首页 > 文章中心 > 科学教育

科学教育范文精选

科学教育

科学教育范文第1篇

【论文摘要】:对科学素养涵义进行界定是一项十分重要的基础研究。文章分析了科学素养和科学素质的区别,深入探讨了科学素养概念的形成和发展,并对它在不同时期的含义进行了评析。

引言

正确理解科学素养是进行科学教育的前提和基础,然而当前中文文献(包括学术期刊和大众媒体上的文章和报道)中对科学素养的概念作深入全面探讨的论文很少,因此对科学素养进行概念辨析是十分必要的。

1.是科学素养,还是科学素质

《现代汉语词典》对素养的解释是"平日的修养,如艺术素养。"可见,科学素养即属于"如艺术素养"之类;对素质的解释是:(1)指事物的本来性质;(2)素养;(3)心理学指人的神经系统和感觉器官上的先天的特点。因此,素质包括先天和后天两个方面的因素,而素养则主要指后天培养的。所以说,科学素养与科学素质在内涵上是有区别的,科学素养是科学素质的重要组成部分。美国当代著名理科教育专家R.W.Bybee认为,第一个使用scientificliteracy一词的是美国学者Conant。literacy有两层不同的意思:一是指有学识、有文化,跟学者有关;二是指能够阅读、书写,针对一般公众。不管是学识、文化,还是阅读、书写,这些都为后天培养获得。因此,根据科学素养与科学素质的区别,把"scientificliteracy"译成"科学素养"更为确切。

2.科学素养概念的形成和发展

2.1美国三大组织的描述

在科学素养概念的形成和发展过程中,美国科学促进会(theAmericanAssociationfortheAdvancementofScience,简称AAAS)、国家科学院(theNationalAcademyofScience,简称NAS)以及国家科学基金(theNationalScienceFoundation,简称NSF)这三个组织起着重要作用。

AAAS从1985年开始发起了一个旨在通过长期的科学教育提高全美民众的科学素养的计划,即著名的2061计划(Project2061)。在试图说明科学素养这一概念的含义时,AAAS通过对一个具有科学素养的人(ascientificallyliterateperson)的描述来界定:一个有科学素养的人,"知道科学、数学和技术是相互联系的人类智慧的创造物,伟大但仍有局限;明白科学中的一些关键性概念和原理;对世界和自然了解,并认识到世界的多样性和统一性;在个人和社会生活中,能运用科学知识和科学的思考方式。"

NAS在介绍《国家科学教学标准》(NationalScienceEducationStandards)时,表达了以下观点:"科学素养是人们在进行个人决策,参与社会、文化和经济事务时所需要了解的科学知识、概念及过程,……科学素养有不同的层次和形式,科学素养的提高和扩展是一生的事,而非仅仅在校期间。"

NSF在其报告《影响未来:在科学、数学、工程和技术方面的本科生教育的新期待》(ShapingtheFuture:NewExpectationsforUndergraduateEducationinScience,Mathematics,Engineering,andTechnology)中认为,一个有科学素养的学生应该知道,"广义的科学到底是什么,科学、数学、工程和技术方面的专家们的工作内容和性质,如何评估所谓的''''科学''''信息,社会如何作出关于科学和工程方面的理性决策。"

从上述三个组织对科学素养的表述中可以看到,对科学素养的理解和定义,不同的组织之间,同中有异,异中有同。

2.2国外学者的见解

Roberts把1957-1963年这一阶段称为科学素养概念的"正名阶段"(periodoflegitimation)。然而,倡导这一概念的人,却没有给出其明确的定义,因此,紧接着正名阶段而来的,是"认真解释阶段"(periodofseriousinterpretation),这一阶段出现了有关科学素养的许多定义和解释。然后是进一步解释阶段。1976年,Gabel基于当时有关科学素养的含义的概括和分析,指出这一概念含义之庞杂,足以表示任何和科学教育有关的事。由于各种说法长期无法达成共识,这一概念实际上一度丧失了其使用价值。

1966年,Pella和同事仔细而系统地挑选100种1946-1964年之间出版的报刊文章,他们在这些文章中检查各种和科学素养有关的主题的出现频率。他们认为,一个具有科学素养的人应了解以下这些方面的内容(即所谓的"参照物"):(1)科学和社会的相互关系;(2)知道科学家工作的伦理原则;(3)科学的本质;(4)科学和技术之间的差异;(5)基本的科学概念;(6)科学和人类的关系。其中,头三个方面的内容尤其重要。

