首页 > 文章中心 > 高分子材料的基本特性

高分子材料的基本特性

前言:想要写出一篇令人眼前一亮的文章吗?我们特意为您整理了5篇高分子材料的基本特性范文,相信会为您的写作带来帮助,发现更多的写作思路和灵感。

高分子材料的基本特性范文第1篇

关键词:高分子材料学 表面工程 教学模式

中图分类号:G642 文献标识码: A 文章编号:1672-1578(2012)04-0055-02

“高分子材料学”是我校材料科学与工程专业(表面工程方向)的一门专业课程。表面工程学生的就业领域主要为材料涂装、防腐等,学生需要熟悉各种工程材料(金属材料、无机非金属材料、高分子材料等)的基本性质、制备工艺以及表面处理方面的知识。“高分子材料学”主要介绍高分子材料的制备、性能、成型、改性及应用等方面的知识。

“高分子材料学”这门课共32学时,所选教材为化学工业出版社出版的《高分子材料基础》。主要内容包括四部分:高分子材料的合成及制备、高分子材料的结构与性能、常见的高分子材料及其成型加工方法、高分子材料的改性及应用。该教材[1]浓缩了高分子材料与工程专业的四门专业主干课共192学时的内容,即高分子化学(48学时)、高分子物理(64学时)、高分子材料成型工艺(48学时)、聚合物改性原理及方法(32学时)。

1 “高分子材料学”讲授过程中面临的问题

“高分子材料学”课程的讲授具有较大难度,主要表现在以下方面:

该课程涵盖了高分子材料与工程专业学生的专业主干课内容,要深入讲解这些内容,需要近200学时,而针对表面工程学生开设的“高分子材料学”仅仅只有32学时,时间紧,内容多,如何合理安排各部分内容占的比重是授课教师面临的首要问题。

“高分子材料学”相关内容的学习,需要学生具备一定的化学基础及力学基础,而对表面工程的学生而言,因专业侧重不同,化学课程及机械基础课开设门类不如高分子材料与工程专业齐全,导致表面工程的学生在学习“高分子材料学”时,对教材内容的理解及掌握有一定难度。这对授课教师备课也提出了更高的要求,如何在有限的学时中适时补充相关背景知识帮助学生理解,是授课教师需要思考的另一问题。

“高分子材料学”虽为表面工程学生的专业课之一,但从历年就业情况看,表面工程学生就业以金属材料加工行业居多,而从事高分子材料加工行业的很少。故必然存在学生对该课程重视程度不够,学习积极性不高的问题,因此授课教师也需要在教学模式上进行探索创新,充分调动学生学习的积极性,引导学生主动参与到教学过程中来。

2 “高分子材料学”课程教学模式探索

2.1梳理重点,侧重剖析基本概念

“高分子材料学”学时有限,内容繁多,因此需要授课教师在备课时梳理出各章节的重要知识点和基本概念, 注意各部分内容的衔接,并找出线索将各章散落的知识点贯穿起来。

比如,在介绍高分子材料合成及制备时,着重讲授加聚反应及缩聚反应的基本步骤,对比这两种聚合反应的特点及反应产物特性,便于学生掌握常见高分子材料的合成反应类型,了解制备方法对材料性能的影响。考虑到表面工程学生的学科基础及专业侧重,对反应速率的计算等知识点不做要求。

再如,课程内容第二部分介绍高分子材料的结构与性能,这部分内容为承上启下的重点章节,高分子材料的结构及性能特点在其合成过程中奠定基础,并将在成型过程及改性中得以体现和完善。这部分内容体现了高分子材料与其他材料的本质区别,涉及的基本知识点很多,而且多为表面工程学生不熟悉的内容。因此,同样需要通过对比,突出高分子与低分子的结构与性能差异,侧重高分子温度——形变关系,结晶过程及晶体结构等重要知识点的讲解。

2.2因材施教,适时补充背景知识

“高分子材料学”中很多知识点的理解离不开有机化学、物理化学等基础课程的支撑,而表面工程方向的学生并未开设相关课程。为此,需要教师在讲授过程中适时补充背景知识。

例如,在讲授高分子合成反应类型对材料性能的影响时,可简要介绍常见化学基团的特点并联想对应的高分子材料的性能特点及成型要点。以聚碳酸酯(PC)为例,这种材料采用缩聚反应制备,分子结构中含有酯基,酯基在一定条件下容易水解,因此可联想到PC材料在成型时的高温条件下应避免水分的存在,防止水解反应发生导致材料性能劣化。

