用技术在未来电力系统光纤通信中的应用将会越来越广泛。

3.2 光纤通信接入网新技术

基于当前电力系统通信中光纤通信接入技术在实现时存在的差距,光纤的接入技术主要包括了EPON技术(以太无源光网络),GPON技术(基于ITU-TG984标准的新宽带无源光网络)基于星型结构以太网接入技术以及基于树型拓扑的APON/BPON技术。上述光纤通信接入技术主要存在传输距离,分光比,传输速率,业务支持能力,Q0S和维护管理等方面的差距,通常情况下,EPON技术的实现比GPON技术要简单,但是对于多业务的支持能力不如GPON技术。基于星型结构的光纤接入技术是在传统的以太网的基础上实现的电力系统光纤通信的接入技术,这种技术适宜在单用户对宽带的要求大的区域(此种光纤接入情况下只能对单个用户进行连接)或者具有丰富光纤资源的区域,因此,相对来说基于星型结构的光纤接入技术的范围比较窄,并不是主流光纤接入技术的发展方向。

3.3 光纤通信光交换新技术

在光网络中光交换是其典型属性,同时也是光纤通信技术发展的关键性技术。当前,基于实现特征与交换颗粒进行光交换技术的划分,可以分为OPS即光分组交换,OBS即光突发交换,OCS即光路/波长交换。光路/波长交换的交换单位是波长,具有易于实现,交换颗粒大的优势,然而宽带的利用率以及复用特性非常差;光分组交换的交换单位是分组,因此,不易于实现,并且交换的颗粒较小,然而其宽带的利用率以及统计复用特性非常好。基于光路/波长光交换技术与光分组交换技术的光突发交换技术,相对来说较为容易实现,同时,宽带利用率和复用特性能较好,因为光突发分组交换技术从实现,宽带利用率等方面综合考虑,其性能最高,因此,在未来电力系统通信中光纤通信的应用中,光突发分组交换会处于主导位置。

4 结束语

作为新型的通信技术,光纤通信还处于发展阶段,因此,不管是光纤自身还是电力系统的整个光纤通信都会存在某些不足,需要继续深入研究。然而通过近年来光纤通信在电力系统通信中的应用现实,在电力系统中光纤技术的应用前景非常好。随着光纤技术的日益发展,光纤技术一定会电力系统提供更大的支持,从而促进电力系统综合自动化技术的发展。

参考文献

[1] 胡永杰.光纤通信技术特点及未来发展趋势探讨[J].中国新技术新产品.2011(6):38-39.

[2] 王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006(4):59-60.

[3] 郭传铁.光纤传输组网技术在电力通信中的应用[J].电信新技术新产品.2009(9):68-70.

作者简介

卢洁,女,(1985.12-),北京人,汉,本科,助理工程师。主要研究:电力系统通信。

作者单位

光纤通信的优越性范文第2篇

【关键词】光纤通信;光信息传播;通信设备

一、光纤通信的应用背景

20世纪90年代以来,我国光纤应用飞速发展,在有线电视网络、能源探测等方面都大量被用到,随着有线电视网络普及率的提升,光纤的优点使其逐渐取代电信号传播。尤其是光纤在广播电视网络中的应用,呈现出剧增的趋势。光纤通信技术有以下两种:光纤接入技术,波分复用技术。光纤接入技术即光纤到路边或用户的宽带网络接入技术,光纤通信极大的满足了家庭和企业的信息通信的要求,所以它成为了电信通信技术的重要替代,尤其光纤到户(FTTH)可以使用户不受限制的进行信息接受与反馈。我国与2003年开始FTTH的推广,到2014年已经在全国30多个城市建立了FTTH网络,遍布家庭、网吧、企业等需求地,发展成果极为显著。波分复用技术是将不同波长的信号整合在一根光纤中进行传输,到达后再区分为不同波长的信号,最终传输完毕。这一技术大大提升了光纤通信的信息传输量,受到了相关领域的广泛关注。

