首页 > 文章中心 > 透镜设计

透镜设计

透镜设计

透镜设计范文第1篇

学习目标描述

透镜

学习内容分析

将从教材分析与学情分析、教学目标与教学重难点、教与学的过程、教学反思及自我评价四个方面来阐述本堂课。

学科核心素养分析

说明本节课可落实哪个或哪些学科核心素养

合作学习  自主探究  动手实践

教学重点

透镜对光的作用

教学难点

透镜的作图及凹透镜的虚焦点

学生学情分析

八年级的学生思维能力发展较快,具有较强的求知欲和表现欲,因此,我采用观察、实验、多媒体辅助等教学方法,因材施教,让不同层次的学生参与到教学中来,自主的去探索未知,突出学生的主体地位。

教学策略设计

教学环节

教学目标

活动设计

信息技术应用说明

创设情景,激情导入

创设情境为了后面新课教学做铺垫。

课前让学生观看太阳光通过放大镜点燃白纸和炮竹的动画视频,这样导入有利于激发学生的学习兴趣,调动学生参与学习的积极性,也为后面的学习作了铺垫,还充分体现了信息技术在课堂中的优势作用。

应用投影仪及动画视频

合作学习,探究新知

认识凸透镜和凹透镜,

将学生分为七个小组,每组发一套装有四个透镜的器材袋,让学生轮流看一看,摸一摸,自主的认识和区分两种透镜。随后学生讨论交流,说出两种透镜的特点,并试着画出它们的形状。认识了透镜后,鼓励学生找出自己所画透镜的光心和主光轴。在学生自主探索完成后,我利用多媒体再次呈现凸透镜和凹透镜,点讲光心和主光轴。

整个探究过程都是以学生自主、探索、合作、交流的学习方式进行,这样的设计符合新课程标准中以学生为主的教学理念,并且用问题的形式引起学习,能吸引学生的注意力。

运用多媒体呈现知识,使学生更形象、直观的认识凸透镜和凹透镜,也让学生在活泼轻松的气氛中学习,知识接受快,课堂效果好。

合作学习,探究新知

理解两种透镜对光的作用

根据太阳光的照射,确定七个小组进行实验的场地,每个小组从器材袋中各选取一个凸透镜和一个凹透镜,让太阳光分别经过透镜,观察现象。实验结束后小组派代表汇报观察的情况,根据学生的汇报,我利用前面学习的光心和主光轴,引导学生得出凸透镜焦点和焦距的概念。

在实验中学生只是看到一个粗略的现象,特别是凹透镜对光线的发散作用观察不明显,也给虚焦点的认识增加了难度,为了解决这一重难点,我再次利用幻灯片呈现光通过凸透镜和凹透镜的演示实验,让学生更清晰的观察到凸透镜对光线的会聚作用和凹透镜对光线的发散作用,并通过演示实验引导学生认识透镜的光路图,学习作光路图。

利用多媒体辅助教学使我们的课堂生动形象,还能帮助学生突破重难点,也给教师驾驭课堂提供了广阔的空间。

练习与检测

通过练习,检测学生的掌握程度。

1.投影呈现习题,学生独立完成后,小组讨论订正答案。

2.根据学生反馈情况,进行讲解,指导突出重点。

用多媒体呈现恰到好处的习题,既为课堂节约了时间,提高了效率,也让学生巩固了知识,形成了技能。

用多媒体呈现恰到好处的习题,既为课堂节约了时间,提高了效率,也让学生巩固了知识,形成了技能。

课堂小结

回顾新知

学生畅所欲言谈谈自己的收获,幻灯片呈现透镜的知识体系,引导学生由点到面,形成系统的知识结构。

幻灯片呈现知识体系,明了简洁,一目了然。

教学反思

从教学创新上:我以新课标为导向,突出能动性、实践性、自主性。结合学生生活实际、注重能力素质的培养,运用多媒体的教学优势,呈现直观的图片、视频来丰富课堂内容和课堂形式。

透镜设计范文第2篇

关键词:Tracepro;外量子效率;微透镜

中图分类号:TN141文献标识码:A

Tracepro Applied in the Design of the Miccrolens

WU Fei,CHEN Wen-bin

(School of Optoelectronic Information,UESTC,Chengdu 610054,China)

Abstract:The paper focuses on the air/substrate interface to enhance the external quantum efficiency of organic light-emitting devices. It is reported that a method enhances the external quantum efficiency of organic light-emitting devices, employingmicrolens arrays based on the soft-lithography. The structure parameters of the microlens array are important for the refractive microlens arrays to enhance the external quantum efficiency of organic light-emitting devices.A theoretical model based on Tracepro is developed to simulate the effects and optimize the structure parameters of the microlens array.The external quantum efficiency of organic light-emitting devices with microlens arrays is measured in this paper and the efficiency enhancement is obtained.