此外,为弥补学生基础知识的不足,讲授时还可结合日常生活中的实例进行对照说明。在讲授高分子结晶时,可联想泡面模型以及珍珠形成等实例;讲授高分子材料降解及添加剂功效时,可结合塑料制品长期暴晒变色发脆、塑料拖鞋逐渐由软变硬等学生熟知的生活常识进行分析。

2.3结合专业,调动学生学习积极性

“高分子材料学”为考查科目,且表面工程的学生就业以金属材料加工行业居多,学生误认为这门课程与自己的专业及将来就业衔接不紧,从而对“高分子材料学”课程重视不够,故学习积极性也不高。为此,授课教师应有意识的引导学生思考,并采用灵活的考核方式调动学生的积极性。

笔者在讲授此门课程时,并未采用课堂考试的形式进行考核,而是给学生布置了“高分子材料与表面工程”为主题的课程论文撰写任务,并让学生制作出相关的PPT将自己的论文进行口头陈述,最后根据其论文撰写情况、PPT制作情况及陈述情况给出该门课程的成绩[2]。课程论文的完成情况直接跟成绩挂钩,能有效调动学生的积极性及对课程的重视;课程论文的撰写需要大量专业文献为基础,学生在撰写论文的过程中能自觉关注及阅读相关专业文献,有利于拓宽其专业视野;制作PPT的过程是对课程论文内容的凝练,有利于学生理清思路掌握重点;口头陈述环节能有效杜绝学生互相抄袭论文,教师也能通过学生的口头陈述情况,观察学生对该门课程基础知识的掌握程度。

学生通过独立搜集资料撰写论文制作PPT并口头陈述等环节的训练,既能让他们发现“高分子材料学”这门课程与所学专业的紧密联系,也锻炼了他们的资料搜集能力及口头表达能力,为将来毕业答辩及就业面试打下基础。

3 结语

高分子材料是非常重要的工程材料,对于表面工程的学生而言,应该熟悉并掌握这类工程材料的特性。“高分子材料学”虽然不是表面工程方向的专业主干课,但涵盖了高分子材料相关的大量专业基础知识,也是面向表面工程学生开设的唯一一门有关高分子材料的课程。授课教师应该积极进行教学模式的探索,激发学生的学习兴趣,让学生在有限的学时中掌握相关基础知识。

参考文献:

[1]张留成,瞿雄伟,丁会利编.高分子材料基础[M].北京:中国轻工业出版社,2004.

高分子材料的基本特性范文第2篇

关键词:高分子 新型技术 化学

中图分类号:O63 文献标识码:A 文章编号:1672-3791(2012)08(a)-0102-01

从19世纪中期开始到现在,经过了这么长时间的不断发展,高分子体系已经从高分子改性逐渐向高分子合成、构筑、光电功能高分子等方向转变。人们的生活也从高分子化学中受益匪浅,小到日常可见的材料、油漆以及涂料等,大到在科研研究方面使用的高分子聚合物、分离膜、酶、树脂等。现在对高分子化学的研究方向已经转向了新功能材料,在目前快速发展的情况下看,高分子化学会和其它学科相互之间相继结合穿插,一定会在纳米材料、智能等一系列研究领域中广泛使用,适应现代化可持续发展的目标,使所有研究项目都向绿色科学方向发展。

1 现如今高分子化学的发展情况

自从20世纪到现在,随着工业技术的快速发展,天然资源已经露出了疲态,科学家们已经开始使用高分子化学进行材料的合成。有数字表明,在之前的40年中,使用材料的速度正在以每10年五倍增长,人类三大合成材料,其中包括塑料、橡胶、纤维,在使用过程中表现出了令人惊讶的增长速度。新型的材料,特别表现在合成材料,在工业、建筑、农业、电子技术方面都被广泛使用,极大的支撑着人类的日常生活,是使国民经济持续发展的必要动力源泉。

2 高分子化学不同领域的使用分析

使用高分子化学的研究都处于高端技术领域,它的发展方向一定会和社会发展的方向和各种行业发展要求相适应。以后的高分子化学一定会其它领域相互融合,高分子材料的使用注定会减少人类对自然资源的依赖程度,逐渐向纳米、绿色和智能等方向转变,在实现可持续发展的目标中占据了非常重要的位置。

