首页 > 文章中心 > 神经网络论文

神经网络论文范文精选

时间:2022-09-13 08:56:13

神经网络论文

神经网络论文范文第1篇

评价体系是指由领导部门、督导团、同事同仁、教师自身和学生等全方位各角度地来了解教师的工作绩效。通过这种绩效评价,被评教师可以从上级领导、督导团、自身和学生处获取多角度的反馈,从而更清楚地知道自己的不足、长处,从而为后期的发展及职业规划提供依据。事实证明,这种全方位的评价体系是全面而有效的。全方位高校教学质量综合评价体系包括授课评价体系和学习评价体系。授课评价体系中的评价对象是高校教师,评价主体有督导、同行、学生和教师本人。学习评价体系中,评价的对象是学生,评价主体有督导、教师、其他同学和学生本人。对于授课评价体系的指标有教师互评、教师自评、督导评教和学生评教等;对于学习评价体系的指标有同学互评、学生自评、督导评学和教师评学等。各指标相互联系、相互影响构成了全方位高校教学质量评价体系。

2神经网络用于教学质量评价体系的可行性

作为研究非线性拟合与分类的有力工具,神经网络在模式识别、自动控制、预测等方面已凸显了其优越性。神经网络针对已有的训练数据,通过不断的学习和训练,能从已有的大量复杂数据中挖掘出规律性的东西,从而达到探求未知的目的。它尤其能处理任意类型的数据,这是许多传统方法无法达到的,因而其准确度较高。同时,它还能处理多元输入,并兼顾各个输入对输出的影响。因此,将神经网络用于高校教学质量评价体系,不仅可以解决综合评价指标体系中的定性指标与定量指标的问题,也可解决传统评价体系的复杂建模问题,避免了人为的主顾随意度,保证了有效的评估结果。BP神经网络是通过反向传播误差来修正模型权值和阈值的一种应用较广泛的神经网络。将BP神经网络用于高校教学质量评估时,将全方位高校教学质量综合评价体系中的各个指标作为神经元输入,将评价的最终结果作为输出,从而建立评估模型。训练过程中,若输出的量值和预期的量值之间存在误差,且超出了规定的范围,则按照误差反向传递的方法调整各层之间的连接权值及隐层和输出层节点的阈值,直到系统误差控制在可接受的范围内,则训练停止。此时的权值和阈值将不再改变,所得的网络是经过自适应学习的正确表示,训练好的神经网络便可以作为一种定性与定量相结合的有效工具为训练数据以外的对象做出正确评价。

3教学质量评价指标体系的建立

本文根据全方位高校教学质量评价体系所包含的2个体系下的7个二级指标,将这7个指标分别当作7个二级系统,即教师互评系统、教师自评系统、督导评教系统、学生评教系统、教师评学系统、督导评学系统、学生自评系统。每个二级系统下又存在不同的评价指标。将这些评价指标作为二级系统的输入,二级系统的输出作为教学质量评价体系神经网络的输入,教学质量综合评价体系神经网络的输出则是高校教师教学质量评价的最终结果。

4BP神经网络模型的确定

首先对BP神经网络的输入数据(训练样本)进行归一化处理,这样做可有效避免隐层S函数的饱和区,同时能加快学习速度(Matlab中一般采用premnmx函数进行归一化处理)。输入层的神经元只具备数据传送的功能,一般采用线性函数作为传递函数,其学习过程中不会发生饱和现象。隐含层中的神经元一般采用饱和非线性的S函数。同时,鉴于神经网络训样本数据经过了归一化处理,则测试样本数据也需要采取相同的预处理,即采用tram-nmx函数进行数据的归一化,再用postmnmx函数对系统输出值进行反归一化处理。BP神经网络的输出层神经元数目是根据7个二级系统来确定的。本文输出选取层的神经元个数为1。隐含层数目为7,各二级系统的隐含层数目为其对应的二级指标数3,学习率取0.3,动量项系数为0.95,收敛误差界值设置为0.0001。使用了Matlab2012神经网络工具箱中的trainlm函数进行训练,通过Levenberg-Marquardt算法完成网络训练。网络的隐含层神经元传递函数为tansig函数,输出层神经元的传递函数为purelin函数。训练过程见图3。从神经网络的训练过程可以看出:使用BP网络进行建模时,训练少于200次即可实现较为完美的拟合效果。预测结果与专家评估结果的对比。

