首页 > 文章中心 > 纳米技术优缺点

纳米技术优缺点

纳米技术优缺点

纳米技术优缺点范文第1篇

1引言

纳米科技是指在纳米尺度(1到100纳米之间)上研究物质(包括原子、分子的操纵)的特性和相互作用(主要是量子特性),以及利用这些特性的多学科交叉的科学和技术。纳米科技成果拥有科技成果的特征和纳米科技的特点。

2科技成果简介

2.1成果定义和特征

科技成果是指对某一科学技术研究为内容,通过试验研究、调查考察取得的具有一定实用价值或学术意义的结果,包括研究课题结束已取得的最后结果,研究课题虽未全部结束但已取得的可以独立应用或具有一定学术意义的阶段性成果。科技成果具有新颖性与先进性、实用性与重复性,有独立、完整的内容和存在形式,应通过一定形式予以确认等特征。

2.2科技成果转化描述

科技成果转化是指为了提高生产力水平,对科学研究与技术开发产生的具有实用价值的科技成果进行的后续试验、开发、应用、推广,直至形成新产品、新工艺、新材料,发展新产业的相关活动。从宏观上来看,科技成果转化是一个由科技供给系统、科技转化系统、科技需求系统和科技环境系统构成的大系统。在微观方面,科技成果转化一般包括实验室研究、中间试验、工业性实验、工厂化生产等诸多环节。

2.3科技成果转化三个发展阶段

科技成果产生阶段:该阶段主要从确定研究开发项目开始,到初步成果(产品)形成才基本完成。科技成果转移阶段:该阶段主要包括成果(产品)进入中试试验和工业化试验等。科技成果应用阶段;该阶段主要包括成果(产品)进入规模化生产,并进入市场等。

2.4科技成果转化基本要求

科技成果转化作为一项复杂的社会系统工程,需具备多方面条件,满足多方面要求,如科技成果自身的成熟程度、转化环境,以及相应的政策、社会服务与支持等都是重要的转化条件,是顺利转化的基本要求。以下分别作说明。

2.4.1技术成熟度

技术成熟度,即科技成果适应社会生产发展需要的实际水平,是科技成果转化的最根本的条件。技术成熟度特征:完全成熟的科技成果,应当是可以立即生产的;不够成熟的成果则还需再投入进行二次开发,才可能投入生产,所需要投入量越大,表示成果就越不成熟。技术不成熟原因:技术认识不同,科技投入不足,使科研条件和科研深度都较为缺乏;中试环节薄弱,中试的欠缺使得成果的先进性、适应性、配套性、可靠性达不到要求,难以实现工业化生产的需要。例如:长期以来,由于经费短缺,我国中试基地建立的数目较少。以上海为例,2005年从基础研究到中试再到产业化,投资比例为1:1.03:10.55,而较为合理的比例是1:10:100。中试的欠缺使我国科技成果的转化率低,已经成为制约我国经济持续发展的一个“瓶颈”。结论:科技成果要实现成果转化,首先要求科技成果技术成熟。因而需加大投资力度,加强中试试验研究力度,形成成熟的、可靠的科技成果,促进成果的推广。

2.4.2转化环境

转化环境主要包括转化的市场需求、政策和意识。第一,树立以市场为导向的意识。要从科研源头起与市场需求相结合,以形成产业化为根本目标,针对现有和潜在市场,开发具有市场前景的科技成果,促进科技成果的转化;要避免科学研究与市场脱节,造成成熟的技术也无法进行推广,致使大量的科技成果无法产业化。例如:美国仪器制造业对高科技成果的一项调查显示:11项首次发明的新仪器,思路100%来自用户;66项重大改进,85%来源自用户;85项小改小革,67%来自用户。结论:以市场为导向的研究,更容易促进科技成果的转化,科研人员必须始终坚持以市场需求为出发点和归宿。第二,科技发展政策。科学技术与政策的关系日益密切。科学技术的发展越来越依赖国家的支持,国家的科技投入和政策引导成为影响科技发展的重要因素。需着眼于促进经济建设、依靠科技进步机制的形成和企业技术创新主体地位的建立来制定配套政策,加强政府以科技需求为导向的行为,强化政策的激励引导作用。政策的制定要从科技成果转化大系统和全过程出发,在促进科技成果供给的政策、促进科技成果转化过程整体化的政策等方面,形成体系上的一体化,避免“头疼医头”、“捉襟见肘”,形成不合力。例如:美国是获诺贝尔自然科学奖最多的国家,一方面,美国较高的物质生活待遇吸引了高级人才;另一方面是美国适宜的科技政策和社会文化氛围,推动了科技的发展。在这个意义上说,比尔•盖茨出现在美国决不是偶然的。结论:要有激励的政策,更容易促进科技成果的转化。第三,科研成果转化意识。成果转化意识是一切成果转化活动赖以发起的内驱力,是贯穿于成果转化过程的内在动力;低科技成果转化率的一个重要原因在于科技成果转化意识的缺乏,如科技成果的价值意识、商品意识、社会科技开发意识不强。科技成果拥有者必须有强烈的转化意识,才能从主观上发挥其积极性,促进科技成果转化的进程。例如:不少科研单位和科研人员把科研成果的获得作为科研工作的最终目标,不能主动把科研成果作为商品推向社会;同时企业对购买科技成果表现冷淡,因而造成了大量的科技成果的搁置,导致科技成果转化率低。结论:科研人员具有强烈的成果转化意识,更容易促进科技成果的转化。

2.4.3宣传策略

科技成果的推广必须注重市场宣传和推广,一方面加大宣传力度,另一方面注重宣传适度。主要宣传策略如下:1.强化组织领导,健全科技宣传网络;2.明确目标责任,强化考核督查力度;3.整合科技资源,拓宽科技宣传渠道;4.加强媒体合作,搞好科技宣传;5.开展科技培训,促进成果推广;6.开展科技活动,丰富宣传形式;7.加强技术交流,建立信息平台;8.注重方式方法,宣传适度确保质量。

2.5科技成果应用现状分析

农业、工业、医药、军事、材料、电子、生物、航天等领域的科研成果,大量的成果怎么处理呢?这些都需要进行成果转化,这些新产品、新材料、新工艺,只有进行科技成果的转化才能有真正的作用,同时科技成果也有市场需求。突出表现出两个特点:一方面大量科研成果生成,一方面有巨大的市场需求。

2.5.1科技成果转化率低

我国每年有2万余项比较重大的科学技术研究成果和5千多项专利,但是其中最终转化为工业产品的成果不足5%,而欧美发达国家转化率则为45%以上。我国科学技术向生产转化的比例为10%~15%,也远低于发达国家的60%~80%。高新技术企业的产值在社会总产值的比例仅为2%,与欧美发达国家的25~30%相比,更是不可同日而语。结论:目前我国科技成果转化率低。2.5.2科技成果转化率低的原因我国科技成果转化率低的原因主要有:科技成果本身存在先天不足,成熟度低;科技成果系统配套不够;科技成果对企业缺乏吸纳和转化的动力与活力;科技成果转化缺乏资金支持,相应的风险投资基金匮乏;科技成果中介机构不健全,社会服务职能不完善;体制上产学研系统各自独立,科技与生产脱节;市场体制不成熟,法律保障不足。

3纳米科技成果及产业

3.1纳米科技成果及产业的特点

纳米技术属于高科技领域,因此与高科技成果有着共同的特征:高风险,高投入;高额的利润前景;巨大的市场需求。纳米科技为多学科交叉领域,其应用及产业化又具有许多独特的特征:多学科交叉特性;潜在的高额利润;潜在的市场需求。

3.2纳米科技成果市场分析

纳米技术有巨大的潜在市场,它与信息技术、生物技术共同成为二十一世纪社会发展的三大支柱,也是当今世界大国争夺的战略制高点。据权威的研究报告显示,2000年纳米技术对全世界GDP的贡献为4000亿美元,预测2010年纳米技术对美国GDP的贡献将达到10000亿美元,日本纳米技术的国内市场规划也将达到273000亿日元。纳米科技的健康发展,对二十一世纪的社会和经济发展、国家安全以及人们的生活和生产方式带来巨大的影响。结论:纳米技术及产业已成为世界各国抢占的巨大市场。