Keywords:tracepro;efficiency;microlens

1介绍

有机电致发光(OLED)具有亮度高、材料选择范围宽、驱动电压低、全固化主动发光等特性,同时拥有高清晰、广视角、以及可顺畅显示动画的高速响应等优势,成为了最近十几年来相当热门的研究领域[1]。提高器件的外量子效率是提高器件性能的一个关键。近年来,科学家们对光输出和逃逸过程的分析及在此基础上进行的研究工作开始增多。很多研究成果表明,利用微透镜改变与空气接触的玻璃表面结构会显著提高器件的外量子效率[2~3]。Tracepro 是美国 Lambda Research 公司开发的一套用于照明系统、光学分析、辐射度分析及光度分析的光学仿真软件。它是第一套以 ACIS solid modeling kernel 为基础的光学软件,可以直接进行 3D 绘图建模, 并且兼容 ProE、Zemax 以及CodeV 等软件的模型文件,采用 Non- Sequential和 Monte Carlo 法进行光线仿真,对光线进行有效和准确地分析,能仿真所有类型的显示系统(从背光系统到光管、光纤、显示面板和 LCD 投影系统)[4]。比起传统的方法,Tracepro 在建立显示系统的原型时,时间上和成本上要大大减少。本文中的 OLED器件及其微透镜均使用Tracepro软件绘制,并利用该软件人为设置光线接收表面的方法获取相关设计数据。

2原理

有机电致发光器件的外量子效率ηqe可表示为:

ηqe=η1•η2•η3•η4(1)

式中:η1为注入载流子形成激子的效率;η2为激子生成能发光的激发单态或三重态的效率;η3为激发态发生辐射跃迁产生发光的效率;η4为器件输出的光子数与发光生光子数的比值;η1•η2•η3为内量子效率;η4为逃逸率。

近年来,高质量的有机EL的内量子效率在不断提高,但它的外量子效率却非常有限。这是由于η4非常低的缘故。造成这种情况的原因是多方面的,其中之一是由于器件内部产生的辐射,在向表面传播的过程中,要有一部分被吸收,在到达表面后,由于器件材料与周围介质的折射率不同,在界面处还要有一部分被反射。为了更有效地提高器件发光效率,对光从器件输出到空气这一过程的研究是必不可少的[5]。本文利用Tracepro对OLED进行了仿真,并通过改变玻璃表面微透镜形状来增加外量子效率,从而根据结果对微透镜进行改进。

3设计

本文利用单层OLED器件来进行微透镜的设计。单层OLED器件结构为玻璃(0.75mm)/ITO(100nm)/ Alq3(200nm)/ Al。

3.1理论基础

OLED器件发光机理是空穴和电子在发光层中复合发光,电能直接转换为光能。能够成为OLED外发射光的光子数决定了器件的外量子效率。电子和空穴复合产生的光能一部分通过各界面成为出射光,光能的损失由各界面透射率T决定;另一部分在经过距离x之后被吸收,这部分光能损失由参数exp(-αx)表示,α为吸收系数;还有一部分将通过波导效应被导走,或者被吸收,或者传向基板侧面,这部分损失由界面的全反射角θc决定。另外,通过Al层反射的光,也经历上述三过程,并增加Al层的反射损失。因此,将能成为外输出光的光通量与总光通量之比定义为光抽取因子F。忽略吸收损失和Al层的反射损失之后,因为nAlq3≈nTPD≈nITO,所以只需考虑ITO/玻璃界面(界面1)、玻璃/空气界面(界面2)光能的反射损失和光波导效应带来的损失,在界面2处的光抽取因子就是OLED总的抽取因子F,于是OLED结构简化为光线在界面1、2的透射率近似用垂直透射率T1、T2表示:

T = =99.2%(2)

T = =96%(3)

设发光点S发出的光各向同性,且发光光强为I0,总的光通量为P0,光线在界面1处的全反射角θc1=arcsin(nglass/nAlq3)=59.18°,在界面2处的全反射角θc2=arcsin(nair/nglass)=43°。

为了计算界面2的光抽取因子,考察从S点出发,与界面1成θ1角(θ1

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

P =I(θ )dΩ = dφ I(θ )sinθ dθ (I(θ )=I )(4)

可得I(θ )=I =P /4π(5)

根据光束能量相等原则:

T =2π•I(θ )•sinθ •dθ =2π•I(θ )•sinθ •dθ

(6)

所以 I(θ )=T • • (7)

根据折射定律

nglass•sinθ =nAlq•sinθ (8)

可得

= •cosθ (9)

综合以上各式,可以得出:

I(θ )=(10)

所以对应临界角θc2的立体角内的光能:

P2=2I(θ2)dΩ2=2I(θ )sinθ dθ2=18.95%(11)

进而可得:

F=T2•P2/P0=18.95%T2=18%(12)

3.2OLED器件建模

首先对OLED器件模型进行适当简化:将发光面定义为朗伯光源,不考虑器件本身的微腔效应等。然后利用Tracepro对OLED器件进行仿真:将发光面设定为1W,追踪光线为10000的朗伯光源,再对器件材料的折射率和吸收系数进行设定,分别对各个面进行设定,最后人为设置一个接收面。追踪光线轨迹,如图1所示 。

仿真结果――接受面上的光强分布如图2所示( 显示屏的混色效果与视角相关, 需要从色度和光强度两个方面进行分析。本文主要研究外量子效率,所以只对绿色OLED进行光线模拟。)

由图2可知,OLED外量子效率为16.657%,出射光为2,536条。因为考虑了器件本身对光子的吸收,所以外量子效率稍偏于其理论结果。

3.3利用Tracepro进行微透镜设计

以球微透镜为例,对利用Tracepro进行微透镜设计进行说明。在微透镜设计中主要考虑微透镜本身的形状和填充因子。利用Tracepro的Reptile可进行微透镜的尺寸和排列的设计。如图3所示:

