首页 > 文章中心 > 薄膜电容器

薄膜电容器

薄膜电容器范文第1篇

二、国外、国内高压金属化薄膜电容器的发展状况及市场状况 近几年来,国外一些厂家开发、研制出的该类型电容器已形成批量生产和投放市场使用。而我国虽然有众多的电容器生产厂家,但该类型的电容器在生产方面还刚刚起步,其品质也无法与国外一些厂家生产的产品进行比较,其品质差别和市场占有率主要如下; 1.国外该类型电容器的发展及市场状况:现在国外具有先进水平的生产厂家有abb、ge、metar等公司,这些公司生产的电容器主要特点是在恒定容量和恒定电压下,其尺寸和重量均为国产的一半,其使用寿命确保在20年以上。现metar公司已开发、研制出50万伏高压并联电容器并投入使用,现占领国内100%市场。 2.国内该类型电容器的发展及市场状况:现在国内的生产家生产的同类型电容器产品其尺寸和重量均比国外的产品要大得多和重得多,其使用寿命在5年到XX年之间。30到50万伏的高压并联电容器还在研制中,未能进行批量生产并投入使用。

三、投产电容器的目的及项目: 1.投产目的:为了满足国外、国内市场对具有高电压、大电流负载承受能力、高安全性的金属化薄膜高电压电容器越来越大的市场需求,对该类型的电容器的开发、研制和对现有电容器生产设备及工艺技术的改造也势在必行。针对此现像,公司经研究自身在国际上的销售网

络优势,决定出资引进国外先进设备,以满足国外、国内市场对该类型电容器越来越大的需求,填补国内空白、不足之处。

2.电容器项目及其用途如下: 2.1 高电压并联电容器:该电容器是为30到50万伏输压、变压线路使用的高压开关柜专门配套的高压电力电容,全世界需求量非常大。我国在此方面尚属空白。如:中国的三峡工程、平顶山,沈阳和西安高压开关厂为50万伏输压、变压线路项目配套的开关柜采用电容全部从国外进口。 2.2 小型化高频脉冲电容器及直流高压电容器:可用于电磁加速器、核聚变脉冲激光电源等性能试验装置及冲击电压、电流发生装置。

四、高压金属化薄膜电容器投产后市场预测:

薄膜电容器范文第2篇

不过,多层陶瓷工艺可能会导致不同批次产品以及同一批次不同产品之间的某些参数出现差异,而这些参数对射频设计人员来说是十分重要的,如Q值、ESR,绝缘电阻的变化以及电容值在整个指定的容差范围内的变化。尽管在许多应用场合中,这些参数变化并不会产生负面影响,目前在薄膜元件生产领域的技术突破为,设计人员提供了生产高频微波元件的一种替代方案。

生产半导体所使用的薄膜技术也可以同样用于生产具有严格的电气和物理特性的薄膜无源元件。线宽尺寸和绝缘层厚度可分别达到1um和10nm以下:

严格的线宽尺寸带来了严格的参数容差(电感值和电容值),此外,其他几项电气性能优势也可以得到进一步优化。由于采用了高真空电极沉积工艺,不同批次产品之间以及同一批次不同产品之间的EsR值极其稳定。而通过化学气相沉积工艺(CVD)得到的超纯净、低K值的绝缘层使得Q值和EsR值都十分稳定。在很宽的频率范围内阻抗值具有稳定性和可预测性。平面栅格阵列(LGA)封装工艺使其能够降低寄生参数。

薄膜元件的这些性能优势会对设计产生影响。通常,对于实现某一特定电路功能,可以减少所需的元件数量。通过减少所用的元件数量,不但会减小设计尺寸,还会节省组装时间和降低组装费用,同时提高产品的可靠性。此外,由于元件的电气性能更加稳定,损耗更低,应用此元件的产品的整体电气性能也会得到提升。

实例:带阻滤波器

带阻滤波器就是薄膜元件的一个实际应用。带阻滤波器的电路设计是阻止特定射频频谱的信号通过而允许其他信号无衰减通过。它也常被称为陷波滤波器、带止滤波器或频带抑制滤波器。带阻滤波器常用于功率放大器和天线前面的匹配电路之间。

以一个典型应用为例。复杂的、覆盖范围广的多带无线电接收器常会意外产生差频和谐波,窄带陷波滤波器就用于衰减这些差频和谐波。由于薄膜近乎完美的特性,使用一个高品质薄膜电容器就可以替换掉双T形设计中所使用的6个元件。

薄膜电容器(如图1所示)还具有一项前面没有提及的性能优势:它的响应只有1个谐振点,因为这种器件使用单绝缘层设计封装成多层陶瓷电容器(MLcc)。图2显示了这种薄膜电容器的部分S21前向传输损耗特性曲线。

制造厂商选用薄膜电容器元件,不但可以获得单层电容器优越的电气性能,还可以尽享MLcc类型元件应用的便利之处。图3显示了薄膜电容器性能的稳定性对电极和氧化层厚度的影响,以及其质量对绝缘层K值的影响。

我们必须认识到薄膜电容器用作带阻滤波器是具有局限性的。因为薄膜电容器通常只能提供小电容值,所以它们局限于频率相对较高的带阻滤波器设计。如果涉及到低频设计,必须采用其他的滤波器方法,通常是使用高Q值的多层射频电容器。