二、光纤通信技术原理

光纤通信利用了光的全反射原理,即当光注入角度满足一定条件时,光可以进行全反射,从而到达远距离传输。在传输过程中,首先利用电信号对光波进行调制,使其成为带有信息的已调光波,然后将已调光波发送到光纤线路中进行传输,光收信机最终将光信号转化为电信号并进行接收。在传输过程中,中继器可以补偿光纤信号的衰减和对失真波形进行正形,无源器件(包括耦合器、光纤连接器等)完成以上各部分的连接。在传输过程中,在技术功能上,分为信号发射、信号合波、信号传输和放大、信号分离、信号接收五个结构。

三、光纤通信的特点

由于光纤通信是以光为载体,用光导纤维进行信息传输,玻璃材料的特性导致其具有以下优良特性:它的频带极宽,通信容量极大,是微波通信的几十倍,满足了用户需求也降低了运输空间,解决了管道拥挤的问题;石英这一介质的损耗低,中继距离长,大大减少了中继站的数量,从而减小了系统复杂性和运输成本,且信息不易失真;由于其材料为绝缘的石英,所以其抗电磁干扰能力强,且不易被腐蚀,也不受自然界的一些电力和太阳黑子活动干扰,而且还能与电力导体进行复合,并运用于军事领域;在传输过程中,光信号只能在纤维中传输,微弱的泄露信号也被外表吸收,所以它无串音干扰,保密性极好;光纤通信的材料使用玻璃为载体,节省了很多的稀有金属材料。它同样具有一些缺点:由于其材料特性,光纤的弯曲半径不能过小;光纤的操作技术、分离、耦合较为麻烦。但它的这些特点同样随着技术发展将一步步得到改进。

四、光纤通信的发展趋势

在光纤通信技术发展上,超高速传输是其主要研究方向,速度越高,信息传输的成本降越低。未来,信息量将越来越大,大数据的发展也需要光纤通信的高速传输进行大力发展。另一方面,高性能光纤也将得到大力发展。在未来发展中,光纤产品需要满足IP业务的长距离甚至超长距离的信息传输,所以高性能光纤的开发是光纤发展的刚性需求。由于光线通信的优良特性,其逐渐取代了传统的电力通信,已经在有线电视、电力通信网络、电信干线传输等方面占据了极大的份额。从20世纪60年代开始,高锟博士的论文已经预见了光纤将取代传统电通信,到如今,光纤已有了极大进展。在21世纪中光纤将如何发展成为了备受关注的话题。光纤通信与移动设备的式结合具有巨大前景,移动设备通信已融入到每一位居民生活中。光纤通信利用其优点渗透进入其中,市场巨大,且具有理论技术支持,和客户需求;另外,光网络与毫米波如果结合成功,也是革命性的进步;再有,制造高精度的光纤陀螺也具有巨大市场,除了未来航空系统,导弹系统,部分汽车也有陀螺;光纤传感器也在一些技术精度要求较高的领域有潜在需求。21世纪以来,我国光纤通信发展迅猛,但自主知识产权的占比仍然极小,大多产品技术含量低,不具备较强的竞争力。但我国仍是光纤运用方面的世界第二大国,因此我们的自主知识产权也将越来越受到重视,知识作为第一生产力将越来越雄厚。另外,光纤通信的其他功能随着其他领域的进步与发展也将一步步被挖掘,随着更多的需求,光纤通信会展现其更多的技术功能。

五、结语

光纤通信以其优良的特性,已逐渐取代传统电信号通信,未来将渗透到生活、军事、航天等领域的方方面面,我国已在世界前列,但仍然需要加强技术研究。

参考文献

[1]吕璠.光纤通信的发展趋势及应用[J].科技信息,2009,23:431-432.