先设计三种周期相同但径高比不同的球微透镜来进行比较:球微透镜一(球冠直径20μm,高7μm),球微透镜二(球冠直径20μm,高5μm),球微透镜二(球冠直径20μm,高3μm)。对三种模型进行仿真,得到外量子效率分别为:23.2%,21.6%,20.3%。

以微透镜二为例,来考虑填充因子对外量子效率的影响。同样制作三种周期不同的微透镜二进行比较:周期为30μm,周期为25μm,周期为22μm。可得到外量子效率分别为:21.6%,23.3%,24.1%。可见微透镜对外量子效率的影响很重要,对于周期为22μm的微透镜一,外量子效率高达24.1%。

以上主要是对利用Tracepro对OLED微透镜的设计进行了探索,实际制作中还要结合制作工艺对微透镜参数进行调整,比如用光刻胶热熔法制作微透镜会对微透镜的高度有一定限制[6]。

4结论

OLED微透镜设计的一大难点是如何定量分析微透镜尺寸及其形状对外量子效率的影响。虽然通过Tracepro进行设计并不能得到全部所需的性能数据,但正如本文所述,在局部设计环节,仿真技术可以为设计者提供有效的分析平台,在研发阶段就能预知其最终的显示效果,以降低风险、节约时间和资金。通过仿真,可以对优化器件结构有所帮助。在设计器件时根据需要预先对所设计的器件进行光输出的仿真,从而验证器件结构的合理性。这样不仅使设计的器件更精确,而且还节约了材料,避免了不必要的浪费。

参考文献

[1]Fududa Y, Watanabe T, Wakimoto T, Miyaguchi S,et al. Organic light-tmitting diodes using novel metal-chelate complexes[J].Synth Met, 2000,111~112(1):393~396.

[2]S. Tanaka*, Y. Kawakami, Y. Naito.Improvement of the External Extraction Efficiency of OLED by Using a Pyramid Array[J] . Proceedings of SPIE Vol. 5519 ,2004.

[3]Huajun Peng, Yeuk Lung Ho, Xing-Jie Yu, Man Wong.Coupling Efficiency Enhancement in Organic Light-Emitting Devices Using Microlens Array-Theory and Experiment[J]. Journal of display technology, vol. 1, no. 2, December 2005

[4]Tracepro User's Manual 3.0.

[5]Miao He, Jing Bu, Biow Hiem Ong, and Xiaocong Yuan.Two-Microlens Coupling Scheme With Revolved Hyperboloid Sol-Gel Microlens Arrays for High-Power-Efficiency Optical Coupling[J].Journal of lightwave technology, vol. 24, no. 7, July 2006.

[6]任智斌.折射型微透镜及微透镜阵列光学性质与制作技术的研究[D].中国科学院长春光学精密机械与物理研究所,2004.省略。

透镜设计范文第3篇

关键词: 紫外; 微透镜阵列; 组合多层镀膜与剥离

中图分类号: TN 43; TN 23 文献标识码: A doi: 10.3969/j.issn.10055630.2012.02.013

引 言

紫外凝视成像器件(FPA)要求具有探测灵敏度高、重量轻、体积小,但由于复杂的读出电路使得探测器有效光敏面的占空比即填充因子小于1,从而限制了探测器的性能。利用微透镜阵列作为聚能器件与探测器耦合,可以有效地改善探测器的性能。微透镜阵列是一系列直径在10~1 000 μm之间的微小透镜在基板上按照一定形状排列形成的阵列。这种技术在上世纪90年代就开始运用在红外探测上了,并有效地提高了红外成像阵列的探测性能[13]。

近年来,紫外探测器在军用和民用领域的应用越来越广泛,各国对其的研究也越来越重视。在军事上,导弹预警、制导、紫外通讯、生化分析等方面都有紫外探测的需求。在民用上,广泛应用于明火探测、生物医药分析、臭氧监测、海上油监、太阳照度监测、公安侦察、紫外树脂固化、燃烧工程及紫外水净化处理中的紫外线测量、火焰探测等领域。紫外探测技术是继红外和激光探测技术之后的又一军民两用光电探测技术[4,5]。

紫外光电系统迫切需要大规模高性能的紫外成像器件。为此文中针对背照式紫外成像器件的紫外辐射从其背面入射的这一特点,通过将紫外成像器件与微透镜阵列单片集成,以解决紫外成像器件与微透镜阵列混合集成存在的光辐射损失大、可靠性低、工艺重复性差等问题。

1 紫外微透镜阵列的设计

衍射微透镜阵列与紫外FPA的集成如图1所示,通过微透镜对光的会聚作用,提高FPA对光的利用率。

二元位相型衍射微透镜是基于菲涅尔波带片的傍轴衍射原理设计,是将菲涅尔波带片制备成闪耀的相位结构。

但是由于连续面型的衍射微透镜难于加工,目前都用多台阶结构来近似连续面型结构,台阶数越多其衍射效率就越高。在许多应用场合中,当微光学元件的特征尺寸为波长量级或亚波长量级,刻蚀深度也较大,标量衍射理论中的假设和近似便不再成立,必须采用严格的矢量衍射理论。当元件的特征尺寸大于波长时,衍射与偏振态无关,光的性质与入射角、波长基本无关,文中正是应用标量衍射理论来设计微透镜阵列[1]。