1974年,Showalter进一步深化了Pella等的工作。他们总结自50年代末到70年代初近15年间有关科学素养的文献后,认为科学素养有以下七个方面的含义(sevendimensions):(1)具有科学素养的人明白科学知识的本质;(2)有科学素养的人在和环境交流时,能准确运用合适的科学概念、原理、定律和理论;(3)有科学素养的人采用科学的方法来解决问题,作出决策,增进其对世界的了解;(4)有科学素养的人和世界打交道的方式和科学原则是一致的;(5)有科学素养的人明白并接受科学、技术和社会之间的相关性;(6)有科学素养的人对世界有更丰富、生动和正面的看法;(7)有科学素养的人具有许多和科学技术密切相关的实用技能。上述Pella等学者和Showalte对科学素养的定义有两点值得注意:一是都认为科学素养是一个多维度概念(multi-dimensionconcept);二是两者对科学素养的定义,都是通过对"一个具有科学素养的人"的定义来进行的。其中,对科学素养概念所包含的不同维度(dimensions)的归纳和区分具有重要的意义,因为这些维度正是这一概念的基本特性(essentialqualities)。

1975年,Shen把科学素养区分为三类:实用的(practical),社会生活的(civic)和文化的(cultural)。这三类并不互斥,但在目标、对象和内容、方式及普及方法上各有特色。实用科学素养指一个人用科学知识和技能解决生活中遇到的实际问题的能力,如消费者的自我保护;社会生活方面的科学素养旨在提高公民对科学与科学相关议题的关注和了解,以便让公众参与到社会的相关决策中,包括健康、能源、食品、环境等方面的公共政策;而文化方面的科学素养,指把科学作为一种人类文化活动的理解和认同。Shen对科学素养不同类别的区分,进一步拓展了人们对这一概念丰富内涵的认识。

1983年,美国艺术和科学学院(AmericanAcademyofArtsandSciences)的会刊Daedalus发表了一期关于科学素养方面的研究专刊,许多作者就科学素养问题及美国面临的挑战发表意见。其中,JonMiller对科学素养的概念和经验测量的论文影响最为深远,因为他不仅提出了对科学素养的多维度定义,而且也提出了一套实际可操作的测量方法。Miller认为,科学素养是一个与时俱进的概念,时代不同,科学素养的内涵也会发生变化。他在"当代情景下"(contemporarysituation),定义了科学素养概念的三个维度如下:(1)对科学原理和方法(即科学本质)的理解;(2)对重要科学术语和概念(即科学知识)的理解;(3)对科技的社会影响的意识和理解。

1991年,Hazen&Trefil认为,在有关科学素养的讨论中,必须注意"从事科学"和"使用科学"(doingandusingscience)之间的重要区别,这涉及到科学素养的对象问题。他们认为,对公众而言,科学素养只涉及后者即使用科学,因此,对其科学素养的要求,也应只限于后者。这正如对于公众而言,计算机素养只要求会用计算机做自己想做的事就够了,不必了解计算机的工作原理和各种编程技巧。鉴于此,他们对科学素养的定义为"了解各种公共议题所需的知识,包括各种事实、词汇、概念、历史和基本哲学思想"。Hazen&Trefil的看法具有重要意义,因为它直接关系到科学素养的内涵和测量方法。即科学素养的一般性和特殊性。是否存在或应该存在一种普适的科学素养?抑或科学素养也要因人因地而异,注意具体场景?这都是仍待探讨的重要问题。

欧盟国家科学素养调查的领导人J·杜兰特认为,科学素养由三部分组成:理解基本科学观点、理解科学方法、理解科学研究机构的功能。

2.3我国专家的观点

在我国,中国科普研究所的专家认为,科学素养由三部分组成:科学知识(概念和术语)、科学方法、科学技术与社会。也有专家认为,可把科学素养分成四个方面来阐述:一是科学知识、技能和科学方法,二是科学能力,三是科学观,四是科学品质。还有专家把科学素养的结构划分为知识结构、智力结构和非智力结构来论述。《科学课程标准》(教育部基础教育课程教材发展中心,2001)中科学教育包括四个方面:科学探究(过程、方法与能力),科学知识与技能,科学态度、情感与价值观,科学、技术与社会的关系。

小结

综上所述,科学素养这一概念的含义和解释,从本质上是相对的而非绝对的,人们对其的理解和了解,实际上是各种不同含义和解释之间"争霸"的结果。科学素养概念含义是不断发展变化的,具有动态性、发展性特点。那么,当前是否有一个公认的科学素养定义了呢?对科学素养的概念的理解和界定,与其说是一个理论问题,不如说是一个实践问题。对公众科学素养的研究,最终要落实到具体的测量,以及对测量结果的评估,乃至随后的政策建议。在这个意义上,JonMiller对科学素养的多维度模型显然是一个受到广泛认可的概念定义,因此自1979年开始,基于Miller模型的科学素养调查在美国一直延续下来,并为欧美以及亚洲许多国家所借鉴。在我国,中国科普研究所于1992年开始,利用Miller模型对全国公众的科学素养进行了四次调查,得到了一些重要的数据。

1996年的世界竞争力报告表明,现在国家之间竞争已从原来的产品竞争、加工竞争和结构竞争,转向了国民素质的竞争,作为国民素质的重要组成部分的国民科学素养正日益成为国家间竞争的焦点。从2001年我国公众科学素养调查的数据看,我国公众具备基本科学素养的比例为1.4%(每千人中有14人具备基本公众科学素养),而美国公众科学素养在1990年就为6.9%。当前,提高国民科学素养已成为我国进一步发展的迫切需要。显然只有正确把握科学素养的含义,才能采取相应的措施提高国民科学素养。

参考文献

[1]朱效民.国民科学素质-现代国家兴盛的根基[J].自然辩证法研究,1999(1).

