首页 > 文章中心 > 采集技术

采集技术范文精选

采集技术

采集技术范文第1篇

关键字蜜罐,交互性,入侵检测系统,防火墙

1引言

现在网络安全面临的一个大问题是缺乏对入侵者的了解。即谁正在攻击、攻击的目的是什么、如何攻击以及何时进行攻击等,而蜜罐为安全专家们提供一个研究各种攻击的平台。它是采取主动的方式,用定制好的特征吸引和诱骗攻击者,将攻击从网络中比较重要的机器上转移开,同时在黑客攻击蜜罐期间对其行为和过程进行深入的分析和研究,从而发现新型攻击,检索新型黑客工具,了解黑客和黑客团体的背景、目的、活动规律等。

2蜜罐技术基础

2.1蜜罐的定义

蜜罐是指受到严密监控的网络诱骗系统,通过真实或模拟的网络和服务来吸引攻击,从而在黑客攻击蜜罐期间对其行为和过程进行分析,以搜集信息,对新攻击发出预警,同时蜜罐也可以延缓攻击和转移攻击目标。

蜜罐在编写新的IDS特征库、发现系统漏洞、分析分布式拒绝服务(DDOS)攻击等方面是很有价值的。蜜罐本身并不直接增强网络的安全性,将蜜罐和现有的安全防卫手段如入侵检测系统(IDS)、防火墙(Firewall)、杀毒软件等结合使用,可以有效提高系统安全性。

2.2蜜罐的分类

根据蜜罐的交互程度,可以将蜜罐分为3类:

蜜罐的交互程度(LevelofInvolvement)指攻击者与蜜罐相互作用的程度。

⑴低交互蜜罐

只是运行于现有系统上的一个仿真服务,在特定的端口监听记录所有进入的数据包,提供少量的交互功能,黑客只能在仿真服务预设的范围内动作。低交互蜜罐上没有真正的操作系统和服务,结构简单,部署容易,风险很低,所能收集的信息也是有限的。

⑵中交互蜜罐

也不提供真实的操作系统,而是应用脚本或小程序来模拟服务行为,提供的功能主要取决于脚本。在不同的端口进行监听,通过更多和更复杂的互动,让攻击者会产生是一个真正操作系统的错觉,能够收集更多数据。开发中交互蜜罐,要确保在模拟服务和漏洞时并不产生新的真实漏洞,而给黑客渗透和攻击真实系统的机会。

⑶高交互蜜罐

由真实的操作系统来构建,提供给黑客的是真实的系统和服务。给黑客提供一个真实的操作系统,可以学习黑客运行的全部动作,获得大量的有用信息,包括完全不了解的新的网络攻击方式。正因为高交互蜜罐提供了完全开放的系统给黑客,也就带来了更高的风险,即黑客可能通过这个开放的系统去攻击其他的系统。

2.3蜜罐的拓扑位置

蜜罐本身作为一个标准服务器对周围网络环境并没有什么特别需要。理论上可以布置在网络的任何位置。但是不同的位置其作用和功能也是不尽相同。

如果用于内部或私有网络,可以放置在任何一个公共数据流经的节点。如用于互联网的连接,蜜罐可以位于防火墙前面,也可以是后面。

⑴防火墙之前:如见图1中蜜罐(1),蜜罐会吸引象端口扫描等大量的攻击,而这些攻击不会被防火墙记录也不让内部IDS系统产生警告,只会由蜜罐本身来记录。

因为位于防火墙之外,可被视为外部网络中的任何一台普通的机器,不用调整防火墙及其它的资源的配置,不会给内部网增加新的风险,缺点是无法定位或捕捉到内部攻击者,防火墙限制外向交通,也限制了蜜罐的对内网信息收集。

⑵防火墙之后:如图1中蜜罐(2),会给内部网带来安全威胁,尤其是内部网没有附加的防火墙来与蜜罐相隔离。蜜罐提供的服务,有些是互联网的输出服务,要求由防火墙把回馈转给蜜罐,不可避免地调整防火墙规则,因此要谨慎设置,保证这些数据可以通过防火墙进入蜜罐而不引入更多的风险。

优点是既可以收集到已经通过防火墙的有害数据,还可以探查内部攻击者。缺点是一旦蜜罐被外部攻击者攻陷就会危害整个内网。

还有一种方法,把蜜罐置于隔离区DMZ内,如图1中蜜罐(3)。隔离区只有需要的服务才被允许通过防火墙,因此风险相对较低。DMZ内的其它系统要安全地和蜜罐隔离。此方法增加了隔离区的负担,具体实施也比较困难。