3.3纳米科技成果转化现状

在纳米科技产业化方面,除了纳米粉体材料在少数几个国家初步实现规模化生产外,纳米生物材料、纳米电子器件材料、纳米医疗材料等产品仍处于开发研制阶段,要形成一定市场规模还需一段时间。目前成果以基础研究为主,纳米技术应用成果处于初期阶段,产业化效果不理想,成果转化率低。如果将纳米产品的成熟程度按中试、批量生产和规模化生产划分,其分布明显呈剧烈递减态势。研究开发和规模化生产的距离较大,大约只有5%的实验室成果最终能转化为规模化生产。

3.4纳米科技成果转化率低原因

3.4.1投入的科研经费不足

成果转化未知因素多,造成研究工作周期长、所需经费多;对科研的投入未考虑中试等应用技术研究,影响科技成果的转化。

3.4.2缺乏风险意识和市场服务意识

纳米技术产业与其它高新技术一样都存在投资风险、政策性风险,市场风险和自由竞争风险等。同时,纳米技术还存在着潜在风险。另外,科研工作者市场服务意识淡薄,缺乏主动为企业服务的意识。

3.4.3科研缺乏布局和规划

缺乏制定战略发展规划以及科研与产业的合理布局,造成低水平重复和资源浪费;重视基础性研究,轻视应用性研究,造成科研成果缺乏市场,成果难以被企业吸纳和转化。

3.4.4纳米科技成果成熟度低

在研究中,研究人员常常只注重论文,纳米科技成果论文水平很高,但产业化并不理想;注重实验室开发,没有潜心于后续的应用开发和技术支持,造成成果成熟度不够,先天不足,难以转化;大部分企业属于生产型,缺乏持续创新和应用开发能力,只能接受非常成熟的技术。

3.4.5缺乏信息沟通缺乏信息沟通,导致产学研系统各自独立,科技与生产脱节。从事纳米科技研究的人员,分属不同的行业和部门,条块分割,由于缺乏相互交流,更缺乏与一线企业的交流与合作;由于信息不畅,造成成果难以满足需求,以及成果和需求重复现象严重;企业间应用成果壁垒森严,难以推广,导致不少低水平重复,重点不突出,阻碍了整体优势的发挥。

3.4.6纳米专业人才匮乏

纳米科技由多学科交叉,因此需要具有多学科知识的复合型人才;纳米科技的迅速发展,需要大量纳米科技领域及其相关领域的人才。而中国传统分门别类教育体制培养的“专业人才”,不能适应拥有多学科知识复合型纳米研发人才的需要。因此,为推动我国纳米材料产业的发展,需要培养一批复合型纳米科研人员及纳米经营管理人才。

3.4.7知识产权意识淡薄

中国纳米技术近几年有了突破性的发展,但知识产权意识在科学界尤其是开发应用领域仍然淡薄。专利数量有所增加,但是在总量上申请的专利还是很少。在我国,申请的专利大部分是纳米粉体材料制备方面的专利,而国外的专利很多是纳米应用专利。

3.4.8行业标准和技术规范缺乏

目前纳米科技应用研究很热,市场上出现了很多“纳米商品”,然而,很多的“纳米商品”还不是真正意义上的“纳米产品”。市场上缺乏行业标准和技术规范的约束,一些人热衷于炒作纳米概念,造成初级产品过剩,浪费了社会整体资源;一些生产微米材料的企业,在其产品性能用途完全没变的情况下,贴上纳米标签,摇身一变成了纳米材料企业,误导纳米概念;一些企业在投入少量资金注册了纳米材料公司或纳米材料应用公司后,就开始在经营业绩上做文章,蓄意编造是专门从事纳米科研、生产和应用的实力企业的假象,最终达到圈资、骗政策的目的。

4纳米科技推广应用思路

针对纳米科技成果转化率低及成果推广过程中所存在的问题,促进纳米科技的推广应用,应切实做好以下工作。

4.1根据市场需求,选好研究目标

针对我国纳米科技产业化处于初级阶段,纳米科技发展资金投入不足,纳米科技产业化效果不理想等现状,在有限的资金和设施条件下,纳米科技的发展一定要从科研源头上加以调控,科研项目选题要以市场需求为导向,以形成产业化为根本目标,强调创新意识和市场服务意识,发展具有竞争力的新技术和新产品,并推进传统产业的发展,从而促进纳米科技成果更快地得到推广和应用。

4.1.1科研项目选题时应遵循的原则

创新性原则:强调科技源头创新意识;产业化原则:以产业化为根本目标,能独立形成新产品、新技术;竞争力原则:注重可提升产品竞争力的技术及材料,注重与传统产业结合;市场化原则:以市场需求为导向,加强服务意识,注重市场推广。

4.1.1.1强调科技源头创新意识

自主创新已经成为科学技术发展的战略基点和调整产业结构、转变增长方式的中心环节。十一五发展规划指出:“科学技术发展,要坚持自主创新、重点跨越、支撑发展、引领未来”。纳米科技属于高新技术领域,因而,必须强调创新意识,研究和开发具有源头创新性的新技术和新产品,形成自主知识产权的新技术和新产品,实现技术发展的跨越,实现企业资本、社会资本和知识资本的有效组合及转化增值。强调创新意识,发展纳米科技,必须以市场为导向,以产业化为根本目标,发展成熟的技术,努力提升其竞争力,吸引企业及其它投资公司的参与和投资。加强纳米科技源头创新,要以纳米电子学、纳米尺度的加工及组装技术、纳米生物和医学、纳米材料学等科学前沿的理论和方法学为重点,争取取得重大进展,获得具有自己特色的发现和发明创造,促进纳米科技的产业化。

4.1.1.2以产业化为根本目标,能独立形

成新产品、新技术选题时要以产业化为根本目标,研究方向要与产业相结合,要策划出一个行业的主体并且形成一个产业链条。开发市场前景广阔、能够独立成新产品的先进技术,吸引以纳米技术为关键生产技术的企业投资,推动纳米技术的产业化进程。围绕国家长远发展目标,将纳米技术与信息、环境、能源、生物医药及先进制造、海洋、空间等高新技术相结合,提高纳米技术在这些产业中的含量,建立以纳米技术为主旋律的一批纳米产业及产业链并形成产品、商品,为提高我国的绿色GDP做贡献。举例1:信息产业中的纳米技术以纳米阵列体系为基础的量子磁盘,1998年正式问世,存储量高达465Gb/in2,相当于现在磁盘10万个的存储量。1999年,美国惠普公司在实验室成功制造了100×100nm芯片。正像克林顿所说,利用现代的纳米技术制备的超高密度存储元器件,可以将美国国会所有的信息存储在只有方糖大小的体积内。2000年,IBM公司通过纳米技术把这种磁盘的存储量提高到1000Gb/in2,相当于100万个现在磁盘的存储量。利用纳米技术可以将动态随机存储器和电脑CPU缩小到70nm,晶体管的尺寸为100~200nm。结论:纳米技术在电子信息产业中的应用,将成为21世纪经济增长的一个主要发动机,其作用可使微电子学在20世纪后半叶对世界的影响相形见绌。举例2:生物医药产业中的纳米技术采用纳米超顺磁载体制作的示踪剂使核磁共振检出的癌细胞尺寸大大降低,便于早期诊断、早期治疗;利用纳米技术输送生物大分子药物,可克服其吸收差、稳定性低的缺点,实现其天然、高效等特点,显示出良好的应用前景;根据药物分子的性质设计纳米颗粒表面及内部结构,从而达到人为地设计药物的靶向目标及其释放和作用方式,明显提高药效;利用纳米技术制备支架、骨骼等植入材料,具有很好的生物相容性,并可发挥治疗效果。结论:纳米材料技术将在生物医学、药学、人类健康等领域有重大的应用。预计到2015年,纳米技术在生物医药领域中的应用,全球市场将达到2000亿元。