[2]李大光.科学素养研究[J].科普论坛,2000(9).

[3]中国社会科学院语言研究所词典编辑室,现代汉语词典[M].商务印书馆,1992.

[4]周超,朱志方.逻辑历史与社会:科学合理性研究[M].北京:中国社会科学出版社,2003.

科学教育范文第2篇

[关键词]科学教育学;科学教育改革;科学教育研究

科学教育是与人文教育相对应的一个教育领域,旨在形成人的科学素质,提高人的科学探究与应用能力,培养人的科学态度与科学精神,树立正确的科学观和科学本质观。作为普通教育(Generaleducation)的一个重要组成部分,科学教育与人文教育一样都致力于“为一个负责任的人和公民的生活做准备的那部分教育”。在此意义上,科学教育与人文教育的目的是一致的。

科学教育有狭义与广义之分。狭义的科学教育仅指自然科学教育,即包括物理、化学、生物和地球科学等分科学科在内的,同时也涵盖综合科学教学的学校科学教育。广义的科学教育则包括数学教育、技术教育和社会科学教育(如美国“2061计划”的科学教育文献所表明的那样)。相应地,科学教育学也有狭义与广义之分。狭义的科学教育学,主要研究各级各类学校的自然科学教育、课程、教学、学习与评价等方面的理论与实践问题,而在广义上,科学教育学也涉及数学教育、技术教育、乃至社会科学教育及校外科技教育等方面的理论与实践问题。从世界范围来说,科学教育作为学校课程体制的一部分是从19世纪中叶以后开始进入中小学课程中;而科学教育学作为教育科学中的一个分支研究领域,则是从20世纪中叶以来的历次科学教育改革中兴起与发展起来的。

在我国,科学教育研究的兴起只是近年来的事,迄今尚未从学科建制层面上成为我国教育研究的一部分。科学教育学是一个广泛而复杂的教育理论和实践研究领域,它涉及从幼儿园、中小学至高等学校各个阶段的课程、教学与评价等方面的科学教育问题,同时也包括以提高公众对科学的理解为目标的校外科技普及与科学传播教育。本文的论述主要限于高中以下阶段的学校科学教育改革,着重探讨科学教育学与科学教育改革之间的关系。

一、作为一个研究领域的科学教育学

从20世纪初期开始,在英语国家,“教育”与“教育学”基本上都使用同一个词来表达,即Education。在欧洲国家,由于其教育学传统不同于英语国家,一般使用DidacticsofScience来表达“科学教育学”。而在我国,科学教育学作为教育科学的一个分支在学科建制里尚未正式建立起来,尽管最近几年关于科学教育学的研究已开始增多。

国际上,科学教育学作为教育科学中一个独立的分支学科或研究领域是从20世纪60年代以后随着科学教育改革的需要而产生的。2004年,澳大利亚莫纳什大学著名的科学教育学家彼特.范仙(Fensham,P.J.)教授出版了《科学教育学:一门新兴学科的发展历程》一书,全面论述了世界范围内科学教育学作为一个独立的学术领域的诞生与发展历程。根据范仙教授的研究,一个学科或研究领域的建立,需要满足一定的标准。他提出了三类标准:结构性标准、研究内部标准和结果标准。其中,结构性标准作为最基本的标准共有6条:(1)获得学术承认,即大学里设立某一学科的教授职位,获得学术界的承认;(2)创办研究期刊,传播研究成果;(3)建立专业学会;(4)定期举行学术研究会议;(5)建立研究中心;(6)进行研究训练,培养研究人才。这6条标准是相互关联的,它们表明一个独立的学术研究领域或学科的形成及其形成的基本条件,缺一不可。

从这些标准看,除美国以外的所有其他国家的科学教育学都是在20世纪60年代以后才产生和发展起来的。如英国伦敦大学国王学院和里兹大学分别于60年代和70年代在其教育学院建立了科学与数学教育研究中心,并设立了“科学教育学”教席(ProfessorshipofScienceEducation)。到1985年英国已经有11所大学培养科学教育学博士生。德国于1966年在基尔大学(UniversityofKiel)建立了部级的科学教育研究所,共有50余名科学教育研究人员。法国于1970年在国家教育研究所内建立科学教育研究部。澳大利亚1967年在新建立的莫纳什大学建立了第一个科学教育学教席,聘请彼特.范仙为澳大利亚第一位科学教育学教授。80年代澳大利亚的科廷理工大学建立了科学与数学教育中心,现已后来居上成为全世界最大的科学与数学教育博士生培养基地,目前共有400多名博士研究生。在亚洲国家中,日本、印度、韩国、泰国、马来西亚与新加坡等国家也从20世纪70年代起先后在大学建立了科学教育学博士点,培养科学教育博士生。