3蜜罐的安全价值

蜜罐是增强现有安全性的强大工具,是一种了解黑客常用工具和攻击策略的有效手段。根据P2DR动态安全模型,从防护、检测和响应三方面分析蜜罐的安全价值。

⑴防护蜜罐在防护中所做的贡献很少,并不会将那些试图攻击的入侵者拒之门外。事实上蜜罐设计的初衷就是妥协,希望有人闯入系统,从而进行记录和分析。

有些学者认为诱骗也是一种防护。因为诱骗使攻击者花费大量的时间和资源对蜜罐进行攻击,从而防止或减缓了对真正系统的攻击。

⑵检测蜜罐的防护功能很弱,却有很强的检测功能。因为蜜罐本身没有任何生产行为,所有与蜜罐的连接都可认为是可疑行为而被纪录。这就大大降低误报率和漏报率,也简化了检测的过程。

现在的网络主要是使用入侵检测系统IDS来检测攻击。面对大量正常通信与可疑攻击行为相混杂的网络,要从海量的网络行为中检测出攻击是很困难的,有时并不能及时发现和处理真正的攻击。高误报率使IDS失去有效的报警作用,蜜罐的误报率远远低于大部分IDS工具。

另外目前的IDS还不能够有效地对新型攻击方法进行检测,无论是基于异常的还是基于误用的,都有可能遗漏新型或未知的攻击。蜜罐可以有效解决漏报问题,使用蜜罐的主要目的就是检测新的攻击。

⑶响应蜜罐检测到入侵后可以进行响应,包括模拟回应来引诱黑客进一步攻击,发出报警通知系统管理员,让管理员适时的调整入侵检测系统和防火墙配置,来加强真实系统的保护等。

4蜜罐的信息收集

要进行信息分析,首先要进行信息收集,下面分析蜜罐的数据捕获和记录机制。根据信息捕获部件的位置,可分为基于主机的信息收集和基于网络的信息收集。

4.1基于主机的信息收集

基于主机的信息收集有两种方式,一是直接记录进出主机的数据流,二是以系统管理员身份嵌入操作系统内部来监视蜜罐的状态信息,即所谓“Peeking”机制。

⑴记录数据流

直接记录数据流实现一般比较简单,主要问题是在哪里存储这些数据。

收集到的数据可以本地存放在密罐主机中,例如把日志文件用加密技术放在一个隐藏的分区中。本地存储的缺点是系统管理员不能及时研究这些数据,同时保留的日志空间可能用尽,系统就会降低交互程度甚至变为不受监控。攻击者也会了解日志区域并且试图控制它,而使日志文件中的数据不再是可信数据。

因此,将攻击者的信息存放在一个安全的、远程的地方相对更合理。以通过串行设备、并行设备、USB或Firewire技术和网络接口将连续数据存储到远程日志服务器,也可以使用专门的日志记录硬件设备。数据传输时采用加密措施。

⑵采用“Peeking”机制

这种方式和操作系统密切相关,实现相对比较复杂。

对于微软系列操作系统来说,系统的源代码是很难得到,对操作系统的更改很困难,无法以透明的方式将数据收集结构与系统内核相结合,记录功能必须与攻击者可见的用户空间代码相结合。蜜罐管理员一般只能察看运行的进程,检查日志和应用MD-5检查系统文件的一致性。

对于UNIX系列操作系统,几乎所有的组件都可以以源代码形式得到,则为数据收集提供更多的机会,可以在源代码级上改写记录机制,再重新编译加入蜜罐系统中。需要说明,尽管对于攻击者来说二进制文件的改变是很难察觉,一个高级黑客还是可能通过如下的方法探测到:

·MD-5检验和检查:如果攻击者有一个和蜜罐对比的参照系统,就会计算所有标准的系统二进制文件的MD-5校验和来测试蜜罐。

·库的依赖性和进程相关性检查:即使攻击者不知道原始的二进制系统的确切结构,仍然能应用特定程序观察共享库的依赖性和进程的相关性。例如,在UNIX操作系统中,超级用户能应用truss或strace命令来监督任何进程,当一个象grep(用来文本搜索)的命令突然开始与系统日志记录进程通信,攻击者就会警觉。库的依赖性问题可以通过使用静态联接库来解决。

另外如果黑客攻陷一台机器,一般会安装所谓的后门工具包,这些文件会代替机器上原有的文件,可能会使蜜罐收集数据能力降低或干脆失去。因此应直接把数据收集直接融入UNIX内核,这样攻击者很难探测到。修改UNIX内核不象修改UNIX系统文件那么容易,而且不是所有的UNIX版本都有源代码形式的内核。不过一旦源代码可用,这是布置和隐藏数据收集机制有效的方法。

4.2基于网络的信息收集

基于主机的信息收集定位于主机本身,这就很容易被探测并终止。基于网络的信息收集将收集机制设置在蜜罐之外,以一种不可见的方式运行,很难被探测到,即使探测到也难被终止,比基于主机的信息收集更为安全。可以利用防火墙和入侵检测系统从网络上来收集进出蜜罐的信息。