4.1.1.3注重发展提升产品竞争力的新技术和新材料

传统行业的发展需要纳米科技来提升其技术和产品的竞争力。传统产业是国民经济的重要组成部分,这就决定了发展纳米产业应切入传统产业,努力提升对传统产业和产品的更新换代,提高竞争力,同时调整传统产业结构,实现经济增值。纳米科技的发展需重视与传统产业相结合。纳米技术在传统产业的应用具有投入少、见效快、市场前景广阔等特点,因此,将纳米科技与传统产业结合,可以有力促进纳米科技的推广应用。加强与传统产业合作,必须以市场需求为导向,发展具有市场潜力的产品和技术,通过纳米技术显著提高传统产品的竞争力。加强与传统产业合作,从一开始,就要积极吸纳企业的参与投入,发展能显著提高传统产业和产品的新技术和新材料。举例1:纺织行业中的纳米技术纳米催化剂在化纤原料涤纶聚酯合成中的应用,将使生产效率提高5倍以上,大大降低了生产周期和成本,这项技术在化纤行业的推广可带来数十亿元的收益;利用纳米技术对各类化纤进行改性,使之具有功能性,如吸水吸湿纤维、变色纤维、芳香纤维、磁性纤维、防辐射纤维、远红外纤维,还可采用复合纺丝法来生产功能化织物;纳米功能氧化物填充到纤维中可制得各种差别化、功能化纤维,为纤维的发展带来一场健康革命,其市场规模也超过二十亿元。结论:纳米技术的应用将对纺织行业的发展起到巨大的推动作用。举例2:建材行业中的纳米技术纳米技术在建材领域的应用:利用纳米材料的自洁功能可开发的抗菌防霉涂料、PPR供水管;利用纳米材料具有的导电功能可开发的导电涂料;利用纳米材料屏蔽紫外线的功能大大提高PVC塑钢门窗的抗老化变形性能;利用纳米材料可大大提高塑料管材的强度等。另外,纳米抗菌不锈钢塑料复合管、纳米抗菌PPR管是在管材内层塑料中添加纳米级抗菌材料,经共挤出而制成具有抗菌、卫生自洁功能的管材。仅以PVC塑钢门窗为例,近几年我国每年城乡工业和民用建筑的建造量平均约12亿平方米,需要门窗3亿平方米,年需塑钢门窗约3000万平方米,年需硬PVC异型材约30万吨。结论:纳米材料在建材中具有广阔的市场应用前景和巨大的经济、社会效应。

4.1.1.4以市场需求为导向,加强服务意识,注重市场推广

以市场成熟代替技术成熟是发展纳米技术的最佳方式。改变传统的“技术导向”为“市场导向”,始终坚持以市场需求为出发点和归宿,以市场需求为拉动机制,着重推动具有应用前景的新技术和新产品的开发,注重对传统产业的改造和提升,提升产品的竞争力,推动纳米科技的产业化。着重发展有重大影响的方向与领域,注重纳米技术与各个行业的交叉融合,使纳米技术和产品能服务于各个行业。注重纳米技术的市场推广,加强纳米科技与各个行业领域间的交叉融合,加强科研成果和企业及投资商之间的交流合作,建立信息交流平台,创建科研成果转化的渠道,为纳米科技发展提供有力服务和支持。

4.2注重技术集成,实现自主创新

“创新”是科技发展的生命力所在。对于纳米科技的发展,需加强新技术和新产品的原始性创新,提升产品和技术的竞争能力。同时在重视原始性创新的基础上,更应该注重具有重大应用价值的集成创新,通过对集成要素的优势整合,提升集成整体的竞争能力,实现更大的市场价值。

4.2.1技术集成创新有利于形成市场竞争力

长期以来,人们比较注重单项技术继发展,这是技术开发初级阶段的必然过程。但从科技与经济结合的内在要求来看,单项技术的研究开发,因为缺乏与其它相关技术的衔接,在当前很难形成有市场竞争力的产品或新兴产业,这就造成我国每年所取得的数万项科技成果最终束之高阁,削弱了我国科技创新的基础。

4.2.2技术集成创新将提高产业核心竞争力

核心竞争力的形成,不仅仅是一个创新过程,更是一个组织过程,使各种单项和分散的相关技术成果得到集成,其创新性以及由此确立的企业竞争优势和国家科技创新能力在价值上远远超过单项技术的突破。加强技术集成创新,是企业实现自主创新的新思考,也是企业获得竞争优势、适应知识经济发展的关键。

4.2.3纳米技术的集成主要内容

4.2.3.1纳米科技成果的集成

将分散的技术集中,形成一个可达目标功能的技术体系,即组合应用性技术成果,也称为技术捆绑或技术整合。纳米科技成果的集成应注意以下几点:注重主题的策划,选好技术与成果,实现目标显示度。(1)注重主题的策划以市场需求为导向,关注市场需求的多样化,强化产品的竞争意识;以纳米技术或产品为关键要素,解决需求中的重大问题,具有行业导向性与共性;拓展解决方案的丰富性,注重外部资源的易取性;强化研发时间的迅捷性,凸显研发质量的配比性。(2)选好技术与成果始终坚持把市场需求作为出发点和归宿点,选择具有市场前景的技术和成果,选择具有竞争优势的纳米材料或技术为关键技术要素,具有前景的技术与成果,注重其成熟度和可靠性。同时加大中试研究力度、中试研究领域和资金投入,注重集成要素中技术和成果的协调与融合,优势互补,使集成整体具有新的价值。(3)实现目标显示度注重目标功能的实现,不仅要实现各项集成要素的功能目标,还应实现集成系统的整体功能目标。集成要素和集成系统的功能定量指标应具有竞争性,以实现其产品的显示度,有利于产品的推广。

4.2.3.2注重技术集成创新

(1)从纳米科技发展到产业链上的集成协作在产业链的衔接上,由于纳米技术的跨学科性,急需将努力的方向由“单打独斗”转向“集成协作”。实验和技术上存在局限性,而研究的广泛和复杂,造成设施难以完备;技术的成熟度不够;研究成本高和周期长,造成产业化难度大。因此,仅依靠某一个工业部门或者研究机构,将无法加快推动纳米科技的应用和产业化的步伐。结论:要实现和促进纳米技术的产业化发展,需要采用合理的产业化与投融资模式,推动纳米技术产业链的全方位发展。这就是所谓的为了构筑我国纳米产业发展的大战略,也是目前国内众多研究机构、企业正在的探索大联合的适当途径。(2)纳米科技发展产业链上的集成协作方式第一,建立部级研究开发平台,充分发挥部级研究开发平台的作用,推动各研究部门之间的交流合作,实现软硬件资源共享,避免重复建设。第二,建立产业孵化基地。“科研-孵化-企业”一条龙式的产业化模式,有利于推动科研成果产业化,因此,在有条件的地方应建立纳米科技孵化基地。第三,加强产学研的合作。积极推进产学研一体化的进程,把研究、开发和应用过程的各个阶段建成一个系统,使之紧密衔接、相互交替,保证从科研到生产整个过程的连续性,从而使科研单位前期的研究、开发优势与企业工业化生产优势融为一体,促进科技成果的转化。(3)各领域科学研究人员间的协作从目前情况看,我国从事纳米科技的研究人员,分属不同的行业、部门,彼此之间信息沟通不畅,研究人员之间也缺乏必要的交流,致使研究力量大大分散,而且各地研究所重复研究、重复建设严重。纳米科技属于多学科交叉的前沿研究领域,要动员和组织信息、物理、化学、生物、医药、材料等学科的专家参与纳米科技的研究开发,抓好多学科在纳米科技方面的集成。结论:纳米科技的多学科交叉特性必然要求加强各领域科学人员之间的协作。