从专业组织和学术期刊来看,美国的全国科学教学研究协会创办于1928年,现已成为世界上最大的科学教育研究专业学会,每年4月份召开一次国际性的科学教育年会,2006年的年会上,与会者多达1000多人。其会刊《科学教学研究学刊》每年出10期。英国的科学教育学会创建于1963年(其前身是男科学教师协会与女科学教师协会,最早追溯到20世纪初),定期于每年一月份召开一次年会,发行《科学教育》(EducationinScience)、《小学科学评论》(PrimaryScienceReview)、《学校科学评论》(SchoolScienceReview)和《科学教师教育》(ScienceTeacherEducation)等期刊。1995年成立的欧洲科学教育研究会每两年召开一次学术年会,并每隔一年举办一次专门针对欧洲国家科学教育博士研究生的暑期研究班。其他国家如澳大利亚科学教育学会出版《科学教育研究》(ResearchinScienceEducation)期刊,每年也举行一次科学教育学术年会。另外,还有一些不隶属于学会的著名期刊,如美国的《科学教育》》(ScienceEducation),创刊于1916年;英国里兹大学的《科学教育研究》(StudiesinScienceEducation)创刊于1974年;《国际科学教育学刊》(InternationalJournalofScienceEducation),创刊于1979年,在国际科学教育学界影响都很大。

科学教育研究与科学教育改革是分不开的。科学教育改革需要科学教育研究的学术支撑;反过来,科学教育研究也需要科学教育改革的推动。科学教育研究又分理论研究与基于实证的经验性研究。前者从科学哲学、科学社会学、认知心理学等学科视野出发进行包括建构主义在内的当代各种教学理论探讨,后者则从科学课堂教学实践的视角开展定量研究、质性研究、行动研究、案例研究、叙事研究等。这些研究都为各国的科学教育改革政策制定和基础科学教育中科学课程、教学及评价的改革提供了强有力的理论与学术支持。如1989年美国出版的《2061计划:面向全体美国人的科学》这本权威的科学教育政策文献中,在附录B中列出了26条关于科学教育或与科学教育有关的最重要的参考文献(专著、研究报告或专题论文),都是1980年至1988年期间出版的。可见,即使是一个国家科学教育改革的政策文件,也要以大量的高质量的学术研究为依据制定。又如1995年出版的美国《国家科学教育标准》,每一章的后面都列出了大量的参考文献(可惜中文译本都把它们删除了)。再如20世纪80年代以来,西方各国在科学教育研究中,基于建构主义理论框架的经验性研究论文和专著数不胜数。由此可见,倘若没有这些基础性的科学教育理论研究和经验性研究,美国《国家科学教育标准》就不可能达到这样的高水准。其他国家(如英国、德国、澳大利亚及新西兰等)新一轮的科学教育改革也无不得力于本国和国际的科学教育研究及其为科学教育改革所提供的充分的学术支持。

当前,我国正在进行新一轮科学教育改革。新的改革亟须科学教育研究的支持。无论是科学教育政策的制定,新的科学课程的开发,还是探究式科学教学的实施和课程与教学评价的运用,以及科学教师的专业成长,都迫切需要科学教育学提供学术支撑。但总体上,我国科学教育学科建设还很落后,甚至尚未引起教育管理部门、教育学界及社会的足够重视和支持。

二、科学教育改革:国际经验与本土建构

改革开放以来,我国基础科学教育经历了三次改革浪潮,差不多每隔10年就要进行一次科学教育改革。第一次改革浪潮从1978年开始至20世纪80年代中期,主要特点是拨乱反正,恢复正常教育教学秩序,编写新的科学教学大纲和教科书。这次科学教育改革吸收了世界各国60年代以来科学课程改革的经验,使中学的数学、物理、化学和生物等自然科学的课程内容实现了现代化。第二次科学教育改革从20世纪80年代中期至90年代,其特点在初等教育阶段开始重视幼儿园与小学的科学教育改革(当时叫自然学科改革),在中等教育阶段则降低科学课程的难度,同时追求科学课程的本土化。第三次科学教育改革始于世纪之交,至今仍在进行之中。其特点是进一步与国际科学教育改革接轨,试图衔接小学与初中的科学教育,促使义务教育阶段科学教育课程与教学改革一体化,面向全体学生,以科学素养为目标,注重培养学生的科学探究能力,等等。