微透镜阵列的一级衍射效率可以表述为

2 微透镜阵列的制备

目前,制作二元光学器件的方法很多,如灰阶掩模板法、光刻法、激光热敏加工法、金刚石车削法、准分子激光加工法等。这些方法存在一系列的譬如工作温度高、设备昂贵、工艺兼容性差、成本高等问题。考虑到在紫外波段,表面浮雕结构的深度为纳米量级,现采用组合多层镀膜与剥离的微细加工工艺制备衍射微透镜的表面浮雕结构。

组合多层镀膜与剥离的微细加工工艺制备衍射微透镜阵列的步骤如下:(1)利用光刻技术直接在背照式紫外探测器芯片的光入射面制备光刻掩模图形;(2)采用镀膜方法在具有光刻掩模图形的表面沉积膜层;(3)将具有膜层的芯片浸入去胶剂中,浸泡3~5 min;(4)通过摇晃或超声震动,将光刻胶上的膜层和光刻胶去除干净,上述工艺完成,可获得2台阶的表面浮雕结构,如图2(a);(5)通过一次重复(1)到(4)的工艺步骤,可获得所需4台阶的表面浮雕结构,如图2(b),通过两次重复(1)到(4)的工艺步骤,可获得所需8台阶的表面浮雕结构,如图2(c);(6)最终将具有衍射微透镜的紫外成像阵列芯片用去离子水清洗1~2 min;最后用高纯氮气吹干。图2就是采用组合多层镀膜与剥离的微细加工工艺制备8台阶衍射微透镜阵列[9]的流程图。

应用JC5003/D型磁控溅射镀膜设备,在衬底温度不超过80 ℃的条件下制备GaN膜层,实验中光刻胶为AZP4620。在制备工艺中发现,涂光刻胶时,在不影响均匀性和分辨力的前提下,光刻胶越厚越好,这样容易剥离不需要的GaN膜层。此外,曝光时一定要保持曝光充分,以确保显影时能够显示清晰的图形。当微透镜台阶深度比较大时,曝光量小于曝光阈值的区域就比较小,所以微透镜面形失真的区域比较小。而当要制备的微透镜台阶深度较小时,抗蚀剂表面曝光量小于曝光阈值的区域就变得非常大,显影结束后微透镜面形失真的区域将大大降低对光的调制能力。

通过上述的设计方法和工艺技术,制备了用于128×128紫外FPA的衍射微透镜阵列,其中焦距为178 μm,中心距为50 μm,环带数为2,台阶数为8,中心波长为350 nm。其显微照片如图3所示。

组合多层镀膜与剥离的微细加工工艺技术整个过程简单,薄膜厚度可精确至纳米级,精度高,操作方便,重复性好,实用性强,较之目前市场上譬如灰度等级掩模与刻蚀,激光束辅助加工技术等有不可比拟的优势。由于这种工艺方法的膜层厚度可精确到纳米级,深度误差对衍射微透镜的影响不大。因此,制备主要有两种误差:线宽误差和对准误差。(1)线宽误差。产生的原因主要有:不准确的曝光量导致线条

线宽变化;剥离工艺不完整引起的线宽变化。光刻应该注意基片的抗蚀膜平面必须保持平整,局部变化

高度应小于焦深范围。否则,刻线会明显出现局部离焦导致曝光不足,局部线条不清晰[9]。线宽误差对衍射效率影响较大,尤其是第一次套刻,所以必须严格控制第一次套刻时的线宽误差。(2)对准误差。它是在掩模图形多次转印过程中由于掩模版之间的对准误差而引起浮雕轮廓相对理论设计轮廓的偏差。其中以对准误差对衍射效率的影响最大,制备过程中控制好套刻中的对准误差尤为重要[10]。

3 光学性能的测试

3.1 衍射效率

4 结 论

文中从提高紫外成像器件的探测性能出发,用标量衍射理论设计了中心波长为350 nm的128×128衍射微透镜阵列。提出了一整套以组合多层镀膜与剥离技术为主的制备衍射微透镜阵列的工艺方法。用组合多层镀膜与剥离的工艺方法制备了2环带8台阶的衍射微透镜阵列。实验结果表明衍射效率可以达到86%。因此,将衍射微透镜阵列与紫外成像探测器集成可以较好地提高成像器件的整体性能,有利于加大民用和军用领域的紫外应用。

参考文献:

[1] 杨国光.微光学与系统[M].杭州:浙江大学出版社,2008:104-179.

[2] 税必继,郭永康,周崇喜.用衍射微透镜阵列提高探测器性能的原理分析[J].红外与激光工程,1997,26(6):19-24.

[3] 张玉虹,刘宝元.聚合物微透镜阵列的光学性能测试[J].中国西部科技,2008,27(7):14-16.

[4] 李向阳,许金通,汤英文,等.GaN基紫外探测器及其研究进展[J].红外与激光工程,2006,35(3):276-280.

[5] 李晓明,华文深,吴先权.紫外光通信大气传输特性及理论模型探讨[J].光学仪器,2011,33(3):90-94.

[6] 杜春雷,郭履容,郭永康.菲涅尔型衍射光学元件的研究[J].光子学报,1997,26(9):824-831.