4.2.3.3纳米科技推广注重技术集成创新的应用案例分析

应用1:“以应用纳米技术打造新世纪康居商住楼”思路(1)为了贯彻《国家中长期科学和技术发展规划纲要(2006-2020年)》以及“十一五”规划中的要求,促进生态人居环境和绿色建筑的发展,提出集成整合最先进的纳米技术研究成果,积极推动健康、环保的生态建筑技术的应用与推广。为打造康居示范工程提供有力的技术支持和保障,致力于搭建三大公共技术平台,即居住环境健康性和安全性公共技术平台;建筑物与居家用品节能和环保性公共技术平台;资源综合利用公共技术平台。(2)应用纳米技术打造新世纪康居商住楼,可以体现在环保、健康、节能等方面的优势上。具体应用可以包括外墙涂料、内墙涂料、变色玻璃、地毯地板门、厨房、家用电器、卫生洁具、床上用品、窗帘、玩具及衣物等。(3)面向生态人居环境和绿色建筑的发展的需要、面向《国家中长期科学和技术发展规划纲要(2006-2020年)》以及“十一五”规划中的要求,新世纪康居楼的打造将对该行业及人们生活产生很大影响,将形成一个完整的产业链条,引导该行业的发展。以纳米材料或技术为关键技术要素,具有竞争优势;选择具有很好市场前景的纳米改性内外墙涂料、纳米改性纺织品、纳米改性陶瓷、应用纳米技术的太阳能电池等技术和产品,打造一个健康、环保、节能的居住环境,具有竞争优势。另外,选择的纳米改性内外墙涂料、纳米改性纺织品、纳米改性陶瓷等成果技术成熟度较好。应用2:“建立应用于汽车产业的纳米技术产品产业链”思路(1)纳米技术在汽车产业中的应用,可以包括纳米材料改性内饰件、纳米结构超强钢板、纳米结构铝材料、高耐腐纳米水性汽车涂料、纳米隔热涂料、纳米材料改性高性能轮胎、高强度胶黏剂、纳米汽车油、纳米汽车燃油添加剂、纳米传感器、汽车动力应用纳米新型太阳能电池、纳米汽车尾气催化净化材料等。(2)面向十一五规划的“建设环境友好型,资源节约型社会”,面向中国巨大的汽车产业市场,中国汽车产业发展在近几年速度迅猛,是世界上最大最有潜力的市场。选择具有很好市场前景的纳米改性内饰件、纳米改性涂料、纳米改性高性能金属材料、高强度胶黏剂、纳米汽车尾气催化净化材料、纳米汽车燃油添加剂及汽车动力应用纳米新型太阳能电池等技术和产品,具有竞争优势。纳米技术在汽车上的广泛应用,将降低汽车各部件磨损、降低汽车消耗、减少汽车使用成本,还能消除汽车尾气污染,改善排放。可以预见,纳米技术在汽车产业的应用将对该行业及人们生活产生很大影响,将形成一个完整的产业链条,引导该行业的发展。应用3:纳米科技与新兴行业、支撑行业及国家重大工程挂钩纳米科技与新兴行业、支撑行业及国家重大工程的挂钩可以吸引国家或地方政府等的财政拨款,同时可以吸引公司和企业的投资和参与。纳米科技在新兴行业、支撑行业及重大工程中等各领域中的渗透,将加快纳米科技的产业化;纳米科技在新兴行业、支撑行业及重大工程中的应用,将提升这些行业的技术含量,增加其竞争优势,推动其发展;同时对其产业结构的调整、经济增长方式的改变具有深远的影响。例如:纳米技术及应用国家工程研究中心以产学研结合的方式,组织上海城建集团、上海高校和科研院所利用纳米技术和其它技术集成解决道路隧道内的废气治理问题,这是纳米科技在城市市政工程中的重要应用,该项目已列入国家支撑计划。结论:通过集成技术、产学研合作等方式与新兴行业、支撑行业及国家重大工程挂钩,容易吸引投资,促进纳米技术与其它技术和产业的融合,从而促进纳米技术的发展。

4.3树立诚信市场理念

4.3.1纳米科技要健康跨越发展必须树立诚信意识

诚信的本质首先是经济规律,其次才表现为伦理性质。诚信不足,败事有余。市场经济就是信用经济,信用是现代市场经济的基石,没有诚信,就没有秩序,市场经济和社会道德就会陷入混乱之中。目前纳米科技应用研究很热,市场上出现了鱼目混珠的现象,虚假的“纳米商品”,纳米概念的炒作,严重扰乱了纳米市场的秩序,误导人们对纳米的认识,损害了纳米科技的形象,严重阻碍了纳米科技的产业化发展。结论:纳米科技要健康跨越发展必须树立诚信意识,诚信的市场经济理念。

4.3.2如何树立诚信意识

加强诚信意识培养;健全市场竞争机制,让诚信成为人们自觉遵奉的客观经济规律;强化监督,建立相互补充、相互制约的诚信监督体系;加快建立信用体系,规范信息传递和披露机制,发展资信评估行业;强化法制建设,为诚信规范提供坚实的法制保障。

4.4制定适合纳米政策纳米科技的应用推广,需要制定适

合纳米科技发展的政策,保障纳米科技的可持续发展。

4.4.1制定发展规划,实施专项行动

第一,坚持“有所为,有所不为”的方针,制定纳米科技的发展战略,制定我国纳米科技发展的近期、中长期规划,对纳米技术的基础研究进行整体规划,制定国家纳米科技产业的发展规划,集中力量,重点突破。第二,根据市场要求,依托现有产业的优势和基础,确定重点发展的产业及产品,引导产业结构调整。第三,按照市场需求,集中优势力量研究、开发具有自主知识产权、市场潜力大、技术可行的项目和对未来有重大影响的关键领域,突出特色。

4.4.2建立创新体系,强化专利保护意识

组建全新机制的实体性创新平台,建立以企业为主、产学研结合的纳米科技创新体系。强调纳米科技的原始创新,注重技术创新、管理创新、制度创新的有机结合,在原始创新基础上,同时注重集成创新,强化专利保护意识,提高知识产权保护在企业发展中的重要作用。另外,建立和健全纳米技术成果产权保护制度,优先资助拥有自主知识产权的专利成果的产业化。

4.4.3重视人才培养,加强技术交流

制定人才优惠政策,鼓励人才流动竞争,努力创造人尽其才、才尽其用的良好环境。建立培养和吸引纳米科技人才的政策,培养高质量的纳米技术人才和领军人物,引进国外具有真才实学的优秀人才。加强国内外科研单位及企业之间关于纳米技术的信息交流,建设开放式的国家纳米技术信息交流平台,加强国际交流和合作,扩大国际影响。

4.4.4加快基地建设,吸引多元投资

鼓励科研单位、高等院校与生产企业共建纳米技术创新基地、开放式研究开发中心等,改善基础设施条件,对共性关键技术进行联合攻关,建立以企业为主体,产学研结合的纳米技术创新体系,加速纳米技术的研究开发与产业化步伐。重视以政府政策资金为导向,建立多元投资融资体系,吸引风险投资及民间投资,使其大规模地介入纳米技术产业并与科技界融合。同时,鼓励纳米科技型企业在资本市场上融资,加速纳米成果的转化和产业推进。4.4.5完善行业标准,规范技术市场重视标准意识,根据纳米技术产品的性质、用途,参照国际标准,制定我国纳米技术行业的产品标准,建立权威性的国家纳米产品质量检测中心,使纳米产品的生产和销售有章可循。尽快制定出台相关的政策法规,规范纳米市场,避免纳米技术及应用研究重复建设和过度竞争。

4.4.6加强科普宣传,倡导科学道德

重视纳米技术的普及工作,加强对纳米科技的科普教育,使大众对纳米科技有正确的科学认识,避免过分炒作和误导。重视纳米科技相关学科的建设工作,保障我国纳米科技的可持续发展。