薄膜电感

与空气芯电感相比,薄膜电感具备许多实用的优点(尽管它们无法达到相同的Q值)。在表面贴装过程中,薄膜电感要比空气芯电感更便于抓取和放置。应用目前装配中通用的IR、蒸汽相法和波工艺也很方便对其进行处理。此外,薄膜电感在这些处理过程中以及搬运和强震动环境中都能够保持电感值不变。尽管它们不能像空气芯电感那样在电路中进行调谐,但是一旦确定了实现一定电路功能所需要的准确电感值,就可以使用薄膜电感来替代空气芯电感(假定Q值能够满足需要)。

与薄膜电容器的情况相仿,薄膜电感的ESR和损耗显著降低,这得益干线宽控制以及绝缘层沉积的质量/精度。这使得成品尺寸可以减小到0402封装,并可以实现几乎任何所需的电感值,同时容差精度接近0.05nH。此外,稳定的金属化工艺使得薄膜电感具备了较高的载流能力:不同产品之间载流能力存在差别,最高可达1000mA。

薄膜电感可用于宽带放大器的频率补偿。以前使用的是电阻/电感组合。同薄膜电容器的情况一样,使用薄膜电感器可以减少电路中使用的元件数量,从而减小成品尺寸、降低重量、简化装配、降低成本并提高可靠性。

如同薄膜电容器一样,薄膜电感器只能提供较小的电感值,所以应用上是存在限制的。

也就是说,薄膜电感器可以为设计人员在极高频率处提供一个很好的解决方案。一个常见的应用实例是频率高达数吉赫的振荡器。在高频处,使用线绕电感是不现实的,因为目前生产电感值如此之小的线绕电感的技术尚不具备。

在这种应用场合,设计人员只有两种选择:使用PCB电路板蛇形走线的线路设计来获得低电感值的电感,或者选择微型的表面封装薄膜电感器。

薄膜电容器范文第3篇

在科学发展日新月异的今天,大量具有各种不同功能的薄膜得到了广泛的应用,薄膜作为一种重要的材料在材料领域占据着越来越重要的地位。

自然届中大地、海洋与大气之间存在表面,一切有形的实体都为表面所包裹,这是宏观表面。生物体还存在许多肉眼看不见的微观表面,如细胞膜和生物膜。生物体生命现象的重要过程就是在这些表面上进行的。细胞膜是由两层两亲分子--脂双层膜构成,它好似栅栏,将一些分子拦在细胞内,小分子如氧气、二氧化碳等,可以毫不费力从膜中穿过。膜脂双层分子层中间还夹杂着蛋白质,有的像船,可以载分子,有的像泵,可以把分子泵到膜外。细胞膜具有选择性,不同的离子须走不同的通道才行,比如有K+通道、Cl-通道等等。细胞膜的这些结构和功能带来了生命,带来了神奇。

2膜材料的应用

人们在惊叹细胞膜奇妙功能的同时,也在试图模仿它,仿生一直以来就是材料设计的重要手段,这就是薄膜材料。它的一个很重要的应用就是海水的淡化。虽然地球上70%的面积被水覆盖着,但是人们赖以生存的淡水只占总水量的2.5%~3%,随着人口增长和工业发展,当今世界几乎处于水荒之中。因此将浩瀚的海水转为可以饮用的淡水迫在眉睫。淡化海水的技术主要有反渗透法和蒸馏法,反渗透法用到的是具有选择性的高分子渗透膜,在膜的一边给海水施加高压,使水分子透过渗透膜,达到膜的另一边,而把各种盐类离子留下来,就得到了淡水。反渗透法的关键就是渗透膜的性能,目前常用有醋酸纤维素类、聚酰胺类、聚苯砜对苯二甲酰胺类等膜材料.这种淡化过程比起蒸法法,是一种清洁高效的绿色方法。

利用膜两边的浓度差不仅可以淡化海水,还可以提取多种有机物质。工业生产中,可用膜法过滤含酚、苯胺、有机磺酸盐等工业废水,膜法过滤大大节约了成本,有利于我们的生存环境。

膜的应用还体现在表面化学上面。在日常生活中,我们会发现在树叶表面,水滴总是呈圆形,是因为水不能在叶面铺展。喷洒农药时,如果在农药中加入少量的润湿剂(一种表面活性剂),农药就能够在叶面铺展,提高杀虫效果,降低农药用量。

更重要的,研究人员还将膜材料用于血液透析,透析膜的主要功能是移除体内多余水份和清除尿毒症毒素,大大降低了肾功能衰竭患者的病死率[1]

3膜材料的分类

近年来,随着成膜技术的飞速发展,各种材料的薄膜化已经成为一种普遍趋势。

薄膜材料种类繁多,应用广泛,目前常用的有:超导薄膜、导电薄膜、电阻薄膜、半导体薄膜、介质薄膜、绝缘薄膜、钝化与保护薄膜、压电薄膜、铁电薄膜、光电薄膜、磁电薄膜、磁光薄膜等。目前很受人们注目的主要有一下几种薄膜。

3.1金刚石薄膜

金刚石薄膜的禁带宽,电阻率和热导率大,载流子迁移率高,介电常数小,击穿电压高,是一种性能优异的电子薄膜功能材料,应用前景十分广阔[2]。

近年来,随着科技的发展,人们发展了多种金刚石薄膜的制备方法,比如离子束沉积法、磁控溅射法、热致化学气相沉积法、等离子化学气相沉积法等.成功获得了生长速度快、具有较高质量的膜,从而使金刚石膜具备了商业应用的可能。