5结束语

神经网络论文范文第2篇

人工神经网络(AartificialNeuralNetwork,下简称ANN)是模拟生物神经元的结构而提出的一种信息处理方法。早在1943年,已由心理学家WarrenS.Mcculloch和数学家WalthH.Pitts提出神经元数学模型,后被冷落了一段时间,80年代又迅猛兴起[1]。ANN之所以受到人们的普遍关注,是由于它具有本质的非线形特征、并行处理能力、强鲁棒性以及自组织自学习的能力。其中研究得最为成熟的是误差的反传模型算法(BP算法,BackPropagation),它的网络结构及算法直观、简单,在工业领域中应用较多。

经训练的ANN适用于利用分析振动数据对机器进行监控和故障检测,预测某些部件的疲劳寿命[2]。非线形神经网络补偿和鲁棒控制综合方法的应用(其鲁棒控制利用了变结构控制或滑动模控制),在实时工业控制执行程序中较为有效[3]。人工神经网络(ANN)和模糊逻辑(FuzzyLogic)的综合,实现了电动机故障检测的启发式推理。对非线形问题,可通过ANN的BP算法学习正常运行例子调整内部权值来准确求解[4]。

因此,对于电力系统这个存在着大量非线性的复杂大系统来讲,ANN理论在电力系统中的应用具有很大的潜力,目前已涉及到如暂态,动稳分析,负荷预报,机组最优组合,警报处理与故障诊断,配电网线损计算,发电规划,经济运行及电力系统控制等方面[5]。

本文介绍了一种基于人工神经网络(ANN)理论的保护原理。

1、人工神经网络理论概述

BP算法是一种监控学习技巧,它通过比较输出单元的真实输出和希望值之间的差别,调整网络路径的权值,以使下一次在相同的输入下,网络的输出接近于希望值。

在神经网络投运前,就应用大量的数据,包括正常运行的、不正常运行的,作为其训练内容,以一定的输入和期望的输出通过BP算法去不断修改网络的权值。在投运后,还可根据现场的特定情况进行现场学习,以扩充ANN内存知识量。从算法原理看,并行处理能力和非线性功能是BP算法的一大优点。

2、神经网络型继电保护

神经网络理论的保护装置,可判别更复杂的模式,其因果关系是更复杂的、非线性的、模糊的、动态的和非平稳随机的。它是神经网络(ANN)与专家系统(ES)融为一体的神经网络专家系统,其中,ANN是数值的、联想的、自组织的、仿生的方式,ES是认知的和启发式的。

文献[1]认为全波数据窗建立的神经网络在准确性方面优于利用半波数据窗建立的神经网络,因此保护应选用全波数据窗。

ANN保护装置出厂后,还可以在投运单位如网调、省调实验室内进行学习,学习内容针对该省的保护的特别要求进行(如反措)。到现场,还可根据该站的干扰情况进行反误动、反拒动学习,特别是一些常出现波形间断的变电站内的高频保护。

3、结论

本文基于现代控制技术提出了人工神经网络理论的保护构想。神经网络软件的反应速度比纯数字计算软件快几十倍以上,这样,在相同的动作时间下,可以大大提高保护运算次数,以实现在时间上即次数上提高冗余度。超级秘书网

一套完整的ANN保护是需要有很多输入量的,如果对某套保护来说,区内、区外故障时其输入信号几乎相同,则很难以此作为训练样本训练保护,而每套保护都增多输入量,必然会使保护、二次接线复杂化。变电站综合自动化也许是解决该问题的一个较好方法,各套保护通过总线联网,交换信息,充分利用ANN的并行处理功能,每套保护均对其它线路信息进行加工,以此综合得出动作判据。每套保护可把每次录得的数据文件,加上对其动作正确性与否的判断,作为本身的训练内容,因为即使有时人工分析也不能区分哪些数据特征能使保护不正确动作,特别是高频模拟量。

神经网络的硬件芯片现在仍很昂贵,但技术成熟时,应利用硬件实现现在的软件功能。另外,神经网络的并行处理和信息分布存储机制还不十分清楚,如何选择的网络结构还没有充分的理论依据。所有这些都有待于对神经网络基本理论进行深入的研究,以形成完善的理论体系,创造出更适合于实际应用的新型网络及学习算法[5]。

参考文献

1、陈炳华。采用模式识别(智能型)的保护装置的设想。中国电机工程学会第五届全国继电保护学术会议,[会址不详],1993

2、RobertE.Uhrig.ApplicationofArtificialNeuralNetworksinIndustrialTechnology.IEEETrans,1994,10(3)。(1):371~377

3、LeeTH,WangQC,TanWK.AFrameworkforRobustNeuralNetwork-BasedControlofNonlinearServomechannisms.IEEETrans,1993,3(2)。(3):190~197