[7] 安晓强,杜春雷.大数值孔径衍射微透镜的优化设计方法[J].光子学报,1998,27(5):453-458.

[8] 袁永刚,刘大福,邱惠国,等.128×128元氮化镓紫外成像读出电路的设计与封装研究[J].红外与激光工程,2007,36(增刊):93-96.

透镜设计范文第4篇

关键词: 光学设计; 显微物镜; Zemax; 正向光路; 长工作距离

中图分类号: TH 74文献标志码: Adoi: 10.3969/j.issn.10055630.2015.02.014

Optical system design of highresolution microscope objectives for

optical fiber fusion splicer

CHEN Lina, LIU Qiaoling, KE Huaheng, YU Huaen, PENG Jiazhong, LIANG Xiuling

(Fujian Provincial Key Laboratory of Photonics Technology, College of Photonic and

Electronic Engineering, Fujian Normal University, Fuzhou 350007, China)

Abstract: According to the requirement of highquality fiber fusion in the process of optical fiber fusion, a microscope objective for detecting the fiber core is designed to determine the position of the optical fiber core, which is optimized through the optical system design software Zemax. The designed system consists of six lenses. The magnification is eight. The object space NA is 0.25. The working distance is 13.4 mm. The conjugate distance is 85 mm and image receiver is a CCD. The optical lens is optimized through the method of forward optical path with the spectral range of 486~656 nm. Forward optical path design of the microscope objective is practical to detect the fiber core position more clearly and accurately. It has long working distance, short conjugate distance and high accuracy.

Keywords: optical design; microscope objective; Zemax; forward optical path; long working distance

引言随着光纤通信技术的广泛应用,越来越多的光纤线路需要维护和熔接接续。为了获得低熔接损耗的光纤,需要对光纤纤芯进行高精度对准。因此,设计一款适用于光纤熔接机的高质量显微物镜具有重要的意义。显微物镜是用于观察近距离物体,其像距大于物距,这样才起到放大的作用。光学设计一般从长距离方向计算,因此为了便于后续的像差优化,根据光路可逆原理,传统的设计方法均是采用逆向光路进行优化设计。采用逆向光路设计时,物镜的放大率为正向光路设计时的倒数1/β(β为正向光路设计时物镜的放大率),像差经过物镜后缩小,像差校正容易,但是逆向光路设计的光学系统其几何像差调制传递函数(MTF)、星点图等体现的是物面处的成像质量。而显微物镜在实际使用中都是采用正向光路,且正向光路设计的光学系统其几何像差、MTF、星点图等能够直观体现CCD接收靶面处的成像质量,因此正向光路设计的显微物镜更能贴近实际使用状态。本文中的显微物镜是按正向光路进行设计,它能够更加清晰呈现光纤的纤芯位置,提高光纤熔接机的对准精度,从而达到降低光纤熔接损耗的目的。图1纤芯对准系统的结构示意图

Fig.1Structure diagram of fiber

core alignment system1设计思路光纤纤芯对准系统的基本结构示意图如图1示,图中:l为物距;l′为像距;L为共轭距。像面接收器采用CCD,待熔光纤的直径为125 μm(即物高y为0.125 mm),纤芯直径为9 μm。当光纤在CCD的像面宽度上成像为1 mm(即像高y′为1 mm)左右时,能够较理想地实现光纤纤芯的高清晰对准,且光纤所成的像为倒像。因此可得该系统的放大率为β=y′y=-8(1)光学仪器第37卷

第2期陈丽娜,等:光纤熔接机高清显微物镜光学系统设计

图2包层和纤芯在CCD上的实际大小

Fig.2Real size of the cladding and fiber core in the CCD

图3摄远型初始结构

Fig.3Initial structure of telephoto

此外,为了便于光纤的装夹、调节、对准、熔接等机构的安装,显微物镜的工作距离不能太小。拟定显微物镜的工作距离(即物距)为13.4 mm,长工作距离便于熔接操作。当工作距离为13.4 mm时,根据放大率公式β=nl′n′l(2)式中n和n′为空气的折射率,可得该系统的共轭距L=l′-l=120.6 mm。该系统在正常情况下其共轭距L将超过120 mm。为了缩短整个光路,将共轭距控制在85 mm以内,这为将来仪器的小型化设计提供了可靠的前提保证。本文中的显微物镜是按正向光路进行设计,纤芯和包层经过显微物镜放大后,其直径分别为0.072 mm和1 mm。由于光纤熔接时主要是检测断裂处纤芯的准确位置,光纤成像的最大视场在0.8ω(ω为物镜的视场角)处(如图2示),因此,系统只需校正0.8ω以内的像差即可满足设计要求。为了采集到高质量的光纤图像,显微物镜的数值孔径设置为0.25。系统拟采用高亮度的白光LED,设计光谱为486~656 nm。2优化设计

2.1优化过程为了缩短光学总长,镜头采用摄远型初始结构,由正透镜组和负透镜组组成,如图3所示。根据理论公式可以粗略计算出正负透镜组的基本参数,显微物镜的物距即正透镜组的物距l1为13.4 mm,由于该显微物镜的共轭距为85 mm,拟定其像距即负透镜组的像距l′2为65 mm,正负透镜组间隔d为6.6 mm。显微物镜数值孔径及角度放大率表达式分别为NA=nsin(-u)(3)