金刚石薄膜属于立方晶系,面心立方晶胞,每个晶胞含有8个C原子,每个C原子采取sp3杂化与周围4个C原子形成共价键,牢固的共价键和空间网状结构是金刚石硬度很高的原因.金刚石薄膜有很多优异的性质:硬度高、耐磨性好、摩擦系数效、化学稳定性高、热导率高、热膨胀系数小,是优良的绝缘体。

利用它的高导热率,可将它直接积在硅材料上成为既散热又绝缘的薄层,是高频微波器件、超大规模集成电路最理想的散热材料。利用它的电阻率大,可以制成高温工作的二极管,微波振荡器件和耐高温高压的晶体管以及毫米波功率器件等。

金刚石薄膜的许多优良性能有待进一步开拓,我国也将金刚石薄膜纳入863新材料专题进行跟踪研究并取得了很大进展、金刚石薄膜制备的基本原理是:在衬底保持在800~1000℃的温度范围内,化学气相沉积的石墨是热力学稳定相,而金刚石是热力学不稳定相,利用原子态氢刻蚀石墨的速率远大于金刚石的动力学原理,将石墨去除,这样最终在衬底上沉积的是金刚石薄膜。

3.2铁电薄膜

铁电薄膜的制备技术和半导体集成技术的快速发展,推动了铁电薄膜及其集成器件的实用化。铁电材料已经应用于铁电动态随机存储器(FDRAM)、铁电场效应晶体管(FEET)、铁电随机存储器(FFRAM)、IC卡、红外探测与成像器件、超声与声表面波器件以及光电子器件等十分广阔的领域[3]。铁电薄膜的制作方法一般采用溶胶-凌胶法、离子束溅射法、磁控溅射法、有机金属化学蒸汽沉积法、准分子激光烧蚀技术等.已经制成的晶态薄膜有铌酸锂、铌酸钾、钛酸铅、钛酸钡、钛酸锶、氧化铌和锆钛酸铅等,以及大量的铁电陶瓷薄膜材料。

3.3氮化碳薄膜

1985年美国伯克利大学物理系的M.L.Cohen教授以b-Si3N4晶体结构为出发点,预言了一种新的C-N化合物b-C3N4,Cohen计算出b-C3N4是一种晶体结构类似于b-Si3N4,具有非常短的共价键结合的C-N化合物,其理论模量为4.27Mbars,接近于金刚石的模量4.43Mbars.随后,不同的计算方法显示b-C3N4具有比金刚石还高的硬度,不仅如此,b-C3N4还具有一系列特殊的性质,引起了科学界的高度重视,目前世界上许多著名的研究机构都集中研究这一新型物质.

b-C3N4的制备方法只要有激光烧蚀法、溅射法、高压合成、等离子增强化学气相沉积、真空电弧沉积、离子注入法等多种方法。在CNx膜的诸多性能中,最吸引人的当属其可能超过金刚石的硬度,尽管现在还没有制备出可以直接测量其硬度的CNx晶体,但对CNx膜硬度的研究已有许多报道。

3.4半导体薄膜复合材料

20世纪80年代科学家们研制成功了在绝缘层上形成半导体(如硅)单晶层组成复合薄膜材料的技术。这一新技术的实现,使材料器件的研制一气呵成,不但大大节省了单晶材料,更重要的是使半导体集成电路达到高速化、高密度化,也提高了可靠性,同时为微电子工业中的三维集成电路的设想提供了实施的可能性。

这类半导体薄膜复合材料,特别使硅薄膜复合材料已开始用于低功耗、低噪声的大规模集成电路中,以减小误差,提高电路的抗辐射能力。

3.5超晶格薄膜材料

随着半导体薄膜层制备技术的提高,当前半导体超晶格材料的种类已由原来的砷化镓、镓铝砷扩展到铟砷、镓锑、铟铝砷、铟镓砷、碲镉、碲汞、锑铁、锑锡碲等多种。组成材料的种类也由半导体扩展到锗、硅等元素半导体,特别是今年来发展起来的硅、锗硅应变超晶格,由于它可与当前硅的前面工艺相容和集成,格外受到重视,甚至被誉为新一代硅材料。

半导体超晶格结构不仅给材料物理带来了新面貌,而且促进了新一代半导体器件的产生,除上面提到的可制备高电子迁移率晶体管、高效激光器、红外探测器外,还能制备调制掺杂的场效应管、先进的雪崩型光电探测器和实空间的电子转移器件,并正在设计微分负阻效应器件、隧道热电子效应器件等,它们将被广泛应用于雷达、电子对抗、空间技术等领域。

3.6多层薄膜材料

多层薄膜材料已成为新材料领域中一支新军。所谓多层薄膜材料,就是在一层厚度只有钠米级的材料上,再铺上一层或多层性质不同的其他薄层材料,最后形成多层固态涂层。由于各层材料的电、磁及化学性质各不相同,多层薄膜材料会用有一些奇异的特性。目前,这种制造工艺简单的新型材料正受到各国关注,已从实验室研究进入商业化阶段,可以广泛应用于防腐涂层、燃料电池及生物医学移植等领域。