光纤通信的优越性范文第3篇

【关键词】光纤通信;继电保护;应用分析

在电力系统中可以把电力等级分为许多种,而在我国,220kV及以上的输电线路还是最为主要的电力传输通道。传输容量大、电压等级高是这些通道的主要特点。但是在传输过程中一旦发生事故就会对整个电力系统造成严重的损害,最后影响到整个电力系统的安全和稳定运行,危及人民的生命财产安全。因此,通常的做法是采用继电保护装置来快速切除高压电力线路中发生的各种故障。由于继电保护在整个电力系统中所起的重大作用,所以一般是采用具有传输容量大、可靠性高等光纤通道来作为继电保护装置保护信号的物理传输通道,所以继电保护中光纤通信技术的应用尤为必要。

1继电保护中光纤通信技术应用的优势分析

当前,我国电力的巨大需求使得电力企业必须不断采用新技术来提高电力系统的效率,尤其是对于电力系统中起到重要作用的继电保护而言,新技术的运用能够提高其效率和安全性,在实际的继电保护中,已经广泛的运用了光纤通信技术,这主要是因为把光纤通信技术应用在继电保护中具有信息传输量大、抗干扰性强、传输质量高等方面的主要优点,具体如下。1.1信息传输量大。对于远距离通信传输而言,运用的主要技术就是光纤通信技术,这得益于光纤通信技术传输频带宽、信息传输量大的主要优点。在电力系统中,普遍使用的载波频率一般较低,远远不能满足日益增长的电力需求,而光纤所使用的载波频率至少是普通使用的载波频率的一百倍。因此,在继电保护中广泛使用光纤通信技术一方面能够满足日益增长的电力需求对继电保护的更高要求,另一方面还能对继电保护的可靠性和精确性起到一个很高的提升作用。1.2抗干扰性能强。为了保证高压设备或者是运输线路在光纤线路中不会产生感应磁场干扰,主要是使用绝缘性能好的石英作为光纤所使用的基本材料。在继电保护中应用光纤能够对不必要的干扰进行很好的避免,这是光纤通信技术的一大优点。此外,光纤还具有适应性强、环保性能优良、轻便、尺寸小等诸多优点。电网运行状况的良好与否对光纤纵联保护通道的影响不大。随着电力用户对于电力系统越来越高的稳定性需求以及不断提高的系统电压等级,光纤通信技术因其诸多优点而得到了广泛的应用,并且在使用之后取得了一系列良好的成效。1.3传输质量高。在光纤通信技术中,其不可忽视的优点就是保密性能良好、信号干扰性小、光纤传输质量高,而电力系统对继电保护速动性的基本要求正好是需要光纤通信技术这些特点。原因是如果继电保护系统通过发信端口把相关信息发出以后,相关信息会通过光纤传输通道传输到继电保护系统中的相关接口端,光纤通信传输技术能够保证发行端口与接收端口的信息一致,这样就保障了线路传输的正常、稳定和准确。

2光纤通信技术在继电保护中的应用分析

2.1继电保护与光纤通道之间的通信方式分析。光纤通道与继电保护之间的通信方式主要有专用光纤通信方式和复用光纤通信方式两种,每一种通信方式都有其特点和适用情形,在使用过程中应该根据实际情况来进行方式的选择。具体如下。(1)专用光纤通信方式专用通信方式只传输继电保护信息,而不传输其他信息,这主要是因为专用通信方式是专门为继电保护而进行建立的专用光纤通道。专用通信方式的通信距离一般在100km之内,这主要受到了光及发出和接收距离等各方面因素的影响和制约所致。专用通道方式是光缆的纤芯经过融纤后,由光缆终端箱直接接入到继电保护设备的接口,整个接入过程中没有中间环节和其它设备的介入。因此其主要优点就是传输可靠性高、传输方式简单、便于管理。所以,专用光纤通信方式是当前用于短距离网线继电保护的重要方式,对于重要线路的保护方面作用重大。(2)复用光纤通信方式复用光纤保护主要是由纵联保护中各个光纤进行配合组成。继电保护装置在允许方式之下会发出允许信号与直跳信号,接下来经过音频接口信号就会传输到相关的复用设备之中,然后传输到光纤通道之中。接线简单是这种传输方式的一个较大优点,对于电路系统的维护和运行有着重要的促进作用。但缺点就是因为众多的中间传输环节而给检查和巡视带来了极大的不变。复用光纤通信方式在长距离线路保护中应用的比较广泛。2.2光纤通信技术在继电保护中的应用分析。由于光纤通道拥有诸多优点在电力系统继电保护中的应用极为广泛,在当前应用的220kV以上的系统之中,由于光纤信息传输的容量大和频带宽的特点,传统的高频差动保护已经逐渐被光纤差动保护所取代。此外,目前,所应用的差动保护是以SDH同步数字原理的时分为基础是由于光纤网络传输的性能稳定和适应能力强的特点。但是这种保护方式不能适用于电网高速扩容的情况时及复杂的拓扑结构,为了避免此种缺陷,增强信道的传输容量,一种新的波分复用技术在研究和应用过程中都取得了良好的发展,其主要优势就是信道的利用率高,在长距离传输时能够大幅度降低传输成本,同时对于电力网路的建设成本也能起到极大的节省作用,增强了信息传输的稳定性和可靠性。光纤通信技术运用被广泛的应用在电力系统的继电保护中。