第一次科学教育改革基本上是从翻译国外中小学科学教材开始的,作为我国自己编写的新科学教材的素材,其理论基础是美国著名心理学家和教育改革家布鲁纳的学科结构课程理论。第二次科学教育改革主要涉及两个方面,一是重视了小学科学教育,如由人民教育出版社刘默耕先生主持,引进了哈佛大学小学科学教育专家兰本达的“探究一研讨”教学法,并系统地编写了小学1~6年级的自然(科学)教材;二是在中学阶段改进了统编教材,使原先引进的过于理论化、抽象化和高难度的科学教材内容逐渐变成适合我国国情和学生需要的科学教材,这实际上是由20世纪80年代国际化到90年代本土化的一次转换。这次改革虽然不乏历史意义和贡献,但鲜有深化且缺少突破,只能说是修修补补而已。第三次科学教育改革的背景不同于前两次。一方面,我国市场经济和现代化事业进一步发展,改革开放随着我国成功地加入WTO进一步向前推进,为新一轮科学教育改革提供了社会需求和动力;另一方面,90年代以来新一轮国际科学教育改革在发达国家方兴未艾,为我国科学教育改革提供了良好的国际背景。1997年,中国科学技术协会与美国科学院签订了科学教育合作备忘录,为两国科学教育合作提供了有利的合作机制,其重要成果之一是合作建立了科学教育网站,翻译出版了美国科学教育改革的重要文献,如《国家科学教育标准》(1999),等等。此后,国家教育部组织一批科学教育专家和教师编写出全日制义务教育《科学(3~6年级)课程标准》(实验稿)和《科学(7~9年级)科学课程标准》(实验稿),由此拉开了新一轮科学教育改革的序幕。此外,我国教育部和科学技术协会还从法国引进了“做中学”幼儿园和小学科学教育项目,在全国许多大中城市的幼儿园和小学里进行基于“动手做”的探究式科学教育的实验。

从科学教育改革的主体来看,第三次改革不同于以往历次科学教育改革。首先,这次科学教育改革开始有一些科学家参与进来,如中国科协的科技专家、中国科学院和中国工程科学院的一些院士、大学(特别是师范大学)理科院系的一些教授都参与了这次科学教育改革,只是这些主体的参与的深度和广度还不够。第二,自20世纪80年代起,我国学科教育研究逐渐兴起,其中物理、化学、生物、地理等理科成长起来一批学科教育专家,成为第三次科学教育改革的重要参与者,为新一轮科学教育改革做出了贡献,是我国第一批受过专业训练的科学教育研究者。第三,广大的中小学科学教师也成为中坚力量。特别在小学科学教育改革中,一大批优秀的科学教师在改革中脱颖而出,茁壮成长。

但我们也发现,这三次科学教育改革都存在一个共同的问题,即每次科学教育改革在理论准备上都明显不足,原因在于缺乏有计划、有组织、系统而深入的科学教育研究。迄今为止,我国教育行政管理部门、高等学校和教育理论界都尚未重视科学教育研究。虽然我国各级各类教育研究人员成千上万,但专门进行科学教育研究的人员却寥寥无几,即使包括上文提到的理科各学科的科学教育专家也仍然为数不多。长期以来,我国的科学教育改革是在整个基础教育改革的总格局下进行的,只考虑采用教育的一般理论作为课程与教学改革指导思想,没有也不可能采用科学教育学的学科领域的理论。

一个学科或学术领域的形成和发展,虽则首先要看社会对它是否需要,但也必须意识到这种社会需要是否为人们所认识。从上文的分析中可以看出,由于缺乏科学教育理论研究,我国的科学教学与课程改革、中小学科学教师的培养和在职科学教师的专业发展都受到极大的制肘。比如,1978年以后,我国的基础科学教育课程从内容上说是国际化和现代化了,但在课程设计、开发和实施方面,在科学教学和评价方面,都远远没有实现现代化和国际化。证据之一是,我国幼儿园与中小学的科学课程与教学的方式和方法仍然是以传统的讲授法为主,探究式教学方式并没有在课堂上得到实施。这种情况基本上至今为止依然如故。证据之二是,尽管我国近30年来,九年义务教育的普及率比较高,小学、初中和高中普遍开设科学课程,但据近些年的公民科学素养监测发现,我国公民的科学素养水平仍然不高。从普及科学教育、提升国民的科学素养的意义上说,我国以往的科学教育不能说是成功的。证据之三是,我国在科技研究上和工农业生产中科技创新水平远远低于发达国家,甚至在某些领域不及印度等亚洲发展中邻国。证据之四是,我国近代以来进行学校科学教育虽有百余年的历史,并且建立了系统的科学与技术体制,但公民的科学精神仍然比较缺乏。不但一般社会大众,就是科技人员中也有不少缺乏科学精神的。近年来,科技界与科学哲学和科学史学界关于科学文化之争、关于中医存废之争,等等,其中的某些观点从一个侧面反映了“唯科学主义”在我国社会中仍然根深蒂固,而这实质上乃是缺乏科学精神和对科学本质理解片面的一种表征。