⑴防火墙

可以配置防火墙记录所有的出入数据,供以后仔细地检查。用标准文件格式来记录,如Linux系统的tcpdump兼容格式,可以有很多工具软件来分析和解码录制的数据包。也可以配置防火墙针对进出蜜罐数据包触发报警,这些警告可以被进一步提炼而提交给更复杂的报警系统,来分析哪些服务己被攻击。例如,大部分利用漏洞的程序都会建立一个shell或打开某端口等待外来连接,防火墙可以记录那些试图与后门和非常规端口建立连接的企图并且对发起源的IP告警。防火墙也是数据统计的好地方,进出数据包可被计数,研究黑客攻击时的网络流量是很有意义的。

⑵入侵检测系统

网络入侵检测系统NIDS在网络中的放置方式使得它能够对网络中所有机器进行监控。可以用HIDS记录进出蜜罐的所有数据包,也可以配置NIDS只去捕获我们感兴趣的数据流。

在基于主机的信息收集中,高明的入侵者会尝试闯入远程的日志服务器试图删除他们的入侵记录,而这些尝试也正是蜜罐想要了解和捕获的信息。即使他们成功删除了主机内的日志,NIDS还是在网内静静地被动捕获着进出蜜罐的所有数据包和入侵者的所有活动,此时NIDS充当了第二重的远程日志系统,进一步确保了网络日志记录的完整性。

当然,不论是基于误用还是基于异常的NIDS都不会探测不到所有攻击,对于新的攻击方式,特征库里将不会有任何的特征,而只要攻击没有反常情况,基于异常的NIDS就不会触发任何警告,例如慢速扫描,因此要根据蜜罐的实际需要来调整IDS配置。

始终实时观察蜜罐费用很高,因此将优秀的网络入侵检测系统和蜜罐结合使用是很有用的。

4.3主动的信息收集

信息也是可以主动获得,使用第三方的机器或服务甚至直接针对攻击者反探测,如Whois,Portscan等。这种方式很危险,容易被攻击者察觉并离开蜜罐,而且不是蜜罐所研究的主要范畴。

5蜜罐的安全性分析

5.1蜜罐的安全威胁

必须意识到运行蜜罐存在的一定的风险,有三个主要的危险是:

⑴未发现黑客对蜜罐的接管

蜜罐被黑客控制并接管是非常严重的,这样的蜜罐已毫无意义且充满危险。一个蜜罐被攻陷却没有被蜜罐管理员发现,则蜜罐的监测设计存在着缺陷。

⑵对蜜罐失去控制

对蜜罐失去控制也是一个严重的问题,一个优秀的蜜罐应该可以随时安全地终止进出蜜罐的任何通讯,随时备份系统状态以备以后分析。要做到即使蜜罐被完全攻陷,也仍在控制之中。操作者不应该依靠与蜜罐本身相关的任何机器。虚拟机同样存在危险,黑客可能突破虚拟机而进入主机操作系统,因此虚拟蜜罐系统的主机同样是不可信的。

失去控制的另一方面是指操作者被黑客迷惑。如黑客故意制造大量的攻击数据和未过滤的日志事件以致管理员不能实时跟踪所有的活动,黑客就有机会攻击真正目标。

⑶对第三方的损害

指攻击者可能利用蜜罐去攻击第三方,如把蜜罐作为跳板和中继发起端口扫描、DDOS攻击等。

5.2降低蜜罐的风险

首先,要根据实际需要选择最低安全风险的蜜罐。事实上并不总是需要高交互蜜罐,如只想发现公司内部的攻击者及谁探查了内部网,中低交互的蜜罐就足够了。如确实需要高交互蜜罐可尝试利用带防火墙的蜜网而不是单一的蜜罐。

其次,要保证攻击蜜罐所触发的警告应当能够立即发送给蜜罐管理员。如探测到对root权限的尝试攻击就应当在记录的同时告知管理员,以便采取行动。要保证能随时关闭蜜罐,作为最后的手段,关闭掉失去控制的蜜罐,阻止了各种攻击,也停止了信息收集。

相对而言保护第三方比较困难,蜜罐要与全球的网络交互作用才具有吸引力而返回一些有用的信息,拒绝向外的网络交通就不会引起攻击者太大的兴趣,而一个开放的蜜罐资源在黑客手里会成为有力的攻击跳板,要在二者之间找到平衡,可以设置防火墙对外向连接做必要的限定:

⑴在给定时间间隔只允许定量的IP数据包通过。

⑵在给定时间间隔只允许定量的TCPSYN数据包。

⑶限定同时的TCP连接数量。

⑷随机地丢掉外向IP包。

这样既允许外向交通,又避免了蜜罐系统成为入侵者攻击他人的跳板。如需要完全拒绝到某个端口的外向交通也是可以的。另一个限制方法是布置基于包过滤器的IDS,丢弃与指定特征相符的包,如使用Hogwash包过滤器。