γ=u′u=nn′1β(4)式中:n为物方折射率;n′为像方折射率;u为透镜组的入射孔径角;u′为透镜组的出射孔径角。已知显微物镜的数值孔径NA为0.25,放大率β为-8,将值代入式(3)、式(4)可得:sin(-u)=0.25,sinu′=0.031 25。由摄远型初始结构图中的几何关系可知tanu′1=h1-h2d=-l1×tan(-u)-l′2×tanu′d=0.216 3(5)式中:u′1为正透镜组的出射孔径角;l1为正透镜组的物距;l′2为负透镜组的像距;h1和h2分别为光线在正负透镜组上的入射高度。计算出sinu′1=0.211 4,l′1=h1tanu′1=15.995 8 mm,l2=l′1-d=9.395 8 mm。再根据高斯公式及透镜组的光焦度φ的表达式为1l′-1l=1f′(6)

φ=φ1+φ2-dφ1φ2(7)式中:φ1为正透镜组的光焦度;φ2为负透镜组的光焦度。可计算出正负透镜组的焦距值及显微物镜的组合焦距值分别为:f′1=7.293 9 mm,f′2=-10.989 0 mm,f′=7.788 2 mm。由此可得,光纤经过显微物镜成像时可理解为经过了两次角度变化,即u=-14.477 5°u′1=12.204 4°u′=1.790 8°。正负透镜组所承担的偏向角δ1、δ2分别为26.681 9°和10.413 6°(见图3)。根据初始像差及其光学设计的经验,一般情况下,每个光学镜头承担的偏向角不要太大,单透镜承担的偏角为6°~9°,双胶合承担的偏角为11°~14°。这是因为光线的偏角越大,该表面的相对孔径也越大,会产生较大的高级像差,优化时很难达到像差平衡。本文显微物镜的正透镜组采用一片单透镜和一组双胶合透镜的透镜组合,而负透镜组则采用三片分离的单透镜组合,共有六片透镜组成。正透镜组剩余的偏折角可由负透镜组来承担。表1透镜组的基本参数

Tab.1Basic parameters of the lens group

组名形式焦距/mm空气间隔/mm正

组单透镜16―空气―1双胶合12.57―空气―3.6负

组单透镜-15.60―空气―1单透镜34―空气―1单透镜-17.12―

根据前面得到的正负透镜组结构参数,结合几何光学公式可得出每个透镜的焦距值及透镜间的空气间隔,如表1所示。显微系统的照明光源为白光LED,图像接收器件为CCD,为了能在CCD上得到0.8视场内的清晰像,要求显微物镜是平场消色差物镜。由于所设计的显微物镜是一个长工作距离、小视场的系统,有较小的场曲,因此主要校正其轴上像差,即球差和轴向色差,还要考虑彗差。显微物镜是按正向光路进行优化设计,球差、轴向色差等像差经过系统后被放大,这将增加其校正难度。为了得到优良的成像质量,系统的球差可通过正负透镜组合来进行校正。 彗差的校正。系统主要存在子午彗差,根据其定义,添加操作数TRAY,控制像平面上光线与像面交点到主光线的垂轴距离。对同一视场,不同孔径设置操作数TRAY,令其两者之和为零,可有效减小子午彗差。正向光路设计的显微系统像差放大,因此在优化过程中需要加重相应优化操作数的权重。 轴向色差的校正。对于薄透镜系统,其轴向色差系数为ΣC1=Σh2φν(其中h为光线的入射高度,φ为光焦度,ν为阿贝常数),系统在结构上采用双胶合和有空气隙的正负分离透镜组合。在优化过程中,适当地选择φ,ν及h值,使轴向色差系数尽可能小或为零。系统采用冕牌玻璃与火石玻璃的搭配亦可达到减小轴向色差的目的。

2.2设计结果镜头优化后的外形结构和系统参数分别如图4、表2所示。该系统由6片透镜组合而成,其中有一组双胶合透镜,两片双凸透镜,两片弯月形透镜。所选玻璃第一片来自肖特玻璃库,其余五片均来自成都玻璃库,其中玻璃材料从第一片到最后一片依次为:NPK52、HZK6、ZF5、HZF4、BAF3、HLAK4L。冕牌玻璃与火石玻璃的搭配有利于校正像差。

图4显微物镜的布局

Fig.4Layout of the microscope objective

表2显微物镜的系统参数

Tab.2System parameters of the microscope objective

名称值物方数值孔径NA0.25有效焦距/mm6.738 307总长/mm71.600 55像方数值孔径NA0.032 286 71近轴像高/mm2近轴放大率-7.992 895入瞳直径/mm23.482 99出瞳直径/mm3.545 373

图5为显微物镜的MTF曲线,从MTF曲线可以看出,在空间频率为50 lp/mm处,全视场以内的调制传递函数MTF值均大于0.3,接近衍射极限,具有较高的分辨率。图6为显微物镜的点列图,由图可以看出,该系统各视场的成像弥散斑均方根半径均小于爱里斑半径,能量较集中,符合设计要求。

图5MTF曲线

Fig.5MTF curve图6点列图

Fig.6Spot diagram

显微物镜的像差公差用波像差来衡量,要求光学系统的波像差小于λ/4。显微物镜的几何像差分析如下:(1)球差由于该显微物镜的孔径较大,因此存在高级球差。该系统的边光球差容限值和剩余球差容限值分别为δL′m≤λn′sin2U′m=0.587 6×10-31×0.032 72 mm=0.549 5 mm(8)