1991年,法国特拉斯.博斯卡大学的Decher首先提出由带正电的聚合物和带负电的聚合物组成两层薄膜材料的设想,由于静电的作用,在一层材料上添加另外一层材料非常容易,此后,多层薄膜的研究工作进展很快。通常,研究人员将带负电的天然衬材如玻璃片等,浸入含有大分子的带正电物质的溶液,然后冲洗、干燥,再采用含有带负电物质的溶液,不断重复上述过程,每一次产生的薄膜材料厚度仅有几钠米或更薄。由于多层薄膜材料的制造可采用重复性工艺,人们可利用机器人来完成,因此这种自动化工艺很容易实现商业化。目前,研究人员已经或即将开发的多层薄膜材料主要有以下几种:①制造具有珍珠母强度的材料。②新型防腐蚀材料。③可使燃料电池在高温条件下工作的多层薄膜材料[4]。

4展望

迄今,人们已经设计和开发出了多种不同结构和不同功能的薄膜材料,这些材料在化学分离、化学传感器、人工细胞、人工脏器、水处理等许多领域具有重要的潜在应用价值,被认为将是21世纪膜科学与技术领域的重要发展方向之一。

薄膜电容器范文第4篇

关键词: 半导体; 薄膜晶体管; 节能; 电源回路

中图分类号: TN304.055?34; TN321.5 文献标识码: A 文章编号: 1004?373X(2017)12?0136?04

Abstract: The previously?proposed energy?saving design method of the semiconductor thin?film transistor has poor energy?saving effect because the semiconductor thin?film transistor is not easy to control, so a superior energy?saving design method of semiconductor thin?film transistor is put forward. The energy?saving design principles of the power loop and drive circuit in semiconductor thin?film transistor are summarized. The architecture design scheme of the terminal device is given. The power loop is used to control the power?supply frequency of the semiconductor thin?film transistor to realize the basic energy saving. The drive circuit is adopted to regulate the electric energy loss further, manage the current harmonic of the power loop, and improve the switching performance of the semiconductor thin?film transistor. The mode of model construction is employed to eliminate the circuit noise, and optimize the energy storage performance. The experimental verification results show that the method makes the semiconductor thin?film transistor have high switching performance, high energy storage level, and superior energy?saving effect.

Keywords: semiconductor; thin?film transistor; energy saving; power loop

0 引 言

随着信息时代的悄然来临,显示器也向着智能化、节能化的目标不断迈进,半导体薄膜晶体管以其加工简便、成本低廉、体积小和高迁移率等优势,逐渐成为显示器的主流制作材料[1]。近年来,人们对显示器节能效果的要求越来越高。为了响应市场需求,有关组织曾提出多种节能设计方法,但由于受到半导体薄膜晶体管不易受控缺陷的影响,其节能效果不佳,更为优异的半导体薄膜晶体管的节能设计方法仍在研究中[2]。

文献[3]以无机复合材料为涂层,对半导体薄膜晶体管进行了节能设计。无机复合材料能够有效改善半导体的兼容性能,并弱化分子层,提高半导体薄膜晶体管的开关性能,但却无法对半导体薄膜晶体管中不同层次组件之间的平衡能力进行优化,因此节能效果不佳。文献[4]基于有机半导体材料提出一种半导体薄膜晶体管的节能设计方法,这一方法将有机半导体材料置于设计中心点,对半导体薄膜晶体管中的通信工作进行性能优化,其成本低廉,并且储能水平良好,但迁移率低、寿命短,并非良好的节能方法。文献[5]通过变更半导体薄膜晶体管中的电极材料达到节能目的,电极材料的导电性、鲁棒性和接触点对管中电流的流通性具有较大的影响,因此该方法的节能效果要优于以上两种方法,但在一定程度上限制了半导体薄膜晶体管的开关性能。

为了改善以上问题,提出一种能够同时兼具优良的开关性能和储能水平,并且节能效果较好的半导体薄膜晶体管的节能设计方法,给出节能原理,对电源回路和驱动电路进行重点设计。

1 半导体薄膜晶体管节能原理

半导体薄膜晶体管的电能耗损率与其供电频率有很大关系,如图1所示。当供电频率处于[500 Hz,50 kHz]的范围内,半导体薄膜晶体管的电能耗损率迅速增长,最高可达125%。而当供电频率处于[50 Hz,18 kHz]的范围内,电能耗损率最高仅为102%,可节约大概23%的电能[6]。基于上述原理,所提半导体薄膜晶体管的节能设计方法将设计出一种电源回路,使半导体薄膜晶体管的供电频率始终维持在50 Hz~18 kHz,保证最基本的节能效果。

为了在保证节能效果的同时,使半导体薄膜晶体管仍具有优良的开关性能,所提方法还对半导体薄膜晶体管驱动电路的设计提出了要求:

(1) 在维持节能效果的前提下,驱动电路的驱动电压应富余,保证半导体薄膜晶体管的可持续工作;

(2) 为半导体薄膜晶体管提供的工作电流应低于其额定值,并使驱动电路稳定不变;

(3) 可对电源回路的电流谐波进行实时管控;

(4) 驱动电路中各组件应具备较强的兼容性和安全性。

根据上述要求,应在驱动电路中使用具有强耐高温性和抗干扰性的可编程硅单晶片,其电阻率为50 ,可对电流、电压和驱动时间进行合理调节,适应所提方法对半导体薄膜晶体管的节能要求。

同时,为了获取较为优异的储能水平,需要对半导体薄膜晶体管的终端设备架构进行调节,以合理消除其内部电路噪音,如图2所示。以半导体薄膜晶体管中基区的结深和运动分子数量为依据,设置展宽区长度,通常当结深为20 μm时,展宽区为60 μm。终端设备所使用的管分压为2环,可在减轻储能压力的同时节约设计成本[7]。