6结语

蜜罐系统是一个比较新的安全研究方向。相对于其它安全机制,蜜罐使用简单,配置灵活,占用的资源少,可以在复杂的环境下有效地工作,而且收集的数据和信息有很好的针对性和研究价值。既能作为独立的安全信息工具,还可以与其他的安全机制协作使用,取长补短地对入侵进行检测,查找并发现新型攻击和新型攻击工具。

蜜罐也有缺点和不足,主要是收集数据面比较狭窄和给使用环境引入了新的风险。面对不断改进的黑客技术,蜜罐技术也要不断地完善和更新。

参考文献

[1]熊华,郭世泽等.网络安全—取证与蜜罐[M].北京人民邮电出版社,2003,97-136

[2]LanceSpitzner.DefinitionsandValueofHoneypots.[EB/OL]..2002.

[3]赵伟峰,曾启铭.一种了解黑客的有效手段—蜜罐(Honeypot)[J].计算机应用,2003,23(S1):259-261.

[4]马晓丽,赵站生,黄轩.Honeypot—网络陷阱.计算机工程与应用,2003.39(4):162-165.

采集技术范文第2篇

系统框架设计

林业资源监管通用数据采集系统采用C#语言、ArcEngine和开普互联智能表单平台进行设计开发。系统分为B/S架构的Web配置系统和C/S架构的桌面系统两部分,如图1所示。这种设计方式基于:1)B/S架构已成为林业业务系统的主流架构,借助配置系统以便将通用数据采集系统与业务系统进行集成;2)使桌面系统可以专注于数据采集,实现与业务流程、功能的松散耦合。Web配置系统包括数据交换以及桌面系统的配置管理功能模块,支持本地和远程配置方式。数据交换通过将事先制作完成的支撑数据提供给桌面系统,作为各业务数据采集系统运行的基础,并将采集完成的数据返回数据库,提供给其他业务系统使用。配置管理支持对采集数据、支撑数据以及桌面系统功能界面的配置,并将配置结果保存在XML配置文件中,作为桌面业务系统运行的基础。通过配置系统为桌面系统提供支撑数据并进行相关配置,就可以为不同业务定制数据采集系统。桌面系统包括通用功能元件、业务系统配置、动态数据的管理以及界面的生成4个功能模块。通用功能元件包含数据采集的一般功能。业务系统配置提供配置内容的读写功能。动态数据管理根据配置实现对不同业务支撑数据的访问、更新以及采集数据的导出。界面生成根据配置信息生成特定于业务的系统界面。桌面系统框架采用变种MVC模式(模型--视图--控制器),该模式采用数据驱动设计[9],使得视图、控制器和模型可以随业务而变。在数据层,空间数据与属性数据分表存储,空间数据表只存储与业务无关的图形信息,从而能以统一的形式访问、处理及显示空间数据,不受业务变化的影响。而与业务紧密相关的属性数据单独存储在属性表中,并将与属性数据相关的视图、控制器及模型的变化存储在用开普互联智能表单平台制作的表单文件、数据映射文件中,系统在运行时就可以基于表单文件、数据映射文件及配置文件动态地构建视图、控制器及模型,从而将业务数据的变化隔离在源代码之外,使源代码高度内聚,不会变异。由于两类数据的处理方式不同,数据间的完整性通过逻辑校验来保证。

关键技术及实现

林业资源监管通用数据采集系统采用的关键技术包括智能配置、界面自动生成和动态数据管理技术。

1智能配置技术

智能配置技术是指将与业务相关的变化信息存储在配置文件中,系统在运行时读取配置文件,根据其中的信息实现对不同业务数据采集功能的定制。当业务数据采集需求发生变化时,仅需通过改变配置信息就能满足需求,这样既增加了系统的灵活性,又能保持系统的稳定。数据采集系统通过配置系统实现智能配置,主要包括系统配置、采集数据配置两方面。(1)系统配置。系统配置包括支撑数据、用户功能界面配置两部分。支撑数据的配置内容包括数据版本号,采集人员的账户信息及该账户关联的业务名列表,支撑数据中各数据名称、类型、对数据操作的命令和命令状态列表。版本号为自然数值,作为数据是否需要更新的依据;业务名列表的形式为“Reforestation/造林,Harvesting/采伐”,前面是业务系统的英文名,后面是对应的中文名,之间用反斜杠隔开,指明账号可以使用的数据采集系统;数据名称为数据文件的名称,类型包括数据库、表和普通文件。命令指明了如何处理数据,包括覆盖、更新、添加、删除4种。命令状态包括已执行或未执行,决定系统是否执行命令。用户功能界面配置内容包括功能元件、逻辑验证规则和表单配置。功能元件和逻辑验证规则的配置目标可以是单个图层或整个系统。功能元件的状态包括可见、隐藏、可用与禁用,当不需要使用某项功能时,根据功能元件的名称将其状态设置为隐藏或禁用即可。逻辑验证规则的配置内容包括SQL语句及其描述,通过执行SQL语句进行验证;SQL语句的执行方式不随业务变化,规则的描述为界面上呈现给用户的信息,如地类检查。表单的配置目标是图层,包括图层名、表单文件名及其描述,通过将图层名和表单文件名配对存储,就能根据图层找到对应的表单进行属性数据的录入,描述为用户界面上呈现给用户的信息,如造林模式表。(2)数据配置。采集数据的配置包括需要导出的数据版本号、表名称、数据记录主键序列以及其他数据文件的名称。数据版本是自然数值,作为外界是否需要下载该数据的依据。系统根据数据名称和主键序列导出数据。