δL′≤6λn′sin2U′m=6×0.587 6×10-31×0.032 72 mm=3.297 1 mm(9)图7为显微物镜的球差曲线,由图可知,该系统主波长的实际球差最大值为0.109 9 mm,在边光球差和剩余球差容限范围内,满足设计要求。(2)轴向色差该系统的轴向色差容限值为ΔL′FC≤λn′sin2U′m=0.587 6×10-31×0.032 72 mm=0.549 5 mm(10)由图7可看出,该系统的实际轴向色差最大值为0.033 6 mm,在容限范围内,符合要求。(3)其他像差图8为显微物镜的畸变图,由图可看出,系统的场曲、像散和畸变都很小,该系统主波长的实际子午场曲最大值为0.027 7 mm,弧矢场曲最大值为0.022 4 mm,实际像散最大值为0.005 2 mm,畸变值为0.24%,都满足设计要求。

图7球差曲线

Fig.7Longitudinal aberration curve图8畸变曲线

Fig.8Distortion curve

3公差分析

3.1公差分配原则系统在加工与装调过程中都将产生误差,使最终结果偏离设计结果。为了提高其成像质量,光学系统内所有参数都需要分配可变公差。如果系统对某一参数的变化很敏感,那么对该组公差要有较严的要求,反之则可以采用较为宽松的公差。显微物镜系统对成像质量有较高的要求,且该显微物镜各透镜的半径和厚度值均很小,因此对光学元件公差的要求相对较严。运用Zemax软件中的公差计算与分析程序计算光学系统内各参数性能下降的敏感度,即分析所有元件的加工、装调公差,确定敏感度。公差参数包括半径、光学元件厚度、空气间隔、偏心等。

3.2公差分配结果运用Zemax光学设计软件,通过灵敏度分析、反转灵敏度分析及蒙特卡罗分析得到显微物镜合理的公差分配。通过计算分析每一公差参数在Nyquist空间频率50 lp/mm处的MTF下降情况,最终确定合适的公差。灵敏度公差、蒙特卡罗公差分析结果分别如表3、表4所示。蒙特卡罗公差分析结果显示该显微物镜系统90%以上的蒙特卡罗样本MTF≥0.166 385 252,每个样本为一个模拟加工、装调后的光学系统。对显微物镜公差灵敏度的分析表明,元件的半径、厚度和偏心为敏感公差,其敏感公差主要位于元件3,4,5(表5所示)。因此,需要严格保证这些元件的加工与装调公差,确保最终实现光学系统的高精度、高性能要求。

表3灵敏度的公差分析结果

Tab.3Analysis of sensitive tolerance sensitivity

类型表面序号公差MTF改变量半径公差1+4光圈数

-4光圈数-0.050 733 329

-0.051 019 096表面偏心公差7±0.008 mm-0.051 884 756表面倾斜公差7±0.008 mm-0.052 259 487半径公差9+3光圈数

-3光圈数-0.054 000 761

-0.056 068 687表面偏心公差12±0.005 mm-0.063 947 077

表4蒙特卡罗公差分析结果

Tab.4The result of the analysis using

Monte Carlo method

蒙特卡罗样本百分比MTF值90%≥0.166 385 25250%≥0.203 524 68910%≥0.329 780 993

表5显微物镜的公差要求

Tab.5Tolerance demands of the microscope objective

元件

序号半径公差/

光圈数厚度公差/

mm偏心公差/

mm折射率

公差阿贝常数

公差/%1±4

±5±0.03

±0.03±0.015

±0.015±0.001 012±5

±5

±5±0.03

±0.03

±0.03±0.015

±0.015

±0.015±0.000 8

±0.001 013±3

±4±0.03

±0.03±0.008

±0.015±0.001 014±3

±4±0.03

±0.03±0.008

±0.015±0.001 015±2

±2±0.03

±0.005±0.005

±0.005±0.001 01

4结论所设计的光纤熔接机的显微物镜具有高放大率、高分辨率、结构简单、装配方便、成本低、适合大批量投产等特点。能够实现更高精度的光纤图像纤芯对准,提高图像识别精度,较为准确地定位纤芯位置,提高光纤熔接的质量。在本系统之后的研究中,将进行显微系统的机械结构和装调技术的研制,使生产过程中安装调节显微物镜简便且易操作,从而降低生产成本。参考文献:

[1]郝沛明,丁厚明,查来宾,等.目视观察和CCD探测两用显微物镜[J].量子电子学报,1997,14(5):464469.

[2]庄振锋,王敏,陈荣.0.25×高分辨力视频显微镜设计[J].光学仪器,2008,30(1):6365.

[3]毕卫红,许睿,付广伟,等.40倍长工作距离PCF熔接系统显微物镜设计[J].光电工程,2013,40(1):4450.

[4]孙晶露,李湘宁,吴宇昊.用于光纤熔接系统的纤芯检测镜头设计[J].光学技术,2010,36(6):816819.

[5]刘雨沁,张孟伟.变倍光学系统的公差分析[J].光学仪器,2013,35(2):4245.