当前,我国科学教育研究的社会需要是显而易见的。我国政府早已提出“科教兴国”的战略方针。现在又提出建设创新型国家的战略目标。笔者认为,有效的基础科学教育改革是实现这个方针和这一目标的基础之基础。基础科学教育需要告别传统的“死读书、读死书”的教学方式,需要真正以自主、合作、探究、建构的教学方式与方法教学生生动活泼地学科学、做科学、用科学和理解科学。只有这样,我们才可以真正提高公民的科学素养,才可以在普及科学教育的基础上为高等学校输送真正爱科学、主动学科学、既敢于又善于进行科学创新的大学生和研究生。只有培养了大批具有创新精神和创新能力的科技人才,我国的科学与技术才能推动知识经济的发展,才可能赶超世界科技先进水平。

有效的科学教育改革不仅是当前改革的需要,也是今后我国科学教育改革长远的需要。国际国内的科学教育改革经验业已证明,中小学科学教育改革是随着科技发展和社会与人的发展需要与时俱进,所以,无论是从科学与技术发展的角度考虑,还是从科学教育改革的当下和长远的需要出发,我国都必须尽快形成科学教育研究的学科建制,培养从事科学教育研究和管理的高级人才及科学教育教师。

从2001年开始,国家教育部先后分四批批准了共60所高校设立科学教育本科专业,开始为小学和初中培养能够承担综合科学课教学的科学教师。这是这次科学教育改革催生的教师教育的新专业。但是,我们应当认识到,这些新建立的科学教育专业目前在课程设置和师资上还存在诸多问题,其中一个核心问题是,这些新设置的科学教育专业缺乏高水平的科学教师教育者。科学教师教育者是指既具有科学背景又具有科学教育理论与实践知识的教师教育者。在国外,这样的人才一般都具有科学教育博士学位,是既能进行科学教育研究又能进行科学教育人才培养的高级人才。这样的人才哪里来?需要有条件的研究型大学培养科学教育博士研究生。实际上,不仅这60所设立科学教育本科专业的高校需要科学教师教育者,其他所有进行理科教师培养的高校都需要科学教师教育者。没有这样的专门人才,我国的基础科学教育就难以达到国际一流的水平。

不仅高等院校培养理科教师需要科学教育专家,我们的科学教育改革也需要在各级各类教育研究机构和教研机构配备科学教育专家。比如,各省、市、县的教科院所或教师进修学校需要科学教育研究人员,甚至中小学也需要一批具有科学教育博士或硕士学位的科学教师。这样算起来,我国科学教育专业的博士研究生的需要量是非常大的,至少需要5000人以上。(作为一个参照,美国科学教学研究会的会员是1700人,其中大多数是美国人)。

科学教育范文第3篇

(一)斯宾塞的科学教育思想

斯宾塞生活在自由资本主义上升并逐步走向垄断资本主义过渡时期,他敏锐地看到:“生产过程既然那么快地科学化,……科学知识就应当同样快地成为人所必需的”。他大声疾呼:要把教育从英国传统的古典教育的桎梏中解放出来,使之适应新时代的生产和生活的需要。因此,他极力推崇科学的价值。他说:“什么知识最有价值?一致的答案就是科学。这是从所有各方面得出的结论。”他甚至预言未来“最有价值和最美的科学,就要统治一切”。另一方面,他建立了以科学为核心的课程体系:

1.为完成“准备直接保全自己的教育”,将生理学放在课程的首位;

2.为完成“准备间接保全自己的教育”,除了必学读、写、算之外,还必须开设逻辑学、力学、物理学等课程;

3.为完成“准备做父母的教育”,必须开设有关儿童的生理、心理和教育的科目;

4.为完成“准备做公民的教育”,要开设历史学和社会学;

5.为完成“准备生活中各项文化活动的教育”,要开设美术、音乐、诗歌等课程。这种课程体系是学校课程发展中的一个重要转折。

(二)赫胥黎的科学教育思想

赫胥黎与斯宾塞处于同时代,他积极提倡科学教育,提出了全面而完整的科学教育思想。他的科学教育思想主要有:

1.提倡“新”自由教育观念,认为科学教育与自由教育并不是对立的。在《哪里能找到一种自由教育》一文中,他明确指出:自由教育“就是在自然规律方面的智力训练,这种训练不仅包括了各种事物以及它们的力量,而且也包括了人类以及他们的各个方面,还包括了把情感和意志转化成与那些规律协调一致的真诚热爱的愿望。”表明自由教育包括科学教育在内。

2.科学教育重心的转移:从科学知识到科学方法。赫胥黎明确指出:科学教育“并不是指应当一切科学知识都教给每一个学生。那样去设想是非常荒唐的,那种企图是非常有害的。”他超越了同时代的斯宾塞,强调科学的观察方法与观察习惯比科学知识更重要。从重视科学知识到重视科学方法,是科学教育重心的第一次大转移。