2 半导体薄膜晶体管的节能设计方法研究

2.1 电源回路设计

本文半导体薄膜晶体管节能设计方法给出的电源回路主要由单相半控桥和三相全桥变流器构成,如图3所示,其功能参数如表1所示。由图3可知,单相半控桥的作用是整流,电源回路的初始输入电压为恒定的交流电,如果电源回路中的电容储能效果非常好,那么经单相半控桥整流后的交流电则能够以任意电压进行直流变换。调节直流电压至所需数值,再通过三相全桥变流器进行直流、交流电压转换,便可使半导体薄膜晶体管的供电频率维持在[50 Hz,18 kHz]范围内。

以往提出的半导体薄膜晶体管节能设计方法通常使用变压器实现电压转换,导致电源回路产生了较多的功率干扰,并且无法带来优异的节能效果,而三相全桥变流器具有携带方便、稳定性强的优点,可持续工作3 800 h,电压转换性能更加强劲[8]。在进行电压转换时,应使三相全桥变流器内部的两个晶体管单独工作,防止电源回路出现短路状况,故应将二者的排列角度置于120°。

2.2 驱动电路设计

本文提出的半导体薄膜晶体管节能设计方法中,驱动电路的作用是调节半导体薄膜晶体管中不必要的电能损耗,并对电源回路的电流谐波进行管控,达到改善半导体薄膜晶体管开关性能的目的。驱动电路中标准电流波形以及其电路设计图如图4、图5所示。

由图4、图5可知,驱动电路以其标准电流波形进行工作,通过光电耦合方式对半导体薄膜晶体管和电源回路的受控区域进行划分。整个驱动电路拥有8个监控接口。接口1,2用来连接脉冲,其两端电压为3.5 V,可实现半导体薄膜晶体管与电源回路的高性能连通。

当驱动电路对半导体薄膜晶体管的电能损耗进行调节时,需要将接口1,2的两端电压调至0 V,此时电容C5处于放电状态,接口3,8可实现连通,并使电路产生降压现象,半导体薄膜晶体管将出现反向偏置电压,电能损耗也相应缩减[9]。驱动电路对电源回路电流谐波的管控工作与上述调节较为类似,其操控的是接口7,8两端电压,使用开关控制电压升降,使接口5,6处于连通状态,进而实现对电流谐波的缩减,增强半导体薄膜晶体管的开关性能,为优异的节能效果提供后台支持。

2.3 电路噪音消除模型

半导体薄膜晶体管的内部电路噪音会导致其储能水平的降低,对节能效果造成较大的影响,必须采用一种较为有效的方式对噪音进行消除。为此,所提半导体薄膜晶体管的节能设计方法构建了电路噪音消除模型,该模型将半导体薄膜晶体管的内部电路分为正、反相两部分,将正向的输入、输出电压设为,,反向的输入、输出电压设为,,当正、反两相的电压近视相等时,便可实现对半导体薄膜晶体管内部电路噪音的消除[10]。如果将正、反两相的实时电压绘制成曲线,用表示正相电压曲线,那么反相电压曲线则可表示为。从坐标处向正相电压曲线做一条斜率为1的辅助线,将该辅助线与的交点坐标设为,则可获取关系式如下:

式中:是驱动电路输出电压;是半导体薄膜晶体管实际供电电压;是漏电电压;是半导体薄膜晶体管的设计参数。至此,消除半导体薄膜晶体管内部电路噪音可看作是求解的过程。由于不同的半导体薄膜晶体管正、反两相电压曲线并不重合,故电路噪音消除模型定义了一个噪音极限值,当取最大值时,和可看作近似相等,的最大值如下:

3 实验验证

3.1 验现场

为了验证本文提出的半导体薄膜晶体管节能设计方法的各项性能,需要进行实验。实验将国内某科技公司生产的半导体薄膜晶体管与万用表、存储电容和显示板相连,如图6所示。使用电压、频率调节仪控制实验自变量,对本文方法、文献[3]方法和文献[4]方法的开关性能、储能水平和节能效果进行对比验证。

3.2 开关性能验证

半导体薄膜晶体管的开关性能是其最重要的性能之一,是保证半导体薄膜晶体管与其他电路元件有效沟通的基础性能。以往的节能设计中通常会削弱开关性能,导致半导体薄膜晶体管的兼容性降低,得不偿失,因此,开关性能的验证必不可少。在本文实验中,通过调节半导体薄膜晶体管的偏置电压,观察其偏置电流随时间的变化趋势,来确定不同方法下半导体薄膜晶体管开关性能的优劣性,如图7所示。与文献[3]方法和文献[4]方法相比,本文方法下半导体薄膜晶体管偏置电流最为稳定,表现出优良的开关性能。

3.3 储能水平验证

在光照状态下和无光状态下对不同方法下半导体薄膜晶体管的储能水平进行了验证,使用偏置电压来表示储能水平,二者成正比关系,实验结果如图8所示。可看出,在光照状态下,三种方法的储能水平无较大差别,而在无光状态下,本文方法的偏置电压要远高于文献[3]方法以及文献[4]方法,表现出优良的储能水平。

3.4 节能效果验证

实验令半导体薄膜晶体管正常运行48 h,使用文献[3]方法、文献[4]方法以及本文方法对其进行节能,实验结果如表2所示,可知本文方法的节能效果最佳。

表2 节能效果验证实验结果 kW・h

4 结 论

本文提出一种能够同时兼具优良的开关性能和储能水平,并且节能效果较好的半导体薄膜晶体管的节能设计方法。半导体薄膜晶体管的电能耗损率与其供电频率有很大关系,使半导体薄膜晶体管的供电频率始终维持在50 Hz~18 kHz,可保证最基本的节能效果。因此,本文方法给出节能原理,对电源回路和驱动电路进行了重点设计。经实验验证可得,在本文方法下,半导体薄膜晶体管的开关性能、储能水平和节能效果均优于以往提出的节能设计方法,具有较高的使用价值。

参考文献

[1] 栾庆彬,皮孝东.半导体纳米晶体在薄膜晶体管中的应用[J].材料导报,2014,28(21):1?7.