5纳米科技成果介绍

纳米技术及应用国家工程研究中心积极整合社会资源,积极推动纳米技术成果的转化。

5.1应用在环境领域的纳米材料和技术

成果1:用于汽车尾气催化净化处理的介孔基催化材料成果简介:孔道内担载贵金属Pt/Rh/Pd的氧化锆基(氧化锆/氧化铈)复合纳米介孔催化剂。该催化剂采用具有自主知识产权的涂覆工艺,成功负载于金属载体表面,经检测,排放性能及催化剂老化性能达到并优于欧IV标准(GB18352.3)。技术特点与优势:特殊的介孔结构,高比表面积;贵金属用量低,热稳定性好;优良催化活性和稳定性;抗老化性好。产业化前景:2007年我国汽车产量达到900万辆,并逐年递增。同时,我国将面临新车必须全部加装净化器的局面,该项目具有极其广阔的市场前景,其经济、社会和环境效益十分巨大。成果2:光催化净化室内空气应用技术光催化室内净化技术现状:不能有效地去除室内空气中;危害性很大的细微颗粒物;催化剂活性组分易流失;微孔容易被颗粒物堵塞,致使催化剂失活。技术创新:将高流速高效率静电除尘与光催化净化室内空气两相单元技术有机的结合。技术内容:包括性能好低成本的金属泡沫网状载体的制备技术、光催化净化活性组份在金属泡沫载体上负载技术、净化室内空气污染物一体化新技术、金属泡沫网状物负载光催化材料、室内光催化净化器。产业化前景:目前我国城镇装修过的房屋中80%存在甲醛超标问题。净化室内装修污染的市场规模达100亿元,并正以每年30%的速度增长,据预测2008年将达到200亿元的市场规模。5.2应用在能源领域的纳米材料和技术成果3:镍氢(MH/Ni)动力电池与镍锌动力电池技术内容:镍氢动力电池技术;锌镍动力电池技术;在电极中添加纳米添加剂;提高电池的循环寿命;提高电池的安全性。应用范围:电动工具、割草机械、玩具模型、电动自行车、电动摩托车等。技术成果:《动力镍氢电池用纳米材料测试技术》项目被上海市高新技术成果转化服务中心项目认定办公室认定为上海市高新技术成果转化项目。这意味着该中心又一项纳米科技成果将走向市场。产业化前景:随着WTO的加入,对动力电池的需求逐年增加。目前国内市场对镍氢动力电池的年需求量在数千万节以上,也将在上千亿的一次电池市场中占据一席之地。

5.3应用在生物医药领域的纳米材料和技术成果

4:超临界粉碎技术成果简介:超临界粉碎技术,采用超临界流体,通过改变压力快速改变溶液的饱和度,使溶质瞬时成核、获粒度均匀、超微细纳米级、无污染高纯度产品。通过此药物微细化技术,实现中药的微纳米化,促进药物的溶解性,提高药物的生物利用度。成果内容:水飞蓟素微纳米颗粒,超临界流体增强溶液分散技术(SEDS),粒径尺寸介于50~300nm,纳米化后的药物在水中溶解速率得到显著改善。谷甾醇纳米颗粒,气溶胶溶液萃取系统(ASES)技术,粒径介于50~300nm,ASES处理后样品结晶度降低;化学结构没有明显改变。产业化前景:超临界微纳米加工产品:如纳米水飞蓟素、植物甾醇可应用于相关药物或油类产品,按1%的附加值计算,相关药物或油品的产值达100亿,该产品产值可达1亿元。成果5:用于腹腔淋巴靶向治疗的纳米给药系统成果简介:以安全无毒的聚脂类生物降解聚合物为纳米粒的骨架材料,用改良的乳化-液中干燥法制备载药纳米粒(NP)。腹腔化疗方式治疗卵巢癌,克服了紫杉醇游离药物渗透性差、易过敏等缺点,并能实现产业化。技术特点和优势:解决了材料的安全性,采用经FDA批准载体材料;制备工艺可实现产业化,粒径及其分布可控制、重现性好,包裹率高,生产工艺条件不苛刻。产业化前景:全球卵巢癌每年新增病人19.2万,死亡人数为11.4万,其死亡率占妇科恶性肿瘤之首。建成应用示范点,年创产值可达1000万元。成果6:基于纳米生物探针的微流控阵列蛋白质芯片成果简介:该芯片是一种纳米生物技术与微生物芯片技术的集成产物。通过纳米生物自组装技术将靶蛋白配体组装在纳米粒子界面上,构成纳米生物探针,可以特异性地与各种生物样品(血清、细胞培养液等)中的靶蛋白结合,并最终被捕获在微流控阵列的特定检测区域,通过纳米粒子所发出的光学信号实现对多种靶蛋白的高特异高灵敏的同步多元分析。技术特点和优势:高灵敏、高分辨和低噪音;可以实现多种生物分子的同步检测;具有在分析模式和使用便捷性上的多种优势。产业化前景:主要应用领域有蛋白质的结构功能研究、医学诊断和医疗、新药开发、生物工业、低样品消耗和快速的芯片反应器系统,以及特定用途的专家系统。

5.4应用在电子信息领域的纳米材

料和技术成果7:CMP后清洗剂成果简介:采用表面活性剂的分子设计技术,利用表面活性剂的协同效应,研制了一系列高性能CMP后清洗剂。技术特点和优势:由表面活性剂、高性能功能性清洗助剂组成的水基清洗剂。适合抛光后高精度表面的超精密清洗。清洗效率高、对工件腐蚀小、残留少等。技术现状:用于硬盘清洗的清洗剂已得到世界最大硬盘基片生产商“深科技”的认可,指标达到国际先进水平。硅片清洗剂已在国内企业得到初步应用。产业化前景:可广泛用于计算机硬盘、硅片、玻璃基片等表面的超精密清洗。系一次性使用,因而电子行业的清洗剂具有巨大的市场。CMP后清洗剂利润丰厚,以每年销售1千吨计,利润在1000万元以上。成果8:高性能纳米粒子抛光液成果简介:化学机械抛光技术(CMP)是迄今几乎唯一可以达到全局平面化的超精加工技术,纳米粒子抛光液是CMP技术的关键要素。通过解决纳米粒子改性分散技术、纳米粒子抛光液的配伍与精制技术、原子级抛光工艺技术等关键技术,成功制备出一系列含有纳米磨粒的纳米粒子抛光液。纳米粒子抛光液由纳米粒子研磨剂、功能性助剂、溶剂组成。技术特点和优势:在计算机硬盘基片的抛光中可以达到表面粗糙度(Ra)小于0.5;数字光盘母盘玻璃基片抛光中表面粗糙度达到4.68;均达到国际先进水平。产业化前景:纳米抛光液市场广阔,用于高精加工的纳米抛光液为消耗品,系一次性使用,不可循环使用以免影响抛光质量,因而抛光液市场容量较大。

纳米技术优缺点范文第2篇

关键词:纳米科学纳米技术纳米管纳米线纳米团簇半导体

NanoscienceandNanotechnology–theSecondRevolution

Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.

Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor

I.引言

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如,美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念,例如,单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据“国际半导体技术路向(2001)“杂志,2005年前动态随机存取存储器(DRAM)和微处理器(MPU)的特征尺寸预期降到80纳米,而MPU中器件的栅长更是预期降到45纳米。然而,到2003年在MPU制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在DRAM的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当MOS器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小,量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上,单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

II.纳米结构的制备———首次浪潮

有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。“build-up“的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,“build-up“依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用,这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。

“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。在“build-down”方法中有几条不同的技术路径来制造纳米结构。最简单的一种,也是最早使用的一种是直接在衬底上刻蚀结构来得到量子点或者量子线。另外一种是包括用离子注入来形成纳米结构。这两种技术都要求使用开有小尺寸窗口的光刻版。第三种技术是通过自组装机制来制造量子点结构。自组装方法是在晶格失配的材料中自然生长纳米尺度的岛。在Stranski-Krastanov生长模式中,当材料生长到一定厚度后,二维的逐层生长将转换成三维的岛状生长,这时量子点就会生成。业已证明基于自组装量子点的激光器件具有比量子阱激光器更好的性能。量子点器件的饱和材料增益要比相应的量子阱器件大50倍,微分增益也要高3个量级。阈值电流密度低于100A/cm2、室温输出功率在瓦特量级(典型的量子阱基激光器的输出功率是5-50mW)的连续波量子点激光器也已经报道。无论是何种材料系统,量子点激光器件都预期具有低阈值电流密度,这预示目前还要求在大阈值电流条件下才能激射的宽带系材料如III组氮化物基激光器还有很大的显著改善其性能的空间。目前这类器件的性能已经接近或达到商业化器件所要求的指标,预期量子点基的此类材料激光器将很快在市场上出现。量子点基光电子器件的进一步改善主要取决于量子点几何结构的优化。虽然在生长条件上如衬底温度、生长元素的分气压等的变化能够在一定程度上控制点的尺寸和密度,自组装量子点还是典型底表现出在大小、密度及位置上的随机变化,其中仅仅是密度可以粗糙地控制。自组装量子点在尺寸上的涨落导致它们的光发射的非均匀展宽,因此减弱了使用零维体系制作器件所期望的优点。由于量子点尺寸的统计涨落和位置的随机变化,一层含有自组装量子点材料的光致发光谱典型地很宽。在竖直叠立的多层量子点结构中这种谱展宽效应可以被减弱。如果隔离层足够薄,竖直叠立的多层量子点可典型地展现出竖直对准排列,这可以有效地改善量子点的均匀性。然而,当隔离层薄的时候,在一列量子点中存在载流子的耦合,这将失去因使用零维系统而带来的优点。怎样优化量子点的尺寸和隔离层的厚度以便既能获得好均匀性的量子点又同时保持载流子能够限制在量子点的个体中对于获得器件的良好性能是至关重要的。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