神经网络论文范文第3篇

[关键词]软件项目风险管理神经网络粗集

本篇论文的中心是基于粗集的人工神经网络(ANN)技术的高风险识别,这样在制定开发计划中,最大的减少风险发生的概率,形成对高风险的管理。

一、模型结构的建立

本文基于粗集的BP神经网络的风险分析模型,对项目的风险进行评估,为项目进行中的风险管理提供决策支持。在这个模型中主要是粗糙集预处理神经网络系统,即用RS理论对ANN输入端的样本约简,寻找属性间关系,约简掉与决策无关的属性。简化输入信息的表达空间维数,简化ANN结构。本论文在此理论基础上,建立一种风险评估的模型结构。这个模型由三部分组成即:风险辨识单元库、神经网络单元、风险预警单元。

1.风险辨识单元库。由三个部分功能组成:历史数据的输入,属性约简和初始化数据.这里用户需提供历史的项目风险系数。所谓项目风险系数,是在项目评价中根据各种客观定量指标加权推算出的一种评价项目风险程度的客观指标。计算的方法:根据项目完成时间、项目费用和效益投入比三个客观指标,结合项目对各种资源的要求,确定三个指标的权值。项目风险系数可以表述成:r=f(w1,w2,w3,T,T/T0,S/S0,U/U0),R<1;式中:r为风险系数;T、T0分别为实际时间和计划时间;S、S0分别为实际费用和计划费用;U、U0分别为实际效能和预计效能;w1、w2、w3分别是时间、费用和效能的加权系数,而且应满足w1+w2+w3=1的条件。

2.神经网络单元。完成风险辨识单元的输入后,神经网络单元需要先载入经初始化的核心风险因素的历史数据,进行网络中权值的训练,可以得到输入层与隐含层、隐含层与输出层之间的权值和阀值。

(1)选取核心特征数据作为输入,模式对xp=[xp1,xp2,.,xpn]T,dp(网络期望输出)提供给网络。用输入模式xp,连接权系数wij及阈值hj计算各隐含单元的输出。

m

Ypj=1/{1+exp[-(∑wijxpi-hj)]},i=1,2,.,m;j=1,2,Λ,n,

i=1

(2)用隐含层输出ypj,连接权系数wij及阈值h计算输出单元的输出

m

Yp=1/{1+exp[-(∑wjxpi-hj)]},i=1,2,.,m;j=1,2,Λ,n,

i=1

Yp=[y1,y2,……,yn]T

(3)比较已知输出与计算输出,计算下一次的隐含各层和输出层之间新的连接权值及输出神经元阈值。

wj(k+1)=wj(k)+η(k)σpσpj+α[wj(k)-wj(k-1)]

h(k+1)=h(k)+η(k)σp+α[h(k)-h(k-1)]

η(k)=η0(1-t/(T+M))

η0是初始步长;t是学习次数;T是总的迭代次数;M是一个正数,α∈(0,1)是动量系数。σp是一个与偏差有关的值,对输出结点来说;σp=yp(1-yp)(dp-yp);对隐结点来说,因其输出无法比较,所以经过反向推算;σpj=ypj(1-ypj)(ypwj)(4)用σpj、xpj、wij和h计算下一次的输入层和隐含层之间新的连接权值及隐含神经元阈值。wij(k+1)=wij(k)+η(t)σpjxpi+α[wij(k)-wij(k-1)]

3.风险预警单元

根据风险评价系数的取值,可以将项目的风险状况分为若干个区间。本文提出的划分方法是按照5个区间来划分的:

r<0.2项目的风险很低,损失发生的概率或者额度很小;

0.2≤r<0.4项目的风险较低,但仍存在一定风险;

0.4≤r<0.6项目的风险处于中等水平,有出现重大损失的可能;

0.6≤r<0.8项目的风险较大,必须加强风险管理,采取避险措施;

0.8≤r<1项目的风险极大,重大损失出现的概率很高,建议重新考虑对于项目的投资决策。

总之,有许多因素影响着项目风险的各个对象,我们使用了用户评级的方式,从风险评估单元中获得评价系数五个等级。给出各风险指标的评价系数,衡量相关风险的大小。系数越低,项目风险越低;反之,系数越高,项目风险越高。