3光纤通信技术在继电保护中的应用过程中的问题分析

光纤通信技术在继电保护中的应用过程中的问题主要体现在施工工艺、光纤保护管理界面的划分等相关方面,具体如下。3.1施工工艺问题。因为高压线路保护的主要方式是光纤保护,所以,通道安全性能会对整个电力系统的稳定及安全性能产生很大的影响。不过,光纤传输需要比较复杂的连接环节,因而在具体的施工过程中,对施工的质量要求也相对较高,并且施工工艺比较复杂。大多数施工过程中,由于保护装置在使用前调试不当存在一定的缺陷,导致保护装置出现错误,继而影响到整个网路的稳定性和安全性。3.2光纤保护管理界面的划分问题。因为通信技术与继电保护之间的联系越来越紧密,继电保护专业和通信专业的管理界面划分已经变得越来越模糊,这就要求从事继电保护施工的人员具有更高的知识水平和更为专业的技术能力。所以,仅仅只从制度方面考虑,会严重影响光纤的稳定性和安全性。通信专业和继电保护专业界面的分界线应当处于通信机房内的光纤配线架上。保护装置及配线架以上的尾纤,需要继电保护专业人员定期进行维修,因此,继电保护专业人员应当具备光纤校验技术及光纤维护技能。3.3其它方面的问题。另外,随着社会的发展和科技的进步,可变路径或自愈环网的光纤通道也越来越多,在光纤通道中继电保护、安全自动装置的应用也出现了很多新的问题,例如光纤通道中的通道倒换虽然提高了光纤通道可靠性,但是也使在单纤中断时导致通道双向路由不一致,致使收、发信息不一致等一系列问题的出现,继而导致发生区内故障时保护装置反应不灵敏,区外故障引起误动等问题。

4结语

在电力系统的继电保护中,光纤通信技术已经得到了广泛的运用。但是在实际的应用过程中仍然存在一定的问题需要解决,因此为了更好的保障电力系统及继电保护的稳定和安全运行,对于电力电力工作者而言,应该认真分析光纤通信技术应用在继电保护中可能存在的问题,并针对这些问题提出和研究相应的解决办法,不断保障光纤通信技术在机继电保护中所起的重要作用。

作者:范磊 单位:河南送变电工程公司

参考文献

光纤通信的优越性范文第4篇

关键词:光纤通信技术;技术特点;发展趋势

中图分类号: TS801 文献标识码: A 文章编号:

前言

随着现代通信技术的飞速发展,通信行业需要一种传输频带宽、抗干扰能力强、安全性能可靠、信息传输容量大的体系和系统作为通信主干,告别传统通信系统频谱狭窄、噪音干扰强烈、稳定和可靠性低、传输质量和容量低的劣势。通信光纤具有容量大、抗干扰强、价格低廉等优点,是通信行业主要应用的组网材料。随着通信行业的发展光纤通信技术在近30年获得了飞速的发展。在邮电、电信、电力和军事等诸多领域都有广泛的应用。通信行业应该高度重视光纤通信技术的研究和应用,并对光纤通信技术的发展进行展望。通信行业要认识到光纤通信技术和光纤在实际通信工作的重要意义,对光纤通信技术有正确的态度,加快光纤在各领域和范围的应用速度,在通信设备和通信技术的层面上加速通信行业的发展。