在未来的十年中,纳米科学和技术的第二次浪潮很可能发生。在这个新的时期,科学家和工程师需要征明纳米结构的潜能以及期望功能能够得到兑现。只有获得在尺寸、成份、位序以及材料纯度上良好可控能力并成功地制造出实用器件才能实现人们对纳米器件所期望的功能。因此,纳米科学的下次浪潮的关键点是纳米结构的人为可控性。

III.纳米结构尺寸、成份、位序以及密度的控制——第二次浪潮

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

—电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。在电子束光刻中的电子散射因为所谓近邻干扰效应(proximityeffect)而严重影响了光刻的极限精度,这个效应造成制备空间上紧邻的纳米结构的困难。这项技术的主要缺点是相当费时。例如,刻写一张4英寸的硅片需要时间1小时,这不适宜于大规模工业生产。电子束投影系统如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在发展之中以便使这项技术较适于用于规模生产。目前,耗时和近邻干扰效应这两个问题还没有得到解决。

—聚焦离子束光刻是一种机制上类似于电子束光刻的技术。但不同于电子束光刻的是这种技术并不受在光刻胶中的离子散射以及从衬底来的离子背散射影响。它能刻出特征尺寸细到6纳米的图形,但它也是一种耗时的技术,而且高能离子束可能造成衬底损伤。

—扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。此项技术已经用来刻划金属(Ti和Cr)、半导体(Si和GaAs)以及绝缘材料(Si3N4和silohexanes),还用在LB膜和自聚集分子单膜上。此种方法具有可逆和简单易行等优点。引入的氧化图形依赖于实验条件如扫描速度、样片偏压以及环境湿度等。空间分辨率受限于针尖尺寸和形状(虽然氧化区域典型地小于针尖尺寸)。这项技术已用于制造有序的量子点阵列和单电子晶体管。这项技术的主要缺点是处理速度慢(典型的刻写速度为1mm/s量级)。然而,最近在原子力显微术上的技术进展—使用悬臂樑阵列已将扫描速度提高到4mm/s。此项技术的显著优点是它的杰出的分辨率和能产生任意几何形状的图形能力。但是,是否在刻写速度上的改善能使它适用于除制造光刻版和原型器件之外的其他目的还有待于观察。直到目前为止,它是一项能操控单个原子和分子的唯一技术。

—多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。铝膜在酸性腐蚀液中阳极氧化就可以在铝膜上产生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范围。制备多孔膜的其他方法是从纳米沟道玻璃膜复制。用这项技术已制造出含有细至40nm的空洞的钨、钼、铂以及金膜。

—倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。目前,经过反应离子刻蚀后,在旋转涂敷的倍塞共聚物层中产生的图形已被成功地转移到Si3N4膜上,图形中空洞直径20nm,空洞之间间距40nm。在聚苯乙烯基体中的自组织形成的聚异戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱体)可以被臭氧去掉或者通过锇染色而保留下来。在第一种情况,空洞能够在氮化硅上产生;在第二种情况,岛状结构能够产生。目前利用倍塞共聚物光刻技术已制造出GaAs纳米结构,结构的侧向特征尺寸约为23nm,密度高达1011/cm2。

—与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。各种尺寸的聚合物球珠是商业化的产品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比较困难的。用球珠单层膜已能制备出特征尺寸约为球珠直径1/5的三角形图形。双层膜纳米球珠掩膜版也已被制作出。能够在金属、半导体以及绝缘体衬底上使用纳米球珠光刻术的能力已得到确认。纳米球珠光刻术(纳米球珠膜的旋转涂敷结合反应离子刻蚀)已被用来在一些半导体表面上制造空洞和柱状体纳米结构。

—将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。其中微接触印刷法已被证明只能用来刻制特征尺寸大于100nm的图形。复制铸模法的可能优点是ellastometric聚合物可被用来制作成一个戳子,以便可用同一个戳子通过对戳子的机械加压能够制作不同侧向尺寸的图形。在溶剂辅助铸模法和用硬模版浮雕法(或通常称之为纳米压印术)之间的主要差异是,前者中溶剂被用于软化聚合物,而后者中软化聚合物依靠的是温度变化。溶剂辅助铸模法的可能优点是不需要加热。纳米压印术已被证明可用来制作具有容量达400Gb/in2的纳米激光光盘,在6英寸硅片上刻制亚100nm分辨的图形,刻制10nmX40nm面积的长方形,以及在4英寸硅片上进行图形刻制。除传统的平面纳米压印光刻法之外,滚轴型纳米压印光刻法也已被提出。在此类技术中温度被发现是一个关键因素。此外,应该选用具有较低的玻璃化转变温度的聚合物。为了取得高产,下列因素要解决:

1)大的戳子尺寸

2)高图形密度戳子

3)低穿刺(lowsticking)

4)压印温度和压力的优化

5)长戳子寿命。

具有低穿刺率的大尺寸戳子已经被制作出来。已有少量研究工作在试图优化压印温度和压力,但显然需要进行更多的研究工作才能得到温度和压力的优化参数。高图形密度戳子的制作依然在发展之中。还没有足够量的工作来研究戳子的寿命问题。曾有研究报告报道,覆盖有超薄的特氟隆类薄膜的模板可以用来进行50次的浮刻而不需要中间清洗。报告指出最大的性能退化来自于嵌在戳子和聚合物之间的灰尘颗粒。如果戳子是从ellastometric母版制作出来的,抗穿刺层可能需要使用,而且进行大约5次压印后需要更换。值得关心的其他可能问题包括镶嵌的灰尘颗引起的戳子损伤或聚合物中图形损伤,以及连续压印之间戳子的清洗需要等。尽管进一步的优化和改良是必需的,但此项技术似乎有希望获得高生产率。压印过程包括对准、加热及冷却循环等,整个过程所需时间大约20分钟。使用具有较低玻璃化转换温度的聚合物可以缩短加热和冷却循环所需时间,因此可以缩短整个压印过程时间。

IV.纳米制造所面对的困难和挑战

上述每一种用于在衬底上图形刻制的技术都有其优点和缺点。目前,似乎没有哪个单一种技术可以用来高产量地刻制纳米尺度且任意形状的图形。我们可以将图形刻制的全过程分成下列步骤:

1.在一块模版上刻写图形

2.在过渡性或者功能性材料上复制模版上的图形

3.转移在过渡性或者功能性材料上复制的图形。

很显然第二步是最具挑战性的一步。先前描述的各项技术,例如电子束光刻或者扫描微探针光刻技术,已经能够刻写非常细小的图形。然而,这些技术都因相当费时而不适于规模生产。纳米压印术则因可作多片并行处理而可能解决规模生产问题。此项技术似乎很有希望,但是在它能被广泛应用之前现存的严重的材料问题必须加以解决。纳米球珠和倍塞共聚物光刻术则提供了将第一步和第二步整合的解决方案。在这些技术中,图形由球珠的尺寸或者倍塞共聚物的成分来确定。然而,用这两种光刻术刻写的纳米结构的形状非常有限。当这些技术被人们看好有很大的希望用来刻写图形以便生长出有序的纳米量子点阵列时,它们却完全不适于用来刻制任意形状和复杂结构的图形。为了能够制造出高质量的纳米器件,不但必须能够可靠地将图形转移到功能材料上,还必须保证在刻蚀过程中引入最小的损伤。湿法腐蚀技术典型地不产生或者产生最小的损伤,可是湿法腐蚀并不十分适于制备需要陡峭侧墙的结构,这是因为在掩模版下一定程度的钻蚀是不可避免的,而这个钻蚀决定性地影响微小结构的刻制。另一方面,用干法刻蚀技术,譬如,反应离子刻蚀(RIE)或者电子回旋共振(ECR)刻蚀,在优化条件下可以获得陡峭的侧墙。直到今天大多数刻蚀研究都集中于刻蚀速度以及刻蚀出垂直墙的能力,而关于刻蚀引入损伤的研究严重不足。已有研究表明,能在表面下100nm深处探测到刻蚀引入的损伤。当器件中的个别有源区尺寸小于100nm时,如此大的损伤是不能接受的。还有就是因为所有的纳米结构都有大的表面-体积比,必须尽可能地减少在纳米结构表面或者靠近的任何缺陷。