2功能界面自动生成

功能界面自动生成以功能元件为基础,通过建立配置文件完成用户界面的按需定制。(1)系统功能元件。系统是功能元件的集合,功能元件可能是单个功能或一类功能,如图形创建是单个功能,图形编辑是一类功能,在界面上表现为单个控件。本文使用功能元件名称、控件名称、功能状态及功能描述来表达功能元件。对于用户而言,只需配置功能名称及状态来控制功能界面。系统功能元件信息存储在XML文档中,该文档需要按照模板文件制作,配置系统解析该XML文档,并在界面上列举出功能元件列表供用户配置。(2)界面生成算法。数据采集系统中涉及界面变化的模块主要包括:1)空间编辑和拓扑校验界面。该界面因功能是否需要使用而变化。2)属性编辑界面。该界面随数据内容和结构而变化。3)逻辑校验界面。该界面随校验规则内容而变化。界面自动生成以功能元件及系统配置文件为基础,通过解析配置文件动态生成用户界面,生成流程如图2所示。3个界面的生成算法各有不同。空间编辑和拓扑校验界面的生成是根据配置对WindowsForm控件的可见性和可用性进行控制来实现的;属性编辑界面的生成是通过加载开普互联智能表单文件到WindowsForm窗体中来实现的,开普互联智能表单界面如图3所示;逻辑校验界面的生成是通过加载验证规则到WindowsForm窗体中的列表控件中来实现的。

3动态数据库管理

动态数据库是结构和数据都可以随需要而变化的数据库[10--11],在本文中是指整个数据库的改变。数据采集系统以单一业务配置为基础,每个采集人员配备独立的设备和采集系统,但在人力和设备资源有限的情况下,数据采集系统需要支持多个业务的数据采集或多个采集人员共用一套设备和系统。系统需要根据业务、人员职责调用不同的支撑数据。解决方案为:建立以采集人员账号名和业务名组合命名的文件夹,通过配置系统将不同的支撑数据放到对应的文件夹内。当用户登录系统时,系统依据账号列出可操作业务,采集人员从中选择业务名称,系统就可以将正确的支撑数据供给用户使用。

4数据交换

数据交换包括支撑数据的上传及采集数据的下载,使用配置系统完成,交换的数据放在该系统目录下。支撑数据的上传有2种情况:1)采集系统的定制。将所有支撑数据以添加命令上传,桌面系统运行时会判断是否存在数据,如果不存在数据,就会从配置系统目录拷贝数据到本系统目录,结合这些数据形成特定于业务的采集系统。2)部分支撑数据的变更。将部分支撑数据以添加、删除、更新3种命令之一上传,桌面系统运行时检查配置系统目录下的数据版本号,如果版本号小于配置系统目录下数据版本号,就按照配置的命令进行更改。数据采集完成并通过校验后,由桌面系统将数据导出并压缩,然后拷贝到配置系统目录。每导出一次数据都会累加版本号,系统用户根据版本号下载最新的采集数据。

采集技术范文第3篇

1引言

对于公司财务部门而言,作为企业最为重要的部门,负责为公司经营发展提供详细的财务报表,为公司未来发展和成本节约做出详细的数据依据。所以,为了提高财务管理效率与质量,必须要对财务部门进行软件升级与技术革新,这样才能不断提高财务部门数据的准确性与工作效率,为公司经营发展提供良好的数据支撑。因此,分析研究信息技术对公司财务会计管理部门的影响,能让财务部门更好地为企业发展服务。

2计算机信息技术在财务会计实际应用中存在的问题

2.1会计电算化发展不完善

对于会计电算化而言,我国已经应用了很多年,但还是存在发展不完善的现状,最直接的表现就是发达地区和发展较为落后地区的会计电算化对比,以及大企业和中小企业之间的较大差异。对于中小企业而言,一直为了公司经营发展而努力,基本考虑不到会计电算化,即使有心也是没有相应技术与能力。虽然大企业有能力开展财务会计电算化,但由于对财务会计电算化缺少足够的认识,导致大多企业一直没有实施。