2.1 使地球更加绿色化

在现在很多工业发达的城市,天空中都会飘着非常浓郁的黑烟,对人们的日常生活有非常严重的污染。绿色,在现在被认为是没有污染、再生性或者可以循环使用。在没有污染方面,我们需要做的就是减少工业废弃物的排放、相对的减少污染源。现在的情况表明,化学行业中具有污染和治理两个方面的性质,可以对绿色使用材料进行研究,也可以继续对环境造成恶化。例如:在研制的过程中使用的催化剂、溶解剂、中间物品等,在生产过程中产生的废气、废渣、废弃液体等都是对环境造成影响的主要元凶,若长期的进行排放,会对环境造成严重的影响,甚至会导致不可逆转的事情发生。

2.2 减少的自然资源的使用依赖

目前研究的高分子合成材料对石油具有很强的依赖性,众所周知,石油是经过地球非常漫长孕育才出现的,另外,石油也是现如今人类社会非常重要的能源,石油资源现在正在快速的减少,而且不能快速的进行补充,所以人们现在非常急切的找到可以代替石油使用的资源,这已经成为现在高分子化学研究中非常重要的课题。在对物质中原子和分子的比率进行调节,对物质的微观特性、宏观特性以及表面性质进行加强控制,也许这种物质就会满足一些行业的使用要求,当这种情况出现的时候就可以把这种物质作为材料使用。所以,在对材料进行配置的时候就会减少对不可再生资源的依赖程度,并对使用材料和环境进行相互协调,这是现如今化学研究当中非常重要的领域。现在很多高分子合成材料都非常依赖石油资源。想要解决目前的情况,可以对天然高分子进行利用,这其中也应该包含对无机高分子的不断探索和研究。

现在由石油合成的高分子材料,主要因为原子中以碳为主要元素,其中还含有少量的氮、氧等原子,所以被称为有机高分子。无机高分子是因为主链上的组成原子中不含碳。根据元素的性质进行判断,大约有40~50种元素可以成为长链分子。现在引起科学家高度重视的一种无机高分子,它的主链上都是硅原子,并且含有有机侧链的聚硅烷。

2.3 使高分子材料不断纳米化

现在很多高分子化学反应中的原子经过重新排列组合之后的反应空间要比原子的大小大出很多,所以,化学反应的研究要在一个受限空间之中进行。若在有限的空间中,像纳米量级的片层当中,小型分子由于和片层分子相互作用而且还在一个比较受限的空间内进行排列,之后产生单体聚合,聚合之后的产物的拓扑结构不会再受限的空间内进行全部的复制,这种情况和自由空间的结果完全不同。我们也许会在受限制空间内进行聚合反应的分子中提炼出高分子纳米化学的定义。化学的研究对象基本都是纳米量级的分子和原子,但是因为没有精细的方式,没有达到可以在纳米尺度上精确控制分子或者原子的程度,所以现如今很难做到对分子的精准设计,使化学的合成让人感觉非常的粗放。高分子化学在纳米程度上精要精确的按照分子设计,在此基础上确定分子链中的原子配比位置以及相互结合的方式,通过纳米技术对分子、原子和分子链进行非常精确的控制,达到对高分子各级结构的位置确定。这样就可以精确的控制新合成材料的功能和特性。

2.4 面向智能材料的高分子化学研究路线

20世纪的人类社会是以合成材料为标志的,在21世纪人类社会的标志将会是智能材料。高分子化学仍然是进入智能材料时期非常重要的组成部分。材料自身具有的功能可以根据外部条件的变化,有意识的进行调节和修复等一系列措施,这就是智能材料的基本定义。现在科学家已经了解高分子有软物质这一特征,简单说就是可以对外场具有反应。

3 结语

随着社会的不断发展,人类把能源、信息以及材料称为支撑科技革命的重要力量,而且材料也是能源以及信息不断发展的基础所在。从出现合成有机高分子材料开始,人类就在不断的进行研究和探索,希望可以找到使用广泛的新型材料,可以广泛的使用在计算机、生物、海洋等一系列领域当中。高分子材料正在向高性能、多功能方向不断前进,正在不断适应快速发展的今天,出现了很多功能非常强健并且广泛使用的高分子材料。

参考文献

[1]王立艳.《高分子化学》理论与实践教学的整体优化研究[J].广州化工,2012,40(4):108-109.