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。利用转移在自组装薄膜中形成的图形的技术,例如倍塞共聚物以及纳米球珠刻写技术则提供了实现成本不是那么昂贵的大面积图形刻写的一种可能途径。然而,在这种方式下形成的图形仅局限于点状或者柱状图形。对于制造相对简单的器件而言,此类技术是足够用的,但并不能解决微电子工业所面对的问题。需要将图形从一张模版复制到聚合物膜上的各种所谓“软光刻“方法提供了一种并行刻写的技术途径。模版可以用其他慢写技术来刻制,然后在模版上的图形可以通过要么热辅助要么溶液辅助的压印法来复制。同一块模版可以用来刻写多块衬底,而且不像那些依赖化学自组装图形形成机制的方法,它可以用来刻制任意形状的图形。然而,要想获得高生产率,某些技术问题如穿刺及因灰尘导致的损伤等问题需要加以解决。对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。

另一项挑战是,为了更新我们关于纳米结构的认识和知识,有必要改善现有的表征技术或者发展一种新技术能够用来表征单个纳米尺度物体。由于自组装量子点在尺寸上的自然涨落,可信地表征单个纳米结构的能力对于研究这些结构的物理性质是绝对至关重要的。目前表征单个纳米结构的能力非常有限。譬如,没有一种结构表征工具能够用来确定一个纳米结构的表面结构到0.1À的精度或者更佳。透射电子显微术(TEM)能够用来研究一个晶体结构的内部情况,但是它不能提供有关表面以及靠近表面的原子排列情况的信息。扫描隧道显微术(STM)和原子力显微术(AFM)能够给出表面某区域的形貌,但它们并不能提供定量结构信息好到能仔细理解表面性质所要求的精度。当近场光学方法能够给出局部区域光谱信息时,它们能给出的关于局部杂质浓度的信息则很有限。除非目前用来表征表面和体材料的技术能够扩展到能够用来研究单个纳米体的表面和内部情况,否则能够得到的有关纳米结构的所有重要结构和组份的定量信息非常有限。

纳米技术优缺点范文第3篇

关键词3D打印技术;纳米材料;应用优势;影响

中图分类号TP3文献标识码A文章编号2095—6363(2016)17—0056—01

众所周知,在科学技术不断发展的当代,3D打印技术的出现无疑是科技领域的又一次革新,它被誉为“第三次工业革命重要标志之一”。与此同时,纳米材料近几年的发展也是不容小觑,纳米材料成功应用在人类的衣食住行等方面,更是被预言为是当今世界最有发展前景的决定性技术材料。但纳米材料的应用存在着单一性、数量少等局限性。因此,3D打印技术以其多样性、丰富性弥补了这一缺陷。二者完美契合,必定会为技术产品带来新面貌。

13D打印技术的概况

1.1概念及原理

简单来说,3D打印技术是一种快速成型技术,在国外它被称为“增材制造”。其原理是以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体,并且可以把复杂的三维制造转化为一系列的二维制造的叠加。

1.2发展及特点

据了解,3D打印技术的发展历程大致如下:1984年的数字资源打印成三维立体模型技术、1993年创造出的7三维打印技术(3DP)、1996年第一次使用“3D打印机”、2005年世界上第一台离精度彩色3D打印机——Spe。3D打印技术与传统打印技术最大的区别在于适应的材料上,传统的打印机使用的无外乎是墨水等原料,而如今的高科技3D打印技术依赖于基于计算机科学的CAD技术,通过预先的CAD设计,继而在打印过程中完成一系列的数字切片程序;再将这些信息传入到计算机,其次在打印机中进行分层打印,最后将这些分层打印出来的薄片传送给打印机直至其堆叠出来一个成型的物体。

2什么是纳米材料

纳米材料就是在100nm以内的空间内从微观粒子的角度对材料进行加工和修饰,这些粒子包括分子、原子和离子等,这种材料与传统宏观意义上的材料不同。近些年来,纳米材料如雨后春笋般地涌现出来,广泛地应用于医疗等领域。而这都归功于纳米技术的高速发展,纳米技术的发展“刷新”了人们对物质世界的传统认知。纳米材料具有表面效应、小尺寸效应以及量子隧道效应等,融合了物理学中力、光以及电磁等技术,具备催化的性能。由此不难看出,纳米材料在21世纪将有着最广阔的应用前景。

33D打印技术应用在纳米材料中的优势

1)精细性。3D打印技术依托于计算机,将复杂的三维设计转化为实物模型。纳米材料中的细微粒子正是基于其自身的小尺寸特点产生巨大效应,3D打印技术融入其中,可增加纳米材料的光、电、热等独特功能,从精准细微出发,可有效缩短产品研发周期。

2)多样性。3D打印技术拥有多样化的材料,可以满足纳米材料在发展中的复杂要求,从而使纳米材料获得更多如反射、催化等意想不到的高性能特点,增加了其附加值。

3)循环性。3D打印技术中的可循环利用特性为纳米材料带来了福利。据了解,纳米在抗菌、保鲜、除臭等方面有着重要功效,而3D打印技术利用循环性,正好可以延长纳米材料的使用寿命,增加其使用值,为社会生活做出更多贡献。

4)环保性。3D打印技术在环保方面最主要的表现为节能、毒素排放量少且功耗消耗较少。由于3D打印技术来自于电力供电,又因为其精确度高。所以在能耗的使用上,能够最大程度地优化资源,避免浪费和污染环境。近年来,运用纳米技术研发的复合稀土化合物,其粉体作用可以净化汽车尾气。可见在这一点上纳米材料与3D打印技术不谋而合。二者的融合会进一步减少污染气体排放量,有效地优化资源,避免资源浪费带来的环境污染。由此不难看出,二者结合非常完美。

43D打印技术对纳米材料的影响

1)3D打印技术促进了纳米材料成本的降低。纳米材料在诸多方面运用得十分广泛,而细微纳米粒子虽小但能量大。3D打印技术因其自身的精准度可以大大避免材料浪费,从而使每一颗纳米粒子都得以成功发挥作用。例如利用纳米材料,在玻璃或墙面涂上纳米薄层,进行白洁,且还可有效吸收对人体有害的紫外线。3D打印技术在最开始计算玻璃或墙的精确度,使测量精准,不浪费每一颗纳米粒子,从而降低成本。

2)3D打印技术促进了纳米材料设计技术的革新。3D打印技术的运用加快了纳米材料的设计进程,使得纳米材料在设计技术领域不断发展与完善。简单举个例子来说,纳米材料制成的納米陶瓷对汽车、飞机等交通工具的发动机部件有着重要作用,可有效提高发动机的功率。将3D技术应用于纳米材料的设计中,更是将高科技与制造业设计的结合推向了一个新的高度,加快了纳米技术产品制造的发展与创新。

3)3D打印技术有利于缩短纳米材料制作周期。3D打印技术本身具有快速性、精准性,在纳米材料制成品中更是大有益处。通过3D打印技术准确地计算所需模型材料,并且大大地缩短了纳米材料的制作周期。与传统的材料设计相比,3D打印技术下往往将信息输入进去,一个“回车”发送指令,就可以在很短的时间内完成纳米材料的制作。例如纳米材料做的无菌餐具、无菌食品包装用品,将其结合3D打印技术,既可以有效缩短生产周期,又可以物尽其用,有益于资源合理配置。