2.2缺少综合素质人才

随着信息技术的快速发展,财务会计电算化对于综合素质人才的需要是越来越大。现阶段,很多企业财务会计人员还不能够熟练使用计算机,加上企业缺少关于财务会计与计算机方面的综合性人才,导致财务会计部门信息化发展缓慢。

2.3会计电算化存在安全隐患

会计电算化安全隐患是指企业财务数据都被计算机字符所代替,这就无法确保财务数据的完整性和统一性,此外,如果没有做好网络安全以及操作安全,很可能导致财务数据被泄露等。

2.4财务会计系统缺少针对性设计

对于财务会计系统软件而言,如果企业没有进行定制开发,就只能购买通用性的财务软件,这些软件系统只有财务部门所需要的基本功能,缺少符合企业自身特点的功能。企业和企业之间存在财务管理差异性,加上软件设计和开发人员缺少相应的财务会计知识,这也是导致开发存在问题的主要原因。另外,在开发时设计人员只考虑通用性需求分析,缺少针对性设计,也是导致财务系统适用性差的原因。

3解决计算机信息技术在财务会计应用中的措施

3.1提升企业对计算机技术在财务会计使用的认知

要不断提升企业人员对于计算机信息技术的认识,尤其是企业财务会计管理人员,只有这样才能不断提高企业工作效率以及财务会计管理人员工作效率与工作质量。只有提高企业人员对计算机技术的认识,才能让他们更好地去了解和应用计算机技术,才能更好地利用计算机软件解决工作问题。

3.2提高企业综合性人员培养与引进

对于企业来说,要提高综合性人才的培养与引进,只有这样才能为企业发展提供人才支撑。随着世界经济全球化发展不断加快,企业之间的竞争也越发激烈,只有掌握人才,掌握核心技术,企业才能在激烈的市场环境获得一席之地。对于企业内部而言,要加强计算机技术培训,培养企业人员利用先进的计算机技术去解决工作问题,提高工作效率与工作质量,尤其是财务会计人员,利用计算机技术可以更加高效地进行财务数据采集、分类以及统计,帮助企业提供更加准确的数据支撑。同时企业也要大力引进综合性高素质人才,只有这样才能保障企业人才济济,确保企业健康稳定发展。

3.3增强财务会计基础管理工作

为了确保企业财务会计部门提供更加准确的财务报表,提高财务工作效率及质量,必须要加强财务会计内部管理。同时要建立科学完善的财务会计管理制度,建立完善的考核体制,这样才能提高企业财务会计管理工作效率和质量。

4结束语

采集技术范文第4篇

关键词:采摘机器人;草莓采摘;机器视觉;末端执行器

0引言

随着农业生产过程机械化程度的不断提高,水果自动化采摘已经成为当前农业自动化程度的标识[1]。受水果外观特性的限制,草莓采摘过程大多依靠人工进行作业,采摘效率低,劳动强度大,成本高,导致收获时期草莓采摘滞后而造成浪费[2]。草莓采摘机器人通过夹持机构对草莓进行夹取,并使用随机刀具进行草莓茎切断,当草莓的形状和大小不同时需要准确进行夹持力和受力部位的控制,否则会出现草莓损伤现象[3-4]。因此,需要设计一种通过机器视觉进行草莓高精度识别和夹持控制的定位机构,以有效解决采摘过程中出现的损伤问题。笔者通过对草莓种植采摘过程进行分析,设计了一种基于机器视觉的草莓精确无损采摘机器人,可实现草莓自动化采摘,同时确保采摘过程中草莓无损伤。

1采摘机器人整体设计

草莓采摘机器人包含机械、电气及机器视觉3部分,如图1所示。其中,机械部分包含移动装置、末端执行器以及草莓收集装置;电气部分包含机器人电源、电机、控制器以及驱动模块;机器视觉系统主要包含图像采集传感器、视觉分析系统以及信号传输装置[5-7]。草莓采摘机器人控制系统将控制器与末端执行器连接,实现不同装置之间的信息交互,协同完成草莓采摘作业[8]。图像采集传感器获取草莓图片,并将图片数据传输至控制器进行图像处理,识别草莓形状和大小;同时,将识别信息反馈至电机驱动器,计算草莓与末端执行器之间的距离,根据移动速度计算末端执行器开始工作时间和工作结束时间。末端执行器移动至草莓正下方后,迅速向上移动,将草莓夹持,在拉力作用下草莓茎被拉断,完成草莓采摘作业[9]。