[6]王红,田铁印.三线阵测绘相机光学系统的设计和公差分析[J].光学 精密工程,2011,19(7):14441450.

透镜设计范文第5篇

关键词 聚光集热;模块化;等厚菲涅尔透镜;腔式集热器

中图分类号 TK519 文献标识码 A 文章编号 1674-6708(2016)172-0296-03

太阳能具有普遍广泛、清洁无害等优点,且开发利用方式多样,而将太阳能转换成热能加以利用是其中能量利用率较高和应用较为广泛的方式[ 1 ]。在光―热转换过程中,聚光集热系统作为核心部件,故对其的优化设计尤为重要。

众多国内外学者对应用于不同场合的聚光集热系统进行了大量设计。K. Lovegrove,G. Burgess等[ 2 ]设计并建立了一个500m2的碟式聚光集热装置,由380块完全相同的1.17m×1.17m的球面镜拼装而成,聚光倍数为2 000倍以上。熊亚选、吴玉庭等[3]为10kW分布式太阳能热―电联供系统设计制造了大型的槽式太阳能聚光集热器,其光热转换效率超过60%。Tao Tao,Zheng Hongfei等设计的槽式太阳能聚光集热器采用多曲面聚焦,让经过上曲面未聚焦的光线转移到下曲面进行二次聚焦,使太阳能接收器受上下两面的聚焦加热,提高了接收器的效率。J. Llorente,J. Ballestr?′n等设计了一种新型太阳能菲涅尔反射聚光集热装置,该装置由864块15cm×12cm的镜面在9个环上镶嵌而成,当所有镜面均聚焦到同一点时,良好天气条件下吸热处的温度为1 500K。

本文提出一种模块化设计的聚光集热系统,以聚光器和集热器为设计对象,既可以充分利用普通菲涅尔透镜大聚光比的特点,又能得到低成本、高效率的聚光集热系统。

1 聚光集热模块描述

本文设计的聚光集热模块主要有3部分组成:菲涅尔透镜、腔式集热器和工质输送管。其结构如图1所示。

经菲涅尔透镜聚焦的光线进入腔式集热器内部后,通过在涂有吸收涂层的腔体内壁上多次反射吸收,由工质输送管内流动的冷工质将腔体内的热量带走,实现光―热转换。

2 聚光集热系统设计

2.1 等厚菲涅尔聚光器设计

本文所采用的等厚菲涅尔透镜中心为球面透镜,记作第1环,从中心向外依次为2,3,4,……,n环。由几何光学知识推导、整理后,可得平行光经中心球面透镜折射后在菲涅尔透镜焦平面上形成的焦斑半径为

式中:f为菲涅尔透镜的焦距,N为透镜材料的折射率,1r为中心球面透镜的半径,h为中心球面透镜高度。

如图2所示为太阳光垂直入射到透镜的平面一侧时的光路图。

目前高倍聚光菲涅尔透镜设计时焦径比一般设定为1.2。现将等厚菲涅尔透镜的参数确定如下:大小为520mm×520mm,焦距为f=620mm,厚度为2.5mm(其中棱镜高度为h=0.5mm),聚光倍数为1000倍以上,聚光效率不低于85%,光斑在直径Φ25mm的范围以内,折射率为N=1.411 1。根据式(2),利用MATLAB软件编程计算,结果显示该菲涅尔透镜共有421环。

2.2 腔式集热器设计

腔式集热器由3部分组成:双曲线、半圆和半椭圆。曲线方程如下:

双曲线1:

将上述方程得到的曲线集合在一起并封口,可得到腔式集热器的几何结构,利用SolidWorks进行方程式驱动建模,得到集热器模型,其中集热器整体高为220mm,壁厚为2mm,如图3所示。

2.3 聚光集热模块设计

如图4所示,聚光集热模块主要由等厚菲涅尔透镜、腔式集热器、热交换管和连接管等组成。

结果显示,腔体内壁面对入射光辐射吸收的分布情况为:椭圆腔体部分占88%,圆和双曲线腔体部分总共占6.9%,其他损失占5.1%,其中绝大部分损失是由于“颈部”光强较大导致的辐射热损失。总的来说,集热器的热效率在85%以上且光学性能和热性能良好。

图6所示为工质在输送管内的模拟流速分布图。从模拟结果可以看出,传热工质在腔式集热器椭球下部附近流速较快,可快速将腔式集热器椭圆部分“蜗居”的热量带走,防止集热器局部高温造成热损失。

4 结论

本文设计了一种新型的模块化太阳能聚光集热系统,其核心部件是等厚菲涅尔透镜和腔式集热器。经模拟仿真,在理想情况下,聚光器聚光比大于2 000且光学效率达到91.298%;腔式集热器热效率在85%以上且热性能良好;同时,输送管内传热工质热传递效果良好,既可将集热器椭球部分的聚集热量快速带走,又能充分保证其他部分与工质的热传递接触时长。

参考文献

[1]陈德明,徐刚.太阳能热利用技术概况[J].物理,2007,36(11):840-846.

相关期刊更多

投资北京

省级期刊 审核时间1个月内

北京市发展和改革委员会

临床耳鼻咽喉头颈外科

北大期刊 审核时间1-3个月

中华人民共和国教育部

中国耳鼻咽喉头颈外科

CSCD期刊 审核时间1-3个月

中华人民共和国国家卫生健康委员会