[2]张宏刚.新型高分子化学注浆材料在碱沟煤矿的应用[J].中国高新技术企业,2011(34):63-64.

高分子材料的基本特性范文第3篇

一、 微胶囊壁材的分类

壁材是构成囊的外壳。不同的壁材在一定程度上决定着产品的物化性质。目前可作为微胶囊壁材材料的物质主要有3类:天然高分子材料、半合成高分子材料和全合成高分子化合物。另外,一些无机材料也可作为微胶囊壁材的材料。

1.天然高分子材料

用作微胶囊的天然高分子材料主要包括碳水化合物、蛋白质类、蜡与脂类物质等。

天然高分子材料无毒或毒性很小、不需大量的有机溶剂、对环境危害小、粘度大、易成膜,但机械强度差,

2.半合成高分子材料

用作微胶囊壳材料的半合成高分子材料主要是纤维素衍生物。如甲基纤维素、乙基纤维素等,另外还有双硬脂酸甘油酯、羟基硬脂醇等油类。

半合成高分子材料的特点是毒性较小、粘度大、成盐后溶解度增大。但由于半合成高分子材料易水解,不适合高温处理,需在使用时临时配制。

3.全合成高分子材料

常用于微胶囊囊壳材料的全合成高分子材料可分为生物降解和不可生物降解2类,主要包括聚氯乙烯、聚乙烯、聚氨酯、聚酯、聚脲等。

全合成高分子材料特点是成膜性好、化学稳定性好、机械强度大、储存运输方便、可生物降解或可生物吸收。但需要大量有机溶剂、成本高,对环境危害大,因此要选择无毒或低毒、对原药溶解性较好的溶剂。

4.无机材料

目前大部分微胶囊用无机材料包覆的不多,但从生物降解和环境保护方面考虑,用无机材料对活性组分进行包覆有很大的发展前景,如碳酸钙或磷酸盐等。

二、 微胶囊制备方法分类

微胶囊化的基本步骤:

1) 芯材为分散相,壁材在分散相或连续相中;

2) 通过乳化等手段,使芯材以一定的粒度分散在连续相中;

3) 通过某一种方法将壁材聚集、沉渍或包覆在已分散的芯材周围;

4) 合成的膜壳是不稳定的部分,需利用化学和物理方法进行处理,以期达到一定的机械强度。

微胶囊的制备可归纳为物理化学法、物理机械法和化学法。

1.物理化学法

在液相中进行,囊芯物与囊材在一定条件下形成新相出来,故又称相分离方法。它的步骤大体可分为囊芯物的分散、囊材的加入、囊材的沉积和囊材的固化四个步骤。相分离方法又分为单凝聚法、油相分离法、改变温度法、液中干燥法、复相乳液法。

2.物理机械法

本法是将固态或液态药物在气相中进行微胶囊化,需要一定的设备条件。物理机械法又分为喷雾干燥法、喷雾凝结法、空气悬浮法、多孔分离法。

3.化学法

化学法是利用在溶液中单体或高分子通过聚合反应或缩合反应,产生囊膜制成微囊的方法。特点是不加絮凝剂,常先制成W/O型乳浊液,再利用化学反应交联固化。化学法又分界面聚合法、原位聚合法、辐射交联法。

三、 微胶囊在化妆品中的应用

微胶囊化可将固体、液体甚至气体包覆在一个微小胶囊中,采用此技术可保持产品性能稳定,解决传统工艺的不足。另外它对保护生物活性分子和组织的活性也有较大促进作用。很多化妆品中已经采用了微胶囊技术,将微胶囊应用于化妆品中,其优越性主要表现如下:

1.保护芯材,有效防止外界环境因素对芯材的破坏等不良影响。pH值、氧气、湿度、热、光和其他物质等,提高其稳定性。有些物料容易挥发和氧化,如胡萝卜素,接触空气中的氧气会被氧化,采用复凝聚法制备胡萝卜素微囊,研究表明胡萝卜素原料于光照条件下半衰期为6.9天,而胡萝卜素微囊在相同条件下半衰期为24.8天,胡萝卜素微囊为原料的3.6倍,将胡萝卜素制成微囊可增加化妆品的稳定性。再如维生素C,性质极不稳定,分子中含有连烯二醇基[-C(OH)=C(OH)-]的结构,具有很强的还原性及内酯环的结构易水解。一方面与空气接触自动氧化生成脱氢抗坏血酸,脱氢抗坏血酸水解生成2,3-二酮C古罗糖酸,并可进一步氧化生成苏阿塘酸和草酸,从而失去治疗作用。另一方面维生素C的水溶液不稳定。pH过高或过低都能使内酪环水解,并可进一步发生脱羧反应而生成糠醛。后者受空气影响经氧化和紧合而呈黄色。空气、光、热和重金属都可以加速本反应的发生。通过将其制成维生素C微囊达到解决其不稳定的问题,同时达到控制维生素C的释放,维持稳定它的浓度,用于化妆品中可减少涂抹次数,降低化妆品不良反应的目的。