2采摘机器人视觉系统设计

草莓采摘机器人图像采集传感器是一种像素30万的视觉传感器,能够与控制器连接,实现草莓图像采集识别。在工作过程中,图像采集传感器实时进行图像采集,并将图像数据上传;控制系统根据图像信息数据,对图像中每一个像素点进行识别,并根据草莓颜色阈值进行图像判断,识别草莓的成熟程度,判断草莓是否需要采摘[10]。草莓采摘机器人通过对图像传感器采集到的图像数据特征进行识别,将草莓图像从草莓植株中识别出来,在采摘作业过程中可通过手动设置颜色阈值的方式来进行草莓判断。草莓采摘机器人末端执行器能够根据图像信息有效进行草莓状态判断,从而调整末端执行器的作用力,提高采摘作业过程可靠性[11]。整个控制过程不需要对图像信息进行精确的识别,仅需要判断图像区域内是否存在设定的RGB阈值信息和像素点的阈值,即可完成草莓成熟程度的判断;当该区域内存在符合采摘要求的草莓时,机器人末端执行器即可进行作业。在草莓成熟程度识别过程中,对草莓颜色进行识别是最直接有效的识别方法,在1个采摘作业循环完成后即可转入下一次作业循环。图3为草莓采摘机器人视觉识别流程图。草莓机器人机器视觉识别过程主要包含图像采集和图像处理两个过程:图像采集过程用于对草莓图像进行采集,控制系统同时对草莓图像进行处理,实现草莓的识别和位置确定;图像处理过程主要完成草莓图像内的颜色提取,同时对每一个像素点的RGB值进行提取,并与设定的颜色阈值进行判断,从而识别出草莓的成熟程度。

3采摘机器人电气系统设计

草莓采摘机器人电气系统交互模块用于对用户进行状态显示,可通过按键指令输入的方式进行草莓颜色阈值或采摘作业速率等作业参数设定[12]。采摘机器人传感器主要包含图像采集传感器、光电距离检测装置及位置传感器。其中,视觉传感器用于对草莓进行图像采集,根据草莓图像信息判断草莓的状态及成熟程度,作为控制器的输入指令用于判断是否需要进行采摘;光电距离检测装置用于对草莓采摘末端执行器到草莓之间的距离进行检测,避免采摘过程中出现末端执行器损坏或造成草莓损伤的现象;位置传感器用于对末端执行器的位置进行复位,同时根据位置传感器的信号值判断末端执行器是否处于控制系统原点。在采摘作业过程中,当末端执行器复位至控制系统原点时,机器人驱动电机开始作业,图像采集传感器不断进行图像采集处理,并判断草莓的成熟程度;当需要采摘时,驱动电机开始工作,并执行采摘动作。如图4为采摘机器人控制系统工作流程图。

4系统测试分析

采用机器视觉搭建草莓采摘机器人作业系统,并分别在白天、黑天、晴天、阴天、无光源辅助、有光源辅助以及不同环境交叉条件下进行采摘作业。试验过程中,每种条件设定100个采摘目标。采摘完成后统计采摘成功率及单个草莓采摘作业时长,验证草莓采摘机器人作业过程的稳定性及作业效率。采摘作业试验数据如表1所示。由表1可以看出:在同一环境条件下,在图像采集过程中进行光源辅助,能够有效提高采摘成功率,同时缩短单个草莓的采摘时间,提高采摘作业效率;在不同的采摘环境条件下,采摘机器人完成单个草莓的平均采摘时长为10s。

5结论

采集技术范文第5篇

论文摘要杜仲为我国特有经济林树种之一。从播种繁育、造林、抚育管理、皮叶的采收与贮藏等方面介绍了杜仲的栽培管理技术,以期促进杜仲的栽植生产。

杜仲为落叶乔木,是我国特有经济林树种之一。杜仲皮具有补肝肾、强筋骨、益腰膝、除酸痛、降血压等功效;杜仲叶含有丰富的维生素E和胡萝卜素及人体需要的10余种元素;杜仲除木质部外均含有重要的工业原料杜仲胶,其具有良好的绝缘性和粘着性,广泛应用于电器工业、化学工业和电讯器材工业;杜仲干直,枝叶茂密,根系发达,树姿优美,适应性强;既是优良园林绿化树种,又是丘陵山地和平原造林的重要经济林树种。现将杜仲育苗、栽培管理及采收技术总结如下。

1播种繁育

杜仲播种育苗一般春、秋播均可,但以春播为多。播种的圃地应选择地势平坦、土壤疏松肥沃、排水性能良好、微酸性至中性的砂壤土。播种前要对圃地进行翻耕冻垡,并做成宽1m、高15~25cm的苗床。同时,结合翻耕,施腐熟有机肥30t/hm2。为了减少地下害虫,还可适量施生石灰、福尔马林等对圃地进行消毒。为保证种子纯度和质量,提高发芽率,播种前要精选种子,并对种子进行催芽处理。将种用30℃左右的温水浸泡2~3d,每天换水2次,待种子吸水膨大时,捞出晾干,即可播种。杜仲播种常采用条播方法,播种沟深3cm,行距20~25cm,用种量一般为150~225kg/hm2。播种后覆1~2cm细土,并浇水盖草保墒。种子出芽后,要趁阴天或傍晚揭草,幼苗在生长过程中要及时进行除草。当幼苗长出2~4片真叶时,要进行间苗,并进行第1次追肥,施用尿素22.5~30.0kg/hm2,此后每月结合除草追肥1次,并逐渐增加施肥量,最后1次追肥应在立秋前进行,以钾肥为主。当幼苗形成5~6片真叶时,结合间苗进行移稠补稀,保留30~45万株/hm2左右。