二、实证:以软件开发风险因素为主要依据

这里我们从影响项目风险诸多因素中,经项目风险系数计算,作出决策表,利用粗集约简,抽取出最核心的特征属性(中间大量复杂的计算过程省略)。总共抽取出六个主要的指标(PersonnelManagement/Training,Schedule,ProductControl,Safety,ProjectOrganization,Communication)确定了6个输入神经元,根据需求网络隐含层神经元选为13个,一个取值在0到1的输出三层神经元的BP网络结构。将前十个季度的指标数据作为训练样本数据,对这些训练样本进行数值化和归一化处理,给定学习率η=0.0001,动量因子α=0.01,非线性函数参数β=1.05,误差闭值ε=0.01,经过多次迭代学习后训练次数N=1800网络趋于收敛,以确定神经网络的权值。最后将后二个季度的指标数据作为测试数据,输入到训练好的神经网络中,利用神经网络系统进行识别和分类,以判断软件是否会发生危机。实验结果表明,使用神经网络方法进行风险预警工作是有效的,运用神经网络方法对后二个季度的指标数据进行处理和计算,最后神经网络的实际输出值为r=0.57和r=0.77,该软件开发风险处于中等和较大状态,与用专家效绩评价方法评价出的结果基本吻合。

参考文献:

[1]王国胤“Rough:集理论与知识获取”[M].西安交通大学出版社,2001

神经网络论文范文第4篇

关键词:数据;营销

一、文献综述

当今,网络经济飞速发展,内地银行业逐渐从依靠柜台营销模式转变,电话营销以及网上营销等新颖的营销方式刚刚起步,商业银行的营销模式未来将会发生剧烈转变,银行电话营销也许会成为主流,研究银行电话营销影响因素的重要性显而易见。近年来,许多国内外学者展开了对银行电话营销的研究。李明月(2016)认为针对银行定期存款数据集,传统决策树算法的分类效率和分类准确度较低,进一步提出了集成分类树算法。王艳雯(2019)提出如何利用数据挖掘技术在银行电话营销目前所处的境地获得较为深远的业务突破,是任何一家银行提高自身的核心竞争力过程中,都不能回避的十分重要的问题,应探究Stacking集成模型在银行电话营销中的应用。王琴(2019)发现在数据时代背景下,综合应用神经网络、支持向量机和决策树等数据挖掘方法建立银行电话营销分类模型,运用案例分析法和比较分析法,通过ROC曲线、响应率曲线和捕获率曲线发现,最好的结果是BP神经网络,其AUC值是0.97。但以往学者针对银行电话营销成功率的影响因素从不同角度展开了众多研究,但研究还存在不足之处:第一,少有学者通过决策树、逻辑回归、神经网络等多个模型对银行电话营销成功率数据进行操作,缺少横向对比;第二,少有学者利用低门槛软件,例本文所用clementine建立模型;第三,内地银行电话营销业务刚刚起步,有众多问题需要发现并研究,但数据较少,关注度较低,针对内地银行电话营销成功率影响因素的研究较少、不深入。但以上不足也为本论文研究提供了一定的空间。本论文将做出的边际贡献:以银行电话营销成功率及其影响因素的相关数据为基础,建立决策树、逻辑回归、神经网络三个模型,获取变量重要性以及模型正确率,通过横向对比,确定最优模型以及影响银行电话营销成功率的重要因素。

二、研究意义及目的

(一)理论意义

本文并对决策树、逻辑回归、神经网络三个方法进行了简单主要内容及优缺点进行了简单介绍。并选取了16个输入变量和1个输出变量y(客户是否认购了定期存款),运用clementine软件工具,通过对来自UCI数据集的45211个银行电话营销成功率及其影响因素的相关数据进行决策树、逻辑回归、神经网络三个模型操作,获取变量重要性以及模型正确率,并对三个模型进行了结果及对比分析,模型正确率依次为89.92%、90.18%、90.66%。确定神经网络模型应用于影响银行电话营销成功率的因素分析更优,且知duration(最后一次联系的持续时间)、month(最后一次联系的月份)、pout-come(上次营销活动的结果)是影响银行电话营销成功率的重要因素,并依托神经网络模型及已知数据对银行电话营销成功率进行预测,对商业银行电话营销提供一定的参考与借鉴。

(二)现实意义

产品营销手段上的先进性和多样性是国外银行的显著优势。国外银行进行专业化电话营销已经有了近二十年的历史,积累了不少的相关经验。但内地银行进行电话营销以及网上营销等新颖的营销方式刚刚起步。银行的传统营销模式与网络经济时代的电话营销模式相对比,在互动方式、去求方式、服务方式、收入模式、发展模式、竞争优势、经营导向等多方面均有所不同。仅运用银行传统营销模式,已不能满足需求,为了增强自身核心竞争力,银行客户服务中心不仅要重视电话呼入服务的处理,更要充分地发挥电话呼出营销的作用,逐步地形成一套完整的银行电话客户服务体系。本文利用决策树、逻辑回归、神经网络三个模型对影响银行电话营销成功率的因素进行对比及分析,可以给商业银行发展自身电话营销业务提供一定的参考价值,助力我国商业银行电话营销成功率稳步提升。