2.隔离不相容组分。微胶囊化成分可与其它组分相隔离。当原料中由几种容易相互起作用的成分组成时,把其中某种成分微囊化后使其互相隔离,阻止成分之间发生化学反应,提高各自的稳定性,延长保质期。在配制染发化妆品时,利用微胶囊这一特性,可将染发剂与氧化剂两者之一微胶囊化,即可得到使用方便的一剂染发化妆品。再如化妆品中经常用到的凝露,晶莹剔透的外观,内通常加有彩色微囊,包裹着油类,既达到了产品美观的视觉感受,又满足了滋润皮肤的效果。

3.控制释放,有效地控制芯材的释放,使芯材效能得到最大限度的发挥。该微胶囊壁相当于一个半透膜,在一定条件下可允许芯材物质透过,以延长芯材物质的作用时间。如化妆品中具有清凉爽肤作用的薄荷醇。由于它几乎不溶于水,扩散力强、易挥发而不持久、暴露在空气中易升华的特点,给生产贮运带来诸多不便,货架期短。利用微胶囊技术可以提高它的贮藏稳定性、降低挥发性,从而延长货架期,实现添加产品的控制释。再如以聚乳酸为囊材制备的茶多酚缓释微囊,粒径多在100~200um,最大包封率为49%,该微囊具有缓释和保护茶多酚的双重作用。用于化妆品中既安全又高效。

4.屏蔽味道和气味,掩盖芯材的异味。亚麻油由于具有不雅味道难用于好的化妆品,做成微囊后用于化妆品不仅无味,不易被氧化,而且具有很好的护肤功效。再如特有色泽和气味的中草药液微胶囊化后,配置到化妆品中,可以制得无色无味的优质化妆品。

5.改变芯材的物理和化学性质。将有利于液体或半固体的流质体转化为自由流动的固体粉末,有利于物料的使用、运输、保存,并可简化工艺,防止或延缓了产品劣变的发生。

6.需要改变物质功能的化合物。将疏水性物质通过表面处理,使其具有相反的性质。如神经酰胺微胶囊化后就可以直接加入水剂产品。

高分子材料的基本特性范文第4篇

高分子是一门与日常生活和工农业生产实践联系非常紧密的实用科学,传统的《高分子物理实验》课程教学过程中所使用的实验试剂往往与实际生活脱节,导致学生在学习过程中对该课程产生一定的距离感,实验热情不足[6]。为了提高学生在进行高分子物理实验时的兴趣和积极性,我们在实验教学过程中紧密联系实际,力求使知识与生活相结合。例如,在“电子拉力机法测定高聚物的应力-应变曲线”教学过程中,让学生先行准备生活中典型的纤维、塑料和橡胶等材料若干种,在进入实验室之前,学生对自己准备的实验材料的性能已有一个模糊的认识。在进行具体实验之前首先提出一个启发性的问题:在日常生活中,我们常用脆韧和软硬等词描述材料的性能,这些性能与本实验中的应力-应变曲线有何联系?学生将带着这些问题开始实验,以此激发他们的求知欲和学习兴趣,通过具体实验结果来验证其理论课程中学到的知识,使其对典型的聚合物机械性能指标等基本概念和基本实验方法的掌握更加深入,避免了“操作工”式的实验教学模式[7],有力地促进理论教学成效,也加深了对本专业的了解与热爱。在教学过程中,教师的“教”与学生的“学”是不可分割的,需要教师和学生双方配合。我们在教学过程中鼓励学生大胆质疑,采用讲授、提问和讨论相结合的互动式教学方法[8-9]。例如:在讲解“差示扫描量热法分析聚合物的特征转变温度”时,让学生首先自行分组讨论,一些高分子材料在不同季节具有明显不同的使用性能,其间的原理是什么?在讨论的过程中引导学生将这些实际问题与聚合物玻璃化转变温度等基本概念联系起来。学生的实验兴趣和学习主动性提高后,其最终实验教学效果将得到有效加强。