1光纤通信技术的特点

目前,我国通信领域应用光纤通信技术整呈现方兴未艾的态势,截止2010年,具可靠资料显示,各行业应用光纤达到通信目的的光缆总长度已经超过4000公里,在省会级和大型城市基本实现了10G光纤通信网络的组建。光纤通信之所以在通信行业得到广泛的应用,并成为引导未来通信发展的主要方向,其主要原因有如下几点。

1.1光纤通信容量大

光纤通信依靠光线的全反射原理进行信息传输,光线是一种横波,不同波长直接相互影响小,因此,光纤传输容量极大,是传统的金属通信线路无法达到的。

1.2光纤通信损耗低

由于光纤通信的信号以光波形式传递,因此对能量的需求较少,可以达到忽略不计的程度,光纤通信能耗只相当于金属线路的0.1~1%。

1.3光纤通信衰减小

光纤通信衰减率比同轴电缆衰减率低一个数量级,并且在中等以下距离的传输通信中可以无需建立中继站,不但确保了传输过程中信息的安全,同时也可以起到降低通信工程成本的作用。

1.4光纤物理和化学性能良好

光纤具有体积小、重量轻的优点,方便施工和运输,同时,光纤一般由二氧化硅构成,化学性质非常稳定,在施工和应用过程中对自然界和环境中的侵蚀有比较高的耐受度。

1.5光纤通信防干扰能力强

光纤在实现通信的过程中,不会受到电磁干扰而产生通信质量和通信速度下降的现象,同时,光纤在通信过程中对外辐射很低,安全性和保密性较高。

2光纤通信技术发展的趋势

光纤通信技术自上世纪70年代开始就成为通信行业的研究中的,进入新世纪光纤通信技术得到了发展的机遇,各个领域对光纤通信技术的依赖愈来愈强,光纤通信技术结合其他行业对社会的贡献越来越大。从技术的角度和前进的趋势上看光纤通信技术主要通过高速系统和大容量系统方向发展。

2.1光纤通信技术超高速系统发展的方向

传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,每比特的传输成本也将大约下降35%~45%左右,因此现代通信企业为了能够进一步降低企业的运营成本,保证企业经济效益的最大化,将现有的更多注意力集中于如何能够不断提升光纤通信技术的传输速率。虽然,目前高速系统的出现在一定程度上增加了业务传输容量,并且也为企业开展和提供各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能。发达国家如今正在开展的10Gbps系统,并且以及各开始大批量装备网络,全世界安装的终端和中继器已超过5000个。我国近年来也已经陆续开始相关的现场试验,希望能够借此改变我国落后的被广大宽带用户所诟病的网速慢的问题。

2.2光纤通信技术超大容量WDM系统发展的方向

根据理论测算,从目前对于光纤传输容量的挖掘还远远不够,光纤传输的负载能力仅仅只开发了应有能力的1%强,根据光纤传输的传输频率而言其依然有99%的潜力有待进一步挖掘。因此为了能够有效利用光纤频带宽、容量大的优势,许多科研机构就企业正在努力实现将多个发送波长适当错开的光源信号同时在一极光纤上传送,这样就可以增加光纤的信息传输容量即波分复用(WDM)的基本思路。通过采用波分复用则可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍。目前的一个重点发展方向是利用WDM网络实现通信网络的高速交换和恢复功能,并在此基础上实现有高度生存性的光联网。