三、方法介绍、优缺点及主要内容

(一)决策树

1.方法介绍。决策树是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。2.优点。第一,决策树易于理解并且方便实现。它可以直接体现数据,在学习的过程中,使用者不需要了解众多的背景知识;第二,对于决策树,数据的准备往往是非常简单,甚至是不必要的,数据型和常规型属性能够同时被处理,对大型数据源做出可行并且有效果的结果,只需要较短的时间。3.缺点。第一,对连续性的字段比较难预测;第二,一般的算法分类时,只是根据一个字段来分类;第三,对有时间顺序的数据;第四,当类别太多时,可能会出现错误增加较快;第五,需要很多预处理的工作。

(二)逻辑回归

1.方法介绍。逻辑回归又称Logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。逻辑回归从本质来说属于二分类问题。Logistic回归函数的表达为参数化的函数,即:hθ(x)=11+exp(-θTx)2.优点。第一,训练速度较快,在分类时,和计算量相关的只有特征的数目;第二,简单易理解,模型的可解释性非常好,从特征的权重可以看到不同的特征对最后结果的影响;第三,内存资源占用小,因为只需要存储各个维度的特征值。3.缺点。第一,对多重共线性数据较为敏感;第二,很难处理数据不平衡的问题;第三,准确率并非很高,因为形式非常的简单(非常类似线性模型),很难去拟合数据的真实分布。

(三)神经网络

1.方法介绍。人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型,是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。2.优点。第一,自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应地将学习内容记忆于网络的权值中;第二,泛化能力:在设计模式分类器时,需要考虑网络在保证对所需分类对象进行正确分类的同时,关心网络在经过训练后,能否对未见过的模式或有噪声污染的模式进行正确分类;第三,容错能力:在系统受到局部损伤的情况下,仍可以正常进行工作。3.缺点。第一,BP神经网络结构选择不一:对于选择BP神经网络结构,至今,没有一种统一并完整的理论指导,所以目前一般只可以由经验选定;第二,BP神经网络预测能力和训练能力的矛盾问题:在一般情况下,训练能力越高,预测能力相应越高。但当达到某一极限时,随着训练能力的提高,预测能力反而下降;第三,BP神经网络样本依赖性问题:网络模型的逼近以及推广的能力,与学习样本的典型性紧密相关,但是如何从问题中选取典型样本实例,进而组成训练集,目前是一个较为困难的问题。

四、数据选取

本文收集了45211个银行电话营销成功率及其影响因素的相关数据。该数据与葡萄牙一家银行机构的直接营销活动有关。这些营销活动是基于电话的。通常情况下,需要对同一客户进行一次以上的联系,以便了解产品(银行定期存款)是否会被订购(“是”)或不(“否”)。输出变量为:y-客户是否认购了定期存款;输入变量为16个:age(年龄)、job(工作)、marital(婚姻)、education(教育)、default(违约)、Housing(住房)、Loan(贷款)、Contact(联系通信类型)、Month(最后一次联系的月份)、day_of_week(最后一次联系的星期)、duration(最后一次联系的持续时间)、campaign(在这个活动期间为这个客户进行的接触次数)、pdays(在上次活动中最后一次与客户联系后的天数)、previous(在这次活动之前,为这个客户进行的接触次数)、poutcome(上次营销活动的结果)。

五、操作过程及结果

(一)决策树

变量重要性:duration(最后一次联系的持续时间)对y(客户是否认购了定期存款)影响程度最大,大约为0.58;其次,poutcome(上次营销活动的结果)对y的影响程度较大,大约为0.28;再次,month(最后一次联系的月份)对y的影响程度较大,大约为0.12;其他变量影响程度较小,不足0.05。模型正确率:89.92%。

(二)逻辑回归

变量重要性:duration(最后一次联系的持续时间)对y(客户是否认购了定期存款)影响程度最大,大约为0.49;其次,poutcome(上次营销活动的结果)对y的影响程度较大,大约为0.20;再次,month(最后一次联系的月份)对y的影响程度较大,大约为0.18;从次,contact(联系通信类型)对y有一定的影响,大约为0.17;最后,housing(住房)对y有一定的影响,大约为0.16;其他变量影响程度较小,不足0.05。模型正确率:90.18%。