2改革实验评价体系

传统的实验课程成绩主要以学生上交的实验报告为依据,这种评价方式存在较大的弊端。实验教学相对于理论课程有其独特性,由于实验过程中存在较多的不确定性,同一个实验项目,可能不同的学生会做出不同的实验结果,很难仅仅通过最终结果来判定其优劣。甚至,有少数同学的实验报告存在抄袭现象,若仅以实验报告为依据,其最终成绩可能高于一些认真做实验的同学。这些“唯结果论”造成的不良现象将给学生带来消极的影响,并打击其实验积极性和主动性。实验课程的主要目的应为培养学生解决实验过程中遇到的问题和合理分析实验结果的能力,因此,我们认为实验过程和实验后的思考与总结比实验过程更为重要[10]。基于此,我们建立新的评价机制来考核学生,其最终实验成绩由以下几部分组成:(1)实验前查阅文献资料,预习实验并制定实验计划;(2)实验过程中对仪器设备的的操作熟练程度和原始数据记录情况(此部分作为重点考察内容,突出和强调学生对基本实验技能的掌握情况);(3)分析实验结果,解释实验现象;(4)总结实验,阐述实验心得与体会。这种评价体系更加符合独立学院“培养高级应用型专业人才”的特点,可综合考量学生对理论知识的掌握程度和具体实验的能力,并培养其认真踏实的学风和严谨求实的科学精神。

3完善教学体系

高分子材料的基本特性范文第5篇

关键词:文物保护材料

中图分类号:G263文献标识码: A

引言

历史文物是我们祖先劳动、智慧和革命精神的结晶,具有重要的历史、艺术和科学价值,是国家文化的内涵底蕴。文物保护是一门多学科、多领域相互交叉的边缘学科 ,涉及的范围广泛。材料科学作为基础应用学科在文物保护研究与处理过程中占有很重要的地位。

当我们对文物实施保护处理时首先考虑到的是它的材质和保存现状,以及物理载荷和化学环境等。从某种意义上讲,文物保护工作就是通过对文物材料及文物于涉材料的研究,以达到延长文物保存时间的目的[1]。

上个世纪后半叶,生物工程、新材料等领域不断革新,这些影响渗透到包括文物保护领域在内的各行各业各个领域,文物保护技术在新世纪必将发生重大变革。目前国内外常用的封护剂有甲基丙烯酸树脂、聚氨脂、聚醋酸乙烯脂等。这些材料的耐老化时间一般只有几年时间,可逆性不好,存在一定的局限性,在新的世纪里对封护材料的保护性能提出更高的要求。氟碳有机氟材料由于具有超耐候性、耐化学性、氧透过性低、阻燃性等卓越性能被广泛地应用到文物保护工作中,如:古建、石刻封护剂,金属文物的防锈涂料,有机文物加固剂。随着纳米材料在许多领域的应用,成为材料科学研究的热点,其也必将从文物保护新材料中脱颖而出应用于古建、石刻、金属文物、有机文物、博物馆环境的保护工作[2],目前在文物保护中应用比较广泛的材料做如下分析。

1. 高分子材料在文物保护中的应用

有机高分子材料是文物保护中使用的一类重要的材料,在文物保护中被用做文物的加固材料、粘接材料、表面封护材料等。在文物保护中使用的高分子材料包括:天然有机高分子材料(多糖、 蛋白质、 蜡等);水溶性合成树脂;溶剂型合成树脂;反应型高分子材料;高分子树脂乳液等[3]。其在保护及修复石质文物、壁画、古建筑、博物馆藏品等方面发挥重要作用[4]。以下为常用的高分子文物保护材料:环氧树脂粘结力特别强,可以粘合各种金属和非金属材料。例如,应用环氧树脂胶粘剂可以修补、粘接断裂的石雕艺术品,残破的陶器和瓷器,以及用来加固和粘接古建筑木构件等。聚乙烯醇缩丁醛乙醇溶液被用来保护古代壁画的画面和用于金属文物的表面保护,以及加固脆弱的古代纺织品等方面,效果均不错。聚乙烯醇溶液和聚醋酸乙烯醋乳液也经常被用来封护古代壁画的画面层或加固、粘贴壁画的地仗层。聚醋酸乙烯醋乳液还常常被用来渗透加固古代脆弱的陶器、瓷器、骨器、角器、石器、象牙制品等。丙始酸酣乳液用于古代壁画颜色的保护和金属文物的渗透加固,效果比较好。另外,丙烯酸醋乳液还可用来加固古文化遗址或古墓葬的地基。不饱和聚醋树脂配合无碱玻璃布作成玻璃钢代替糟朽木材应用在古建筑糟朽木构件的加固方面。聚乙二醇试用于古代饱水的木器和漆器的脱水定形处理。有机硅树脂可用于防止岩石的表面风化作用,以及用有机硅树脂来处理饱水的木器和漆器[5]。改性有机硅S- i 97材料具备良好防水、防酸碱盐、 防风化、防污染、抗冻融以及耐候性、加固性和透气性,使已风化的砖质文物得到了有效的保护[6]。