[2] 刘振,徐文亚,钱龙,等.印刷半导体碳纳米管薄膜晶体管光电性能研究[J].影像科学与光化学,2014,32(3):260?266.

[3] 周腾,陈征,崔铮.透明氧化物半导体及其溶液法制备薄膜晶体管[J].中国材料进展,2014,33(3):144?150.

[4] 李谊,刘琪,蔡婧,等.n?型有机半导体插入层提高p?型并五苯薄膜晶体管性能(英文)[J].无机化学学报,2014,30(11):2621?2625.

[5] 朱大龙,谢应涛,许鑫,等.基于金属电极和有机半导体层的制备工艺对有机薄膜晶体管性能的研究[J].半导体光电,2015,36(1):88?91.

[6] 周小娜,陈志英,苏焕先,等.智能型节能交流接触器控制器设计[J].电气工程学报,2015,10(12):27?31.

[7] 祁祥.谈绿色建筑和建筑节能设计[J].山西建筑,2014,40(32):198?200.

[8] 周婷婷,杨孝安.节能环保行业融资结构对经营绩效的影响[J].西安工程大学学报,2015,29(5):630?635.

薄膜电容器范文第5篇

(1.中国科学院微电子研究所,北京100029;2.华进半导体封装先导技术研发中心有限公司,江苏无锡214135)

摘要:基于柔性印刷电路板(FPC)技术,制造了2种柔性ZnO纳米发电机。首先,使用简单的一步溶剂热法制备ZnO纳米线,前驱体为二水合醋酸锌(Zn(Ac)2·2H2O)和氢氧化钠(NaOH),溶剂为乙醇。绝大部分ZnO纳米线的直径在20~30 nm之间,表明制备的纳米线具有均匀的形貌。然后,使用一种新颖的离心方法制备有序堆积的ZnO纳米线薄膜。SEM表征表明,ZnO纳米线薄膜中,纳米线横向紧密有序排列。最后,采用柔性印刷电路板技术,制造了2种柔性ZnO纳米发电机。对使用示波器纳米发电机的输出电压进行测试,开路电压最高达到10 V。纳米发电机是利用ZnO纳米线的压电效应和广泛存在的摩擦电静电效应,将周围环境中广泛存在的各种有用机械能转换为电能。这里制造的纳米发电机的工艺兼容传统的柔性印刷电路板技术,未来,这种柔性纳米发电机能够集成在柔性电路板中,形成自供电的小型化电子系统。

关键词 :ZnO;纳米发电机;压电效应;摩擦电静电;柔性印刷电路板

中图分类号:TN705?34 文献标识码:A 文章编号:1004?373X(2015)14?0141?04

收稿日期:2015?01?05

基金项目:重大科学技术专项(2013ZX02502?004)

0 引言

自从2006 年纳米发电机(NG)第一次被报道[1],就引起了全世界范围的关注。在过去几年中,研究人员在纳米发电机领域取得了许多突破性的成果[2?4]。目前,研究人员已经制造了多种纳米发电机,比如压电纳米发电机[5]、摩擦电静电纳米发电机[6]、热电纳米发电机[7]、超声波纳米发电机[8]等。当今的电子时代,在微纳尺度范围,急切需要独立的、无需维护的、可持续的、可连续运行的能源技术,用于可植入生物传感器、超灵敏度化学传感器、纳米机器人、微电机械系统、远程或移动环境传感器[9]、国土安全,甚至可穿戴个人电子产品[10]等。在未来,构建完整的物联网需要安置无数的传感器或执行器,独立免维护的驱动能量将可以节省大量维护成本。

纳米发电机能够收集周围环境中的微弱的振动能、机械能、电磁能或超声波能量等,并转化为电能,为其他电子器件提供能量。纳米发电机是一种理想的独立免维护的能量来源。在不久的将来,纳米发电机将会在物联网等领域有广阔应用前景。

由于ZnO 纳米线(NW)具有良好的半导体特性、压电特性[11]、生物兼容性[12]和低制造成本[13],所以其是制造压电纳米发电机的一种很有潜力的候选材料。

本文首先采用一步溶剂热法制备ZnO 纳米线,本文采用离心方法制备有序堆积的ZnO 纳米线薄膜(NF),基于柔性印刷电路板(FPC)技术,将ZnO 纳米线薄膜埋入柔性电路板中,制造2种具有不同基底的柔性ZnO 纳米发电机。制造的纳米发电机可以同时利用ZnO纳米线的压电效应和摩擦电静电效应,将机械能转化为电能。在未来的工作中,这种柔性纳米发电机能够集成到柔性电路板中,形成自供电的小型化电子系统。