(三)神经网络

变量重要性:duration(最后一次联系的持续时间)对y(客户是否认购了定期存款)影响程度最大,大约为0.33;其次,month(最后一次联系的月份)对y的影响程度较大,大约为0.17;再次,poutcome(上次营销活动的结果)对y的影响程度较大,大约为0.13;其他变量影响程度较小,不足0.05。模型正确率:90.66%。

六、结果对比及分析(如表2所示)

由表2可知,神经网络模型正确率相对高,是三者中最优模型。duration(最后一次联系的持续时间)、month(最后一次联系的月份)、poutcome(上次营销活动的结果)对y的影响程度较大,是影响银行电话营销成功率的重要因素。

参考文献:

[1]陈光荣,王军政,郭盛,等.基于C4.5决策树的自主步态选择算法[J].指挥与控制学报,2021,7(01):38-45.

[2]甘甜.基于决策树分类算法的高校远程教学质量评估研究[J].现代电子技术,2021,44(09):171-175.

神经网络论文范文第5篇

论文名称:基于BP神经网络的技术创新预测与评估模型及其应用研究

课题来源:单位自拟课题或省政府下达的研究课题

选题依据:

技术创新预测和评估是企业技术创新决策的前提和依据。通过技术创新预测和评估,可以使企业对未来的技术发展水平及其变化趋势有正确的把握,从而为企业的技术创新决策提供科学的依据,以减少技术创新决策过程中的主观性和盲目性。只有在正确把握技术创新发展方向的前提下,企业的技术创新工作才能沿着正确方向开展,企业产品的市场竞争力才能得到不断加强。在市场竞争日趋激烈的现代商业中,企业的技术创新决定着企业生存和发展、前途与命运,为了确保技术创新工作的正确性,企业对技术创新的预测和评估提出了更高的要求。

二、本课题国内外研究现状及发展趋势

现有的技术创新预测方法可分为趋势外推法、相关分析法和专家预测法三大类。

(1)趋势外推法。指利用过去和现在的技术经济信息,分析技术发展趋势和规律,在分析判断这些趋势和规律将继续的前提下,将过去和现在的趋势向未来推演。生长曲线法是趋势外推法中的一种应用较为广泛的技术创新预测方法,美国生物学家和人口统计学家RaymondPearl提出的Pearl曲线(数学模型为:Y=L∕[1+A?exp(-B·t)])及英国数学家和统计学家Gompertz提出的Gompertz曲线(数学模型为:Y=L·exp(-B·t))皆属于生长曲线,其预测值Y为技术性能指标,t为时间自变量,L、A、B皆为常数。Ridenour模型也属于生长曲线预测法,但它假定新技术的成长速度与熟悉该项技术的人数成正比,主要适用于新技术、新产品的扩散预测。

(2)相关分析法。利用一系列条件、参数、因果关系数据和其他信息,建立预测对象与影响因素的因果关系模型,预测技术的发展变化。相关分析法认为,一种技术性能的改进或其应用的扩展是和其他一些已知因素高度相关的,这样,通过已知因素的分析就可以对该项技术进行预测。相关分析法主要有以下几种:导前-滞后相关分析、技术进步与经验积累的相关分析、技术信息与人员数等因素的相关分析及目标与手段的相关分析等方法。

(3)专家预测法。以专家意见作为信息来源,通过系统的调查、征询专家的意见,分析和整理出预测结果。专家预测法主要有:专家个人判断法、专家会议法、头脑风暴法及德尔菲法等,其中,德尔菲法吸收了前几种专家预测法的长处,避免了其缺点,被认为是技术预测中最有效的专家预测法。

趋势外推法的预测数据只能为纵向数据,在进行产品技术创新预测时,只能利用过去的产品技术性能这一个指标来预测它的随时间的发展趋势,并不涉及影响产品技术创新的科技、经济、产业、市场、社会及政策等多方面因素。在现代商业经济中,对于产品技术发展的预测不能简单地归结为产品过去技术性能指标按时间的进展来类推,而应系统综合地考虑现代商业中其他因素对企业产品技术创新的深刻影响。相关分析法尽管可同时按横向数据和纵向数据来进行预测,但由于它是利用过去的历史数据中的某些影响产品技术创新的因素求出的具体的回归预测式,而所得到的回归预测模型往往只能考虑少数几种主要影响因素,略去了许多未考虑的因素,所以,所建模型对实际问题的表达能力也不够准确,预测结果与实际的符合程度也有较大偏差。专家预测法是一种定性预测方法,依靠的是预测者的知识和经验,往往带有主观性,难以满足企业对技术创新预测准确度的要求。以上这些技术创新预测技术和方法为企业技术创新工作的开展做出了很大的贡献,为企业技术创新的预测提供了科学的方法论,但在新的经济和市场环境下,技术创新预测的方法和技术应有新的丰富和发展,以克服自身的不足,更进一步适应时展的需要,为企业的技术创新工作的开展和企业的生存与发展提供先进的基础理论和技术方法。