2. 纳米材料在文物保护中的应用

纳米材料具有表面效应、小尺寸效应和量子尺寸效应等基本特性。纳米材料在文物保护中具有的超双亲界面、抗紫外线和耐老化、透明和防遮盖及耐腐蚀抗氧化等其他材料所无法比拟的特性。针对目前文物保护中存在的问题,纳米材料可应用于石质文物保护中,纳米技术应用在石质文物裂隙注浆中[7-8]。MDI型聚氨酯广泛应用于秦俑彩绘陶器保护中,以物理共混方式采用超声波分散将纳米材料添加到MDI型聚氨酯中,可提高耐光老化性[9]。纳米材料在金属文物[10]、陶器、纺织品等[11]有机质文物等的保护中都有应用。虽然纳米材料应用于文物保护具有广阔的前景但是目前纳米材料在文物保护中的应用仍处于研究阶段还有许多问题亟待解决,如纳米粒子极易相互吸附而发生团聚降低了纳米材料的优异性能,降低纳米复合材料的耐紫外稳定性。随着制备方法的改进、理论的不断完善及对其机理的不断深入研究,纳米技术将在文物保护中得到更广泛的应用[11]。

3. 无机胶凝材料在文物保护中的应用

在人类早期的建筑活动中,粘土、石灰、石膏、火山灰是最早被使用的胶凝材料。因此许多土砖石结构的古遗址、古建筑中都使用过这类早期的胶凝材料。现在,这类材料已成为最重要的文物保护用材料。针对文物不同程度的损伤,如开裂、剥落甚至坍塌等状况要进行加固处理。常用的无机加固材料有生石灰、氢氧化钙、硅酸盐、氢氧化钡等。古建筑、石质文物或者陶质文物表面腐蚀或剥落以致残缺,使其表面的文化特征(如雕刻纹饰或文字等)逐渐消失。解决这类问题,要选用合适的修补材料,采用适当的修补技术(如粘结、压力灌浆、补缺)来修复文物。对于古城墙的修补,我国使用的技术主要有粉刷涂料勾缝、替砖修复、砖粉修复、外贴仿制面砖、压力灌浆等。用于文物修补的无机材料有石灰、水泥、石膏、粘土、石灰石粉等[12]。

4. 仿生无机材料在文物保护中的应用

仿生合成技术是模拟生物矿化过程,以有机物的组装体为模板控制无机物的结晶形成,制备出具有特殊结构和功能的新型材料。生物矿化最主要的特征就是从分子水平控制无机矿物相的结晶析出,从而使生成物具有优良的物理和化学性质。仿生无机材料具有耐候性优越、与基底石材相容性好、合成条件(常温常压)温和及对环境无污染等优点,为石质文物的保护工作开辟了一条新的途径。利用仿生技术模拟生长此类保护膜用于文物保护无疑具有诱人的前景[12]。仿生仿生无机材料具有优越的耐候性、与基底石材相容性好、合成条件(常温常压)的温和性以及对环境无污染等优点,是一种很有潜力的新型石质文物保护材料。人们已经在石质文物表面发现了一类能够长期保护表面石刻文字的生物矿化膜,其中已经得到确切证明的有以草酸钙为主要成分的无机膜,也可能还有以磷酸钙为主要成分的其他生物无机膜。利用仿生技术可以在文物表面形成一层很薄的无机保护物质,该保护层具有许多令人十分赞赏的优点,如:具有致密有序的结构,半透明的外观,耐候性极佳,耐磨性好,与基底结合牢固,甚至具有可适当调控的性能和结构。另外,其合成方法与环境的友好性,以及能在生理环境下实现施工的优越性,都显现出仿生技术在文物保护领域应用的潜力[13-15]。