结语

综上所述,光纤的诞生对于通信行业来说是一次重要的技术革新,随着通信技术在各行各业的应用越来越广泛,光纤在邮电、电信、电力和军事领域发挥了越来越重要的作用。进入新世纪,通信技术有了比较大的提升,随着通信行业和通信市场的进一步开发和开发,人们对信息的质量、速度和容量有了更新的要求,这需要一种新型的材料作为新时期通信网络的主要材料,光纤就是在这一需求的影响下产生的,光纤技术可以实现长距离高效率地传输高质量通信信息,是通信行业一次新的技术性革命,对于通信行业告别传统系统频谱狭窄、噪音干扰强烈、稳定和可靠性低、传输质量和容量低的劣势有重要的价值和作用。应该发挥通信光纤技术容量大、抗干扰强、价格低廉等优点,加大光纤通信技术在各行业和各领域的广泛应用,提高光纤通信技术研发的质量,在材料、设备和科技的层面上发展通信行业的科技。

参考文献:

[1]何召舜.浅论光纤通信技术的特点和发展趋势[J].中小企业管理与科技(上旬刊).2010(03)

[2]傅志蕙.浅论光纤通信技术的发展趋势[J].科技信息(科学教研).2007(33)

[3]王秀丽.浅谈光纤光缆在电力传输网络中的应用及发展[J].内蒙古石油化工.2008(22)

光纤通信的优越性范文第5篇

国网新疆电力公司奎屯供电公司新疆奎屯833200

摘要:随着社会的发展,电力系统对生产生活的影响越来越大,社会对电力系统的稳定性、安全性、可靠性提出了更高的要求。电力通信系统是电力系统的重要组成部分,其运行性能对于电力系统的安全性和可靠性具有重要影响。传统电力通信系统在网络结构、信息传输量、可靠性、抗冲击性能方面无法满足现代社会的需求,需要借助先进的光纤通信技术进行改善和升级。

关键词 :光纤通信;电力通信系统;可靠性;抗干扰能力

1 概述

电力通信系统是国家电网系统中的重要组成部分,电力通信系统的建立是为智能电网的建设提供必要的技术保障,也是建设安全、稳定现代电网的必经阶段。光纤通信技术是现代科学技术的一种,该技术由于其独特的抗电磁干扰能力、容量大、传输性能高等优点,已经在电信部门取得良好的应用效果,并将在电力通信系统中继续发挥其优势。

2 电力通信系统发展现状

2.1 电力通信系统的网络结构复杂。传统电力通信系统中包括多种通信设备,不同设备之间的连接方式及信息转换方式不同,造成电力通信系统网络结构非常复杂。中继线传输、用户线的延伸、载波设备和微波设备间的转接等均采用不同的通信手段,这就增加了通信系统网络结构的复杂性,为后期的故障检修制造较大的难度。

2.2 电力通信系统传输量小。传统电力通信系统的信息传输量少,失效性差,严重影响了电力通信系统的运行性能。电力通信系统中信息的传输,不仅需要传统的数据信息传输,还需要继电保护信号、话音信号、电力负荷检测信号等,以便提供数字、图像、声音等多种形式的信息传输功能。图像、数字等信息在整个电力通信系统信息传输中所占比例不大,但其时效性较难保障,这就给电力通信技术提出了新的挑战。

2.3 电力通信系统的可靠性及灵活性不足。随着社会的不断发展,电力在生产领域和生活领域中的应用越来越广,人们对电力系统的依赖性也越来越强。电力系统在人们的工作和生活中的应用,已经深刻的改变了人们的需求习惯。为保障人们工作和生活的正常运行,如何提高电力系统的稳定性及灵活性成为当前电力企业面临的主要问题。电力系统在运行过程中出现的间断或突变现象,将对多种生产设备和电气设备产生影响,严重时可能引发重大安全事故,给人们的财产安全和生命安全带来极大的损失。

2.4 电力通信系统抗冲击性能较差。随着科学技术的不断进步,电气设备的功能、结构、连接都有了不同程度的提高,电力系统中各个设备之间的联系性加强,方便对其进行统一管理、控制。在电气设备实现控制自动化的同时,也带来了一定的弊端,若电力系统中某一环节出现故障,则可能对相关的设备产生不利影响,造成部分或者整个电力系统的瘫痪,给社会和企业带来巨大的经济损失。现代社会要求电力系统具有较高的稳定性,这就给电力通信系统的抗冲击性能提出了新的要求,传统电力通信系统抗冲击性能无法满足社会的需求。