3.科学教育价值取向变化:重视科学教育的精神价值。赫胥黎已初步认识到科学对人的心灵的影响,他说:“科学教育有两个重要目的,其一,是增长知识;其二,是养成热爱真理和憎恨谬误的习惯。”

(三)徐寿引进后学的科学教育思想

在19世纪的中国,徐寿作为我国近代科学的启蒙者和先驱者,深刻认识到科学教育的重要性,他一生积极从事科学教育工作。他与人合作创办了我国最早的自然科学期刊《格致汇编》,并大量翻译科学技术著作,普及宣传科技知识,使“后学籍有津梁”,另外,他与西方人一起筹办格致书院(在中国,科学一词的意义相当于“格致之学”),专门从事科学教育,从而培养大批有用的科技人才。

二、20世纪的科学教育思想

(一)20世纪初期的科学教育思想

20世纪早期,无论西方或是中国,都出现了足以影响后世的大教育家、思想家。这一时期,在世界教育史上影响最大的是美国教育家杜威。而在中国,以早期的严复和后来的教育家陶行知和蔡元培的科学教育思想影响较大。

1.杜威实用主义科学教育思想。杜威的教育活动主要是在20世纪早期。杜威要求教育要接受建立在科学基础之上的哲学(即实用主义的经验论)的指导,非常重视科学方法教育。杜威并不全盘否定科学知识的教育,但更重视科学方法的教育并主张改进科学知识教育,杜威指出:“我们的社会生活正在经历着一个彻底的和根本的变革。……采用主动作业,自然研究……,把单纯的符号和形式的课程降到次要地位,……所有这一切,都不是偶然发生的,而是出于广大社会发展的各种需要。

杜威主张用“心理的方法”而非“逻辑的方法”授予学生以科学,即让学生“从做中学”,在“做”中思维,通过思维提出和解决问题,在“做”中检验所获经验的有效性。他特别重视思维及科学的实验方法在教学中的运用,他根据自己的经验论和思维术推导出一个重要的结论:将学生的学习过程视为科学研究的过程。

杜威由于主张让儿童搞科学,重视科学方法的掌握而忽视教材和系统科学知识的学习,所以,自20世纪30年代以来不断受到来自各方面的批判。因此,科学教育思想仍需要随着科学教育实践的发展而改革与发展。

2.以严复首倡的科学教育思潮。在西学东渐的过程中,严复最早提出了科学的两种教育功能:一是把科学知识的传授学习作为学校教育的主要内容,二是在教学和治学的过程中导入科学的方法论。但他的科学教育思想在19世纪末则无人应和。直到20世纪初,才得到任鸿隽等留美学生的响应。任鸿隽认为:“科学之于教育上之重要,不在于物质之智识,而在其研究事物之方法。尤不在研究事物之方法,而在其所与心能之训练。科学方法者首分别事类,次乃辨明之关系,以发见其通律。习于是者,其心尝注重事实,执因求果,而不为感情所蔽,私见所移。所谓科学之心能者,此之谓也”。这一思想,丰富和发展了早期严复提出的科学教育思想。同时,胡适则把杜威的学说加以中国化,提出“实验主义”,他认为,科学完全是观察方法和实验方法、怀疑态度,因此,“实验主义只是一个方法,只是一个研究问题的方法。这种方法优于人类以往的求知方法,这在科学教育思想发展中是一大进步。

至此,由严复首倡的科学教育思想,经过任鸿隽等人的继承和深化,又得力于杜威、胡适的实用—实验主义哲学思想的推动和丰富,在20世纪初成为席卷教育界的科学教育思潮。

3.陶行知和蔡元培的科学教育思想。在20世纪初科学教育思潮的影响和推动下,出现了一大批为科学教育不懈奋斗的教育家,陶行知和蔡元培便是其中杰出的代表。

陶行知是我国近现代科学教育的开拓者之一,他很重视中小学的科学教育,积极开展科学教育实践,特别是晓庄师范的创建,是他科学教育实验活动的开始。他的科学教育思想有以下特点:

(1)他认为应把科学教育视为中华民族救亡图存的根本,国家富强的根本;

(2)科学教育应从儿童抓起,同时重视科学教员的培养;

(3)重视科学道德教育。陶行知反复强调“道德是做人的根本”,“根本一坏,学问和本领愈大就能为非作恶愈大”;

(4)科学教育要以生活教育为基础,溶创造教育于其中。

此外,陶行知还十分重视科学思维方法教育。他教育人们掌握科学思维方法,即:行动生困难,困难生疑问,一文生假设,假设生试验,试验生断语,断语又生了行动,如此演进于无穷。这种科学思维过程与唯物主义的认识论的基本原理是一致的。