1 实验内容

1.1 离心方法制造有序堆积的ZnO纳米线薄膜

采用简单的一步溶剂热法制备ZnO纳米线,二水合醋酸锌(Zn(Ac) 2·2H2O)和氢氧化钠(NaOH)作为前驱体,乙醇作为溶剂。对比其他的制备方法,溶剂热法具有相对低成本、低毒性和易于规模生产等优点。然后,依次使用丙酮、乙醇、去离子水对制备的ZnO纳米线进行离心清洗。相对于水,ZnO纳米线更容易分散在丙酮和乙醇中,需要用超声或搅拌来帮助纳米线在溶剂中分散。

采用离心方法制造ZnO纳米线薄膜。首先,将清洗后的ZnO 纳米线分散在乙醇中形成均匀的悬浊液;然后,将适量的悬浊液加入离心管中,离心机型号为CENCE TG16?WS,通过控制离心转速和离心时间,纳米线将被离心沉淀在离心管管底。由于离心原理,纳米线沉淀中的纳米线近似平行有序排列。去除上清液后,纳米线沉淀在50 oC 烘干30 min;这样纳米线沉淀就可以从离心管管底剥离,完成制造ZnO纳米线薄膜。ZnO纳米线薄膜使用Hitachi S4800进行SEM表征。图1(a)为ZnO 纳米线薄膜中纳米线的SEM 表征结果,可以看到ZnO纳米线薄膜中绝大部分的纳米线横向有序排列,纳米线紧密接触,密实堆积;图1(b)为制备的纳米线的直径分布统计。所得纳米线的直径小于50 nm,绝大多数纳米线的直径在20~30 nm 之间,这表明制备的纳米线具有相对均匀的直径。

1.2 制造柔性ZnO纳米发电机

在此2 种设计方案分别制造柔性ZnO 纳米发电机。它们的基本结构相同,但使用不同的基底,一种是聚酰亚胺(PI)薄膜,另一种是铜箔。

1.2.1 PI薄膜基底方案

基底采用50 μm厚的PI薄膜。PI薄膜是柔性印刷电路板工艺中经常使用的基板材料,采用lift?off工艺在PI薄膜上制作Ag图形化电极。图2是在PI薄膜上制作Ag图形化电极的详细步骤。首先,将PI膜进行清洗;然后,PI膜的一面覆盖一层干膜,并使用UV 光对干膜进行曝光显影。干膜的性质与正性光刻胶类似,在显影时,曝光的干膜被保留而未曝光的干膜将被刻蚀掉;在覆盖干膜的一面依次溅射一层TiW(厚度20 nm)和一层Ag(厚度200 nm),TiW 层用作粘附层;最后,将基底浸入丙酮中30 min,剥离基板上剩余的干膜。这样,就完成了PI薄膜上Ag图形化电极的制备。

图3(a)是制作完成Ag 图形化电极的PI 薄膜;图3(b)是将PI薄膜切割成单个单元后的Ag图形化电极。图3(b)中,单元中间的Ag方块是放置ZnO纳米线薄膜的位置,Ag和ZnO纳米线接触形成欧姆接触,单元边缘的Ag线条用作焊接外部电路的导线。

纳米发电机具有一个“PI?NF?PI”三明治结构,上下两层PI薄膜的中间放置ZnO 纳米线薄膜,周围使用非导电胶进行严密封装。上下两层PI薄膜需要有一定的位错,保证中间的Ag 方块完全对齐,并露出PI 薄膜边缘的Ag 线条,用于焊接导线。单个纳米发电机的三明治叠层方法如图3(c)所示。

1.2.2 铜箔基底方案

本方案中,纳米发电机的基底采用一种应用于柔性电路板工艺中的铜箔(厚度20 μm)。铜箔的表面已经做过防氧化处理,所以铜箔可以直接使用并能保证良好的导电性。铜箔既作为纳米发电机的基底又用作与外电路进行电连接。纳米发电机具有“Cu?NF?Cu”三明治结构。具体的制造步骤如图4所示。

第一步:在铜箔的一面依次溅射一层TiW(厚度20 nm)和一层Ag(厚度200 nm),TiW层作为粘附层,Ag层与ZnO纳米线薄膜形成欧姆接触。由于铜箔表面无法制作图形化电极(铜箔具有良好导电性),使用一种热固化胶膜作为上下铜箔基底之间的绝缘层。这种热固化胶膜经常应用在柔性电路板工艺中,可以在热固化后仍然保持柔性。

第二步:在胶膜上制作用于放置ZnO 纳米线薄膜的方块窗口(6 mm×6 mm)阵列,如图4 中的(b)所示。第三步:将胶膜覆盖在溅射Ag层的铜箔表面。

第四步:将ZnO纳米线薄膜切割成与胶膜上的方块窗口一样大小并放置在方块窗口内。切割的纳米线薄膜的尺寸需要尽量能够覆盖方块窗口,防止上下基底接触造成短路失效。

第五步:将另一块溅射Ag层的铜箔覆盖在胶膜上,如图4 中的(e)所示。因为胶膜具有很大的粘性,当将铜箔覆盖在胶膜上时很容易产生气泡,所以覆盖上层铜箔时需要非常小心。“Cu?NF?Cu”三明治结构使用真空压膜机MVLP?500 进行热固化层压。胶膜固化的条件是在压力4.6 MPa和温度160 oC下热固化90 min。