3 光纤通信技术在电力通信系统中的应用

光纤通信技术具有强抗干扰能力,传输量大和传输衰耗小的特点,这就决定了该技术在电力通信系统中将具有广泛应用。该技术除普通的光纤外,研发的其他性能的光纤技术也在电力通信系统中得到广泛应用。

3.1 光纤复合地线的应用。光纤复合地线(OPGW)也被称为地线复合光缆或者光纤架空地线,该技术主要功能为保护输电导线,对整个输电线路起到防雷作用,提高系统的抗冲击性能;另一方面复合技术可将架空地线和光缆综合起来,实现多种信息的传输功能。光纤复合地线是在电力传输线路的地线中包含了光纤单元,这就提高了电力通信系统的可靠性和安全性,大大减轻了后续的维护工作。光纤复合地线在带来多种优良性能的同时,也增加了工程的投入成本,极大的限制了该技术的应用范围。一般来说,光纤通信技术多在新建线路或旧线路地线更换工程中使用。光纤复合地线除具备以上优良性能外,还能满足架空地线的机械和电气性能,因此该技术能广泛应用于所有架空地线中,对于我国的电力系统的升级改造具有十分重要的实用价值。

3.2 光纤复合相线。光纤复合相线是将光纤通信技术与传统的相线结构融合而成的一种新型技术,光纤复合相线是在利用原有电力通信系统线路资源的基础上,利用光纤技术协调通信系统中的频率、线路和电磁兼容性,从而起到改善传统电力通信系统的信息传输性能的目的。该技术作为一种新型的通信光缆,最早应用在150kV电力系统中,随着技术的不断成熟,已经广泛应用到更高电压系统中。我国电力系统将光纤复合相线代替三相电力系统中的一相,使其与其他两相组成新的三相电力系统,提高信息传输质量和数量的同时,还避免了另设通信线路的麻烦,节约了成本。光纤复合相线在施工过程时,应利用光纤的接续技术和光电子的分离技术,对相线中的光纤单元进行单独分离,并在施工过程中设立独特的接线盒。

3.3 全介质自承光缆(ADDS)。全介质自承光缆广泛应用于220kV、110kV 和35kV 的电压输电线路中,该技术主要是对原有线路的改进升级,直接利用高压输电线杆搭建自己的通信网络。全介质自承光缆技术具有较好的环境适应性、抗干扰性能、较高的传输性能和光缆机械性能,施工时可与其他高压电力传输线路一起铺设,而不受任何其他外界电磁信号的干扰,大大提高了电力通信系统的高效性和便捷性。全介质自承光缆组成材料主要为非金属材料,如聚乙烯或耐电痕材料组成了光缆的外套,提高了光缆的抗干扰能力。全介质自承光缆在进行工程设计时,要根据工程的实际需求选择合适的外护套,并根据工作环境的变化,如风速、温度、雨雪等自然因素,制定合适的施工工艺,保障电力通信系统的安全性。

4 结束语

随着科学技术的不断提高,各种先进技术在电力系统中的应用越来越普及,极大的促进了我国电力系统的发展,为我国智能电网系统的改建工程提供了技术保障。光纤通信技术在信息传输方面具有稳定性好、抗干扰能力强、传输量大、信息衰损小等优点,因此广泛应用于电力信息传输系统。其中,光纤复合地线、光纤复合相线和全介质自承光缆技术已经在电力通信系统中得到广泛应用,极大的推动了我国电力行业的发展。

参考文献:

[1]刘权.电力通信中光纤通信技术的应用和影响探究[J].科技创新与应用,2014(02):56.

[2]刘冬明.光纤通信技术在电力通信中的应用[J].电子世界,2014(13):174-175.