2造林

2.1造林地选择和造林密度

杜种造林地应选择在土层深厚、疏松、肥沃、湿润、排水良好的微酸性或中性土壤上。杜仲造林密度主要根据作业方式和立地条件来确定,一般株行距为2m×2m或2m×3m,栽植1500~2400株/hm2。

2.2整地

杜仲为深根性树种,主根明显,深达1m以上,所以杜仲造林要实行大穴。对缓坡和平地造林,要力求做到全面整地或带状整地;对坡度超过15°的造林地,除局部可以全垦外,一般应进行带状整地;对坡度25°以上的地,禁止全垦,应进行带状或穴状整地。带状整地必须沿等高线进行,带间保留2~3m原有植被;穴状整地要求规格为60cm×60cm×60cm,挖穴时,表土与心土应分开放穴旁备用。

2.3栽植

栽植宜在3月上旬进行。在栽植前,要修整好根系,浸沾泥浆。栽植时,先将表土与基肥混合后垫入穴底,然后放入苗木,埋入细土,轻轻提苗,让根系舒展,再填土至穴满,踏实,上覆心土。栽植深度稍深于苗木原土痕处即可,切勿深栽。

3抚育管理

3.1中耕除草

中耕除草每年进行2次,第1次在4~5月份,第2次在7~8月份,中耕除草宜浅。对土壤粘重、板结林地,从栽植后第2年开始,必须进行深翻,以后每隔1年进行1次。同时,提倡间种豆科作物或绿肥,增强土壤肥力。

3.2追肥

结合中耕除草,每年追肥2次。追肥以腐熟有机肥加尿素混施为好,每株每次施入0.3~0.5kg。

3.3病虫害防治

杜仲在苗期易发生立枯病,在幼苗出土后1个月内,用0.5%等量式波尔多液每10d喷洒1次,1个月后用1.0%等量式波尔多液每15d喷洒1次,2~3次即可。地老虎、蝼蛄等害虫用毒饵诱杀。地下水位高或排水不良的林地,杜仲易发生根腐病,导致整株死亡。因此,要加强排水。同时挖出病株烧毁,对树穴用5%福尔马林进行消毒;可用70%甲基托布津可湿性粉剂100~150g/株,施入树冠土壤中防治根腐病。猝倒病和叶枯病在发病初期喷65%代森锌可湿性粉剂500~600倍液喷雾。采收与贮藏

4.1叶的采收和贮藏

4.1.1采叶时间。一般采叶时间可在7~10月,8月是采叶最佳时期。选择无病虫害和没有喷洒过农药的树木,要采绿叶,忌采发黄的叶,因绿叶有效成分含量高,发黄叶含量少。

4.1.2树叶采集后的处理。为防止腐烂,杜仲叶采收后要先摊放在室内,并及时进行杀青处理。常见杀青方法是以普通铁锅作为炒锅,翻炒至叶面失去光泽、叶色暗绿、叶质柔软、手握叶不粘手、失重30%左右即可。

4.1.3贮藏。杀青处理后的杜仲叶要及时烘烤或晾干,去杂质装袋。制胶用的杜仲叶也要晾干装袋,存放于干燥、通风的仓库里,注意防潮、防晒、防虫、防鼠害。

4.2皮的采收和贮藏

4.2.1剥皮时间。杜仲在生长季节的5~7月剥皮效果最好。剥皮宜选择气温25~35℃、相对湿度80%以上的阴天或晴天16时后进行。注意不要在下雨天剥皮。

4.2.2剥皮方法。在水利条件好的地方,可在剥皮前7d将杜仲树浇透1次水;不能浇水的地方,最好在下透1次雨以后抢时剥皮。要选长势旺盛、枝叶茂密、树径6cm以上的中龄树为剥皮对象。剥皮时先在主干分枝以下5cm处横割1圈,深达木质部,再从地面上10cm处同样横割1圈,然后从上下两刀口之间纵割1刀,深达形成层,注意不要损伤木质部表面的幼嫩木质部的细胞。轻轻将树皮全部剥掉,再对树杆木质部喷施杜仲“增皮灵”或杜仲“促生剂”,最后用地膜将裸体部位包扎好,上部包扎要紧,下部稍松,剥皮40~45d后揭开地膜。

友情链接