2 结果与讨论

基于两种不同基底,制造了两种柔性ZnO纳米发电机。纳米发电机的输出电压使用实时示波器ATTENADS1102c进行测试。为了方便测试,将铜导线焊接在纳米发电机的上下电极。使用手指拍打纳米发电机表面,手指拍打的机械能作为能量来源。开路电压的测试结果如图5所示。PI薄膜基底纳米发电机的开路电压峰值可达10 V以上,如图5(a)所示;而铜箔基底纳米发电机的开路电压峰值仅为170 mV 左右,如图5(b)所示。PI薄膜基底纳米发电机比铜箔基底纳米发电机具有更高开路输出电压。

这2 种纳米发电机的基本结构相同,都具有“上电极?NF?下电极”三明治结构,如图5 所示。两种纳米发电机最大的不同就是基底。PI薄膜是绝缘体,而铜箔是良导体。铜箔基底纳米发电机的Ag层和铜箔可以整体看作一个电极,而PI薄膜基底纳米发电机的PI薄膜和Ag层形成了一个“绝缘层?金属层”结构。这种“绝缘层?金属层”结构类似一种基于人体皮肤的摩擦电纳米发电机[4]。所以,当用手指(人体皮肤)拍打PI薄膜基底纳米发电机的表面时,输出电压不仅来源自压电效应,而且来自摩擦电静电效应。PI薄膜基底纳米发电机可以看作是压电纳米发电机和摩擦电纳米发电机的集成,所以比铜箔基底纳米发电机具有更高的输出电压。

3 结语

本文采用简单的一步溶剂热法制备ZnO纳米线,纳米线的直径小于50 nm,绝大多数纳米线的直径在20~30 nm 之间,这表明制备的纳米线具有相对均匀的直径。在此使用一种新颖的离心方法制造有序堆积的ZnO纳米线薄膜,ZnO纳米线薄膜中的纳米线近似平行有序排列,紧密接触,密实堆积。基于柔性印刷电路板工艺,制造了2种柔性ZnO纳米发电机。PI薄膜基底纳米发电机可以看作是压电纳米发电机和摩擦电纳米发电机的集成,而铜箔基底纳米发电机仅是一种压电纳米发电机,所以PI薄膜基底纳米发电机比铜箔基底纳米发电机具有更高的输出电压。PI薄膜基底纳米发电机的开路输出电压可达10 V 以上,而铜箔基底纳米发电机的开路输出电压最高仅为170 mV。

参考文献

[1] WANG Z L,SONG J. Piezoelectric nanogenerators based onzinc oxide nanowire arrays [J]. science,2006,312(5771):242?246.

[2] PERIASAMY C,CHAKRABARTI P. Time?dependent degrada?tion of Pt/ZnO nanoneedle rectifying contact based piezoelec?tric nanogenerator [J]. Journal of Applied Physics,2011,109(5):054306.

[3] KUMAR B,KIM S?W. Energy harvesting based on semicon?ducting piezoelectric ZnO nanostructures [J]. Nano Energy,2012,1(3):342?355.

[4] YANG Y,ZHANG H L,LIN Z H,et al. Human skin basedtriboelectric nanogenerators for harvesting biomechanical ener?gy and as self?powered active tactile sensor system [J]. ACS Na?no,2013,7(10):9213?9222.

[5] SONG M,ZHANG Y,PENG M,et al. Low frequency wide?band nano generators for energy harvesting from natural envi?ronment [J]. Nano Energy,2014,6(0):66?72.

[6] YANG Y,ZHANG H L,ZHONG X D,et al. Electret Film?En?hanced Triboelectric Nanogenerator Matrix for Self?Powered In?stantaneous Tactile Imaging [J]. ACS applied Materials & Inter?faces,2014,6(5):3680?3688.

[7] YANG Y,GUO W X,PRADEL K C,et al. Pyroelectric Nano?generators for Harvesting Thermoelectric Energy [J]. Nano Let?ters,2012,12(6):2833?2838.

[8] CHA S,KIM S M,KIM H J,et al. Porous PVDF as effectivesonic wave driven nanogenerators [J]. Nano Letters,2011,11(12):5142?5147.

[9] XUE X,NIE Y,HE B,et al. Surface free?carrier screening ef?fect on the output of a ZnO nanowire nanogenerator and its po?tential as a self?powered active gas sensor [J]. Nanotechnology,2013,24(22):225501.

[10] YANG Y,ZHANG H,CHEN J,et al. Simultaneously har?vesting mechanical and chemical energies by a hybrid cell forself? powered biosensors and personal electronics [J]. EnergyEnviron Sci,2013,6(6):1744?1749.

[11] GAO P X,WANG Z L. Nanoarchitectures of semiconductingand piezoelectric zinc oxide [J]. Journal of Applied Physics,2005,97(4):044304?044307.

[12] LI Z,YANG Rusen,YU M,et al. Cellular level biocompati?bility and biosafety of ZnO nanowires [J]. The Journal ofPhysical Chemistry C,2008,112(51):20114?20117.

[13] 冯怡,袁忠勇.ZnO 纳米结构制备及其器件研究[J].中国科技论文在线,2009(3):157?169.

相关期刊更多

真空科学与技术学报

北大期刊 审核时间1-3个月

中国科学技术协会

真空

统计源期刊 审核时间1-3个月

中国机械工业集团有限公司;沈阳真空技术研究所有限公司

功能材料与器件学报

部级期刊 审核时间1个月内

中国科学院