目前,在我国企业技术创新评估中,一般只考虑如下四个方面的因素:(1)技术的先进性、可行性、连续性;(2)经济效果;(3)社会效果;(4)风险性,在对此四方面内容逐个分析后,再作综合评估。在综合评估中所用的方法主要有:Delphi法(专家法)、AHP法(层次分析法)、模糊评估法、决策树法、战略方法及各种图例法等,但技术创新的评估是一个非常复杂的系统,其中存在着广泛的非线性、时变性和不确定性,同时,还涉及技术、经济、管理、社会等诸多复杂因素,目前所使用的原理和方法,难以满足企业对技术创新评估科学性的要求。关于技术创新评估的研究,在我国的历史还不长,无论是指标体系还是评估方法,均处于研究之中,我们认为目前在企业技术创新评估方面应做的工作是:(1)建立一套符合我国实际情况的技术创新评估指标体系;(2)建立一种适应于多因素、非线性和不确定性的综合评估方法。

这种情况下,神经网络技术就有其特有的优势,以其并行分布、自组织、自适应、自学习和容错性等优良性能,可以较好地适应技术创新预测和评估这类多因素、不确定性和非线性问题,它能克服上述各方法的不足。本项目以BP神经网络作为基于多因素的技术创新预测和评估模型构建的基础,BP神经网络由输入层、隐含层和输出层构成,各层的神经元数目不同,由正向传播和反向传播组成,在进行产品技术创新预测和评估时,从输入层输入影响产品技术创新预测值和评估值的n个因素信息,经隐含层处理后传入输出层,其输出值Y即为产品技术创新技术性能指标的预测值或产品技术创新的评估值。这种n个因素指标的设置,考虑了概括性和动态性,力求全面、客观地反映影响产品技术创新发展的主要因素和导致产品个体差异的主要因素,尽管是黑匣子式的预测和评估,但事实证明它自身的强大学习能力可将需考虑的多种因素的数据进行融合,输出一个经非线性变换后较为精确的预测值和评估值。

据文献查阅,虽然在技术创新预测和评估的现有原理和方法的改进和完善方面有一定的研究,如文献[08]、[09]、[11]等,但尚未发现将神经网络应用于技术创新预测与评估方面的研究,在当前产品的市场寿命周期不断缩短、要求企业不断推出新产品的经济条件下,以神经网络为基础来建立产品技术创新预测与评估模型,是对技术创新定量预测和评估方法的有益补充和完善。

三、论文预期成果的理论意义和应用价值

本项目研究的理论意义表现在:(1)探索新的技术创新预测和评估技术,丰富和完善技术创新预测和评估方法体系;(2)将神经网络技术引入技术创新的预测和评估,有利于推动技术创新预测和评估方法的发展。

本项目研究的应用价值体现在:(1)提供一种基于多因素的技术创新定量预测技术,有利于提高预测的正确性;(2)提供一种基于BP神经网络的综合评估方法,有利于提高评估的科学性;(3)为企业的技术创新预测和评估工作提供新的方法论和实用技术。

四、课题研究的主要内容

研究目标:

以BP神经网络模型为基础研究基于多因素的技术创新预测和评估模型,并建立科学的预测和评估指标体系及设计相应的模型计算方法,结合企业的具体实际,对指标和模型体系进行实证分析,使研究具有一定的理论水平和实用价值。

研究内容:

1、影响企业技术创新预测和评佑的相关指标体系确定及其量化和规范化。从企业的宏观环境和微观环境两个方面入手,密切结合电子商务和知识经济对企业技术创新的影响,系统综合地分析影响产品技术创新的各相关因素,建立科学的企业技术创新预测和评估指标体系,并研究其量化和规范化的原则及方法。

2、影响技术创新预测和评估各相关指标的相对权重确定。影响技术创新发展和变化各相关因素在输入预测和评估模型时,需要一组决定其相对重要性的初始权重,权重的确定需要基本的原则作支持。