蔡元培科学教育思想在社会转型的现实需要中,既受前人一定程度的影响,又对已有主张有所超越,他的科学教育思想主要是:

(1)提倡科学知识的学习,重视科学在社会发展中的作用。并且早在1912年就曾预言:“要是科学进步,一定可以制造生人。”

(2)提倡学术研究,注重科学精神的培养。蔡元培认为科学精神的培养应该从小抓起,及早进行。

(3)重视科学方法。他在《中国思想研究法》做的序中所言:“爱智之人,其欲得方法,远过于具体知识也。”这与陶行知不谋而合。

(4)科学与人文并重的教育思想。他说:“求知识以外,兼养感情,治科学以外,兼治美术”,科学与人文事相生相容而不是对立的。

陶行知和蔡元培的科学教育思想,对我们今天的科学教育仍具有极为重要的借鉴意义。

(二)20世纪中后期有代表性的科学教育思想

1.20世纪中叶,以科学教育哲学为核心的科学教育思想。以布鲁纳为代表的以科学教育哲学为核心的科学教育思想内容广泛,其中影响最大的有两个方面:一是主张学习科学知识的基础结构。他强调指出:不论我们选教什么学科,务必使学生理解该学科的基本结构;第二,大力提倡发现法。他说:“发现不限于寻求人类尚未知晓的事物,确切地说,它包括用自己的头脑亲自获得知识的一切方法。”

在科学教育中,布鲁纳一方面重视科学知识教育,另一方面也重视科学方法教育。布鲁纳的科学知识教育不同于斯宾塞的科学知识教育,后者只要求掌握学科的基本结构;也不同于杜威的科学方法教育,后者的“做中学”几乎与系统科学知识的掌握无关,而前者的发现法则于学科的基本结构相适应。

然而,在布鲁纳科学教育思想影响下的教育改革,过分强调高水平,而没有充分考虑学生的实际状况和教师的水平,因此,布鲁纳的科学教育思想也有待于进一步完善。

2.20世纪80年代的科学教育思想:STS教育。STS教育,即“科学—技术—社会”教育,它是人们思考科学与社会的关系,对付“全球性难题”而提出的一种新尝试。

STS教育最早出现于美国,20世纪70年代初,美国的一些学校就开始开设“科学、技术和社会”为题的课程。它要教会学生在社会中如何对待、如何应用科学技术,使新一代的公民和科技专家能够形成关于科学技术与人类福利、社会发展相统一的价值观,并由他们推动科学技术于世界文明的和谐共进。所以说,STS教育的任务要比传统的单纯传授科技知识与技能的科学教育要广泛、复杂的多。到20世纪80年代,STS教育已成为世界性的潮流,受到各国的重视并得到迅速的传播。

三、21世纪科学教育的主题:科学教育人文化,实现科学教育与人文教育融合

科学教育人文化是科学教育发展的一个大趋势。早在上世纪30年代,萨顿批判了科学教育只教“技术业务”而缺少真正“教育”的偏向,呼吁要是科学及其教育工作“人性化”。紧随其后,贝尔纳提出:“必须打破把科学与人文学科截然区别开来,甚至互相对立的传统,并代之以科学的人文主义。”70年代,国际教育发展委员会提出的《学会生存》报告在“科学人道主义的基调上指出:“合理的教育学说必须以下列标准为依据:目前的社会和未来的社会能够或将证明科学与技术本身并不是目的,它的真正的目的是为人类服务。”80年代以来,“STS教育”(即“科学技术、社会相统一的教育”)和“公众理解科学”的运动相继在一些国家兴起,目的是要把科学技术与社会以及人的全面发展和谐地联系起来,把科学教育从“为实利而教育”、“为就业而教育”转变成“为人生而教育、为世界而教育、为快乐而教育”。而伴随着20世纪“科学世纪”的结束和21世纪这个“技术的世纪”的到来,科学教育人文化,实现科学技术与人文教育的融合,便成了一个21世纪人们密切关注的课题。科学教育人文化,是科学教育发展的大趋势,也是时代的潮流。

【参考文献】

[1]廖湘阳.科学教育与人文教育整合的实现[J].教育科学,1999,(2).

[2]冯季林.论科学教育的人文价值[J].教育科学,1999,(1).

[3]路甬祥.中国近现代科学地回顾与展望[J].自然辩证法研究,2002,(8).

[4]丁邦平.反思科学教育[J].中国教育学刊,2001,(4).

科学教育范文第4篇

【论文摘要】:对科学素养涵义进行界定是一项十分重要的基础研究。文章分析了科学素养和科学素质的区别,深入探讨了科学素养概念的形成和发展,并对它在不同时期的含义进行了评析。

引言

正确理解科学素养是进行科学教育的前提和基础,然而当前中文文献(包括学术期刊和大众媒体上的文章和报道)中对科学素养的概念作深入全面探讨的论文很少,因此对科学素养进行概念辨析是十分必要