5 涂料在文物保护中的应用

化工涂料行业的产品随着各行业的需求,发展非常迅速,并早已广泛应用于文物部门的古建筑维修保护。由于文物保护科技需求,文物保护处理使用的涂护材料,不能改变及损害文物原来的面貌,保护材料必须无色透明,常温常压下施工,干燥膜尽量簿,有较强的附着力和较好的长期耐侯、耐老化性能与外界环境隔绝尽可能长时间不受外界自然环境的侵蚀阻止其老化腐蚀及磨损等。田金英对用于室外金属文物表面保护涂料进行了研究,在三大类涂料:有机硅(硅酸盐)类、丙烯酸和聚氨醋中都选择出具有代表性的样品,再经实验室试验。结果表明,丙烯酸清漆均不带颜色它能涂护室外的各种金属饰件,对金属文物能起到保护 和装饰作用,防止大气腐蚀,文物本身的面貌改变不明显。王芳等对文物保护中几种有机聚合物涂料的光降解进行了研究。丙烯酸类涂料的耐老化性能优异,不易老化降解,即使降解生成的产物也是不引起颜色变化的物质,同时不易改变文物的外观,具有特殊的功能。这有益于指导人们选取适宜的文物保护材料。生漆、溶剂型树脂涂料、水基树脂涂料、耐候性氟涂料等涂料在物保护中都发挥重要作用。

结论

科技进步日新月异,随着材料科学和新技术的发展,会有更先进材料用于文物保护中。文物是传承历史的重要符号,是不可再生的文化资源,对于文物保护工作,要针对文物本身的特点,结合文物所处环境,选择最合适的文物保护和修复材料及技术。对于文物保护中使用的材料,其实就是使用材料的某种或几种性能 ,同时还要考虑材料的综合性能以及与文物基体材料的相容性。文物保护用材料要在满足使用性能的基础上兼顾工艺资源、经济等方面的因素,综合指导在文物保护过程中的材料选择、组合及应用。

参考文献

[1] 陈坤龙, 铁付德. 材料科学在文物保护中的应用[J]. 中原文物, 2002, (1): 86-88.

[2] 徐飞. 文物保护技术新世纪展望[J]. 东南文化, 2002 (7): 93-96.

[3] 周双林. 文物保护用有机高分子材料及要求[J]. 四川文物, 2003, (3): 94-96.

[4] 周宗华. 用于文物保护的高分子材料[J]. 高分子通报, 1991, (1): 41-45

[5] 徐毓明. 高分子材料在古文物保护中的应用[J]. 化学世界, 1984, (6): 228-229.

[6] 胡一红, 刘树林. 高分子材料 Si-97 在砖质文物保护方面的应用研究[J]. 文物保护与考古科学, 2009, 21(3): 33-40.

[7] 陈兰云, 翟秀静, 王杰. 纳米材料在石质文物保护中的应用研究[J]. 沈阳建筑工程学院学报 (自然科学版), 2002, 12(3): 204-206.

[8] 杜嘉鸿, 翟秀静, 陈兰云. 纳米技术在文物保护中的应用探索[J]. 探矿工程 (岩土钻掘工程), 2002, 2(2): 5-7.

[9] 何秋菊, 王丽琴, 吕良波等. 纳米材料改性彩绘陶器文物保护材料 MDI 型聚氨酯的研究[J]. 精细化工, 2008, 25(1):11-14.

[10] 姚如富, 崔曼, 熊付超. 纳米材料在金属文物保护中的应用[J]. 安徽教育学院学报, 2007, 25(3): 88-89.

[11] 李迎, 王丽琴. 纳米材料在文物保护中应用的研究进展[J]. 材料导报: 纳米与新材料专辑, 2011, 25(2): 34-37.

[12] 张雅文, 王秀峰, 伍媛婷等. 文物保护用无机胶凝材料的研究进展[J]. 材料导报, 2012, 26(3): 51-56.

[13] 洪坤, 詹予忠, 刘家永. 仿生无机材料在石质文物保护中的应用[J]. 材料科学与工程学报, 2006, 24(6): 948-950.