3、基于BP神经网络的技术创新预测和评估模型研究。根据技术创新预测的特点,以BP神经网络为基础,构建基于多因素的技术创新预测和评估模型。

4、基于BP神经网络的技术创新预测和评估模型计算方法设计。根据基于BP神经网络的技术创新预测和评估模型的基本特点,设计其相应的计算方法。

5、基于BP神经网络的技术创新预测和评估模型学习样本设计。根据相关的历史资料,构建基于BP神经网络的技术创新预测和评估模型的学习样本,对预测和评估模型进行自学习和训练,使模型适合实际情况。

6、基于BP神经网络的技术创新预测和评估技术的实证研究。以一般企业的技术创新预测与评估工作为背景,对基于BP神经网络的技术创新预测和评估技术进行实证研究。

创新点:

1、建立一套基于电子商务和知识经济的技术创新预测和评估指标体系。目前,在技术创新的预测和评估指标体系方面,一种是采用传统的指标体系,另一种是采用国外先进国家的指标体系,如何结合我国实际当前经济形势,参考国外先进发达国家的研究工作,建立一套适合于我国企业技术创新预测和评估指标体系,此为本研究要做的首要工作,这是一项创新。

2、研究基于BP神经网络的技术创新预测和评估模型及其计算方法。神经网络技术具有并行分布处理、自学习、自组织、自适应和容错性等优良性能,能较好地处理基于多因素、非线性和不确定性预测和评估的现实问题,本项目首次将神经网络技术引入企业的技术创新预测和评估,这也是一项创新。

五、课题研究的基本方法、技术路线的可行性论证

1、重视系统分析。以系统科学的思想为指导来分析影响企业技术创新发展和变化的宏观因素和微观因素,并研究影响因素间的内在联系,确定其相互之间的重要度,探讨其量化和规范化的方法,将国外先进国家的研究成果与我国具体实际相结合,建立我国企业技术创新预测和评估的指标体系。

2、重视案例研究。从国内外技术创新预测与决策成功和失败的案例中,发现问题、分析问题,归纳和总结出具有共性的东西,探索技术创新预测与宏观因素与微观因素之间的内在关系。

3、采用先简单后复杂的研究方法。对基于BP神经网络的技术创新预测和评估模型的研究,先从某一行业出发,定义模型的基本输入因素,然后,逐步扩展,逐步增加模型的复杂度。

4、理论和实践相结合。将研究工作与具体企业的技术创新实际相结合,进行实证研究,在实践中丰富和完善,研究出具有科学性和实用性的成果。

六、开展研究已具备的条件、可能遇到的困难与问题及解决措施

本人长期从事市场营销和技术创新方面的研究工作,编写出版了《现代市场营销学》和《现代企业管理学》等有关著作,发表了“企业技术创新与营销管理创新”、“企业技术创新与营销组织创新”及“企业技术创新与营销观念创新”等与技术创新相关的学术研究论文,对企业技术创新的预测和评估有一定的理论基础,也从事过企业产品技术创新方面的策划和研究工作,具有一定的实践经验,与许多企业有密切的合作关系,同时,对神经网络技术也进行过专门的学习和研究,所以,本项目研究的理论基础、技术基础及实验场所已基本具备,能顺利完成本课题的研究,取得预期的研究成果。

主要参考文献:

[01]傅家骥、仝允桓等.技术创新学.北京:清华大学出版社1998

[02]吴贵生.技术创新管理.北京:清华大学出版社2000

[03]柳卸林.企业技术创新管理.北京:科学技术出版社1997

[04]赵志、陈邦设等.产品创新过程管理模式的基本问题研究.管理科学学报.2000/2.

[05]王亚民、朱荣林.风险投资项目ECV评估指标与决策模型研究.风险投资.2002/6

免责声明:以上文章内容均来源于本站老师原创或网友上传,不代表本站观点,与本站立场无关,仅供学习和参考。本站不是任何杂志的官方网站,直投稿件和出版请联系出版社。

复制文章

微信扫描左侧二维码,3秒钟快速获得
下载验证码

被举报文档标题:

被举报文档地址:

https://www.1mishu.com/shenjingwangluolunwen/
我确定以上信息无误

举报类型:

非法(文档涉及政治、宗教、色情或其他违反国家法律法规的内容)

侵权

其他

验证码:

点击换图

举报理由:
   (必填)
紧急删除:

 13882551937、13808266089 服务时间:8:00~21:00 承诺一小时内删除

联系我们
400-888-9411 在线客服 服务时间:8:00~23:00
关于我们

公司简介

股权挂牌

版权声明

学术服务

业务介绍

服务流程

企业优势

四大保障

常见问题

参考范文

服务说明

服务流程

常见问题

使用须知

用户协议

免责声明

版权声明

侵权申诉

个人隐私

公众号