4)3D打印技术促进纳米材料应用的人性化发展。由于3D打印技术可以通过模型的设计转化为实物模型,以此来最大程度上满足纳米材料应用的设计者及使用者的需求,改变了一般意义上的死板设计。例如,利用纳米材料技术制成的微型机器人,首先运用3D打印技术勾勒三维模型,精准机器人的一切尺寸,通过计算机转化为实物模型。并且此纳米机器人可疏散病人脑血管中的血栓,清除其心脏动脉内的脂肪和沉淀杂质物,成为人类健康生活的小助手。

5结论

纳米技术优缺点范文第4篇

近十年来,包含纳米材料和纳米技术研究在内的纳米科技在生物学及医学领域应用成为目前研究重点之一,涉及细胞和生物分子分离纯化、药物和基因传输、肿瘤治疗、DNA 结构研究、磁共振成像(MRI) 增强、生物荧光标记、病原体和蛋白质等生物分子的检测、组织工程学等。在肿瘤内科诊疗领域则广泛用于药物传输体系和基因治疗研究,和作为探针用在生物检测开发方面。

1 纳米颗粒对细胞膜作用

为认识纳米颗粒的生物效应,了解纳米颗粒对细胞膜作用具有非常重要的意义。纳米颗粒尺寸比生物体细胞、红血球小得多,甚至小于细菌十至数十倍,与病毒尺寸接近,许多化学和生物反应过程均可在此层面上发生进行。纳米颗粒作用细胞膜主要表现为颗粒的膜上吸附、跨膜转运及其在作用过程中对细胞膜及膜上生物分子的影响。胞膜满布多种生物分子,纳米颗粒可影响成膜脂质分子及膜上其他生物大分子(蛋白等)结构和性质,导致膜生物分子结构变化,如纳米颗粒吸附致脂质分子重组,颗粒表面拓扑结构刺激膜上肌动蛋白伸展等。颗粒作用所导致的生物分子的变化可能是不可逆的,也可能是可逆变化,最终可致胞膜整体变化,包括结构和性质两方面:

1.1 膜结构的变化:纳米颗粒吸附致胞膜本身都将经历膜脂质分子重构和强烈的曲率变化过程。纳米颗粒吸附致膜厚度、有序度、单脂分子面积变化,甚至在膜上形成孔洞,最终可能会影响细胞活性。吸附还可造成胞膜弯曲,与细胞诸多活动密切相关。

1.2 膜性质的变化:带电纳米颗粒吸附导致胞膜上不同磷脂分子的分相,进而对细胞信号转导产生影响。纳米颗粒的作用还可能影响磷脂膜的其他一些性质,如表面张力、跨膜势、扩散系数等。分析细胞膜性质变化,有助于理解纳米颗粒胞膜作用机理。

2 纳米技术与肿瘤诊断、疗效监测

利用纳米技术,建立健全低丰度生物样本富集及微弱信号检测方法。

2.1 生物分子检测:检测DNA 和蛋白质对于肿瘤分子分型诊断以及疗效检测评价均极为重要。目前利用聚合酶链式反应(PCR)扩增荧光染色标记检测DNA 分子的分析方法存在某些本质缺陷,PCR 扩增过程常常会导致DNA 表达的失真。免疫染色检测蛋白质的传统则明显存在灵敏度不高和重复性差的特点。具更高灵敏度生物分子检测手段对于肿瘤内科临床的治疗方案制定与评价至关重要。生物检测关键是通过抗体、DNA等识别分子实现对靶标分子的捕获。这一过程中生物分子识别的效率是实现高灵敏生物检测的基础。纳米颗粒由于其较小的尺寸、较高的反应活性、优异的物理性质以及这些性质的可调控性,使其在制备用于蛋白质、核酸分子检测的生物亲和性传感器方面受到广泛关注,可以利用其建立新的检测方法以改善目前的检测方法所存在的缺陷,因而具有良好的应用前景。

2.2 细胞及生物分子的分离纯化:细胞及生物分子如蛋白质等的分离技术正在快步走向肿瘤内科临床。科学家利用纳米磁性颗粒成功分离出人体骨髓中癌细胞,利用原子力显微镜在纳米水平揭示肿瘤细胞形态特点。

目前细胞分离技术研究可明显提高稀有细胞(如抗原特异性B 细胞和T 细胞及稀有性外周血循环肿瘤细胞) 的分离纯度和分离效率的有效方法。大多数靶细胞存在浓度极低,这些细胞高纯度分离仍困难。目前方法仍然存在选择性较差且不易大规模进行的诸多不足。不过,新出现的基于纳米技术的磁性分离方法已成为生物学和临床医学上一种重要的细胞和蛋白质选择性分离技术,可大批量分离获得高纯度靶细胞,并且已经应用于临床。

3 纳米技术与药物治疗

以纳米粒作为载体的药物克服了传统药物的许多缺陷和无法解决的问题。纳米粒作为新型载体,具有很多优势,如无免疫原性、细胞毒性,有较高的基因转移效率,可获得靶基因的长期稳定表达,因此在抗肿瘤药、输送抗原或疫苗方面有着广泛应用前景。

3.1 靶向药物输送体系:药物输送体系的尺度大小有效输送相关药物至细胞内部的关键,血管自身孔径仅允许直径小于50nm 药物自由进出,而直径小于100nm 药物可穿透细胞膜进入其内部发挥疗效。仅有人工合成纳米输送系统能够较好的满足这一要求。药物溶解性是影响药物疗效的另一个重要因素,由于纳米颗粒较小的尺寸,使得纳米颗粒能够较为有效地进入细胞内部。纳米颗粒较大的比表面积使其能够有效结合、吸附及输送其它化合物如小分子药物、多肽、蛋白质及核酸分子,而且其较大的比表面积赋予纳米颗粒所负载的药物分子良好的药物动力学特性及其在靶向组织器官中优异的生物分散性,进而可以有效的提高药物疗效。纳米颗粒具有优先聚集于靶向位点的特性,这一特性使其所负载的药物在健康的组织器官部位的浓度较低,从而可以最大程度地降低纳米颗粒及药物本身的毒副作用。而且,纳米颗粒可以有效提高疏水药物在含水介质中的溶解性,使疏水药物能够适合于进行非肠道给药治疗。纳米颗粒还可以有效提高多种药物如疏水药物分子、多肽及寡聚核苷酸的稳定性。此外,生物可降解的纳米输送体系可以大幅度提高药物的生物相容性,并可在最大程度上降低药物本身的超敏反应。

纳米技术优缺点范文第5篇

论文摘要:本文从纳米材料在催化方面、涂料方面、其它精细化工方面和医药方面的应用等几个方面探讨了其在化工生产中的应用。

有人曾经预测在21世纪纳米技术将成为超过网络技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。

一、纳米材料在工程上的应用

纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如 si c, bc等在纳米尺度下在较低的温度下即可烧结 ,另一方面 ,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度 ,缩短烧结时间。由于纳米粒子的尺寸效应和表面效应 ,使得纳米复相材料的熔点和相转变温度下降 ,在较低的温度下即可得到烧结性能良好的复相材料。由纳米颗粒构成的纳米陶瓷在低温下出现良好的延展性。纳米 ti o2 陶瓷在室温下具有良好的韧性 ,在 1 80°c下经受弯曲而不产生裂纹。纳米复合陶瓷具有良好的室温和高温力学性能 ,在切削刀具、轴承、汽车发动机部件等方面具有广泛的应用 ,在许多超高温、强腐蚀等许多苛刻的环境下起着其它材料无法取代的作用。随着陶瓷多层结构在微电子器件的包封、电容器、传感器等方面的应用 ,利用纳米材料的优异性能来制作高性能电子陶瓷材料也成为一大热点。有人预计纳米陶瓷很可能发展成为跨世纪新材料 ,使陶瓷材料的研究出现一个新的飞跃。纳米颗粒添加到玻璃中 ,可以明显改善玻璃的脆性。无机纳米颗粒具有很好的流动性 ,可以用来制备在某些特殊场合下使用的固体剂。

二、纳米材料在涂料方面的应用

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。

日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米tio2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米sio2是一种抗紫外线辐射材料。在涂料中加入纳米sio2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。

三、纳米材料在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米tio2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的tio/sio2负载型光催化剂。ni或cu一zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。

四、纳米陶瓷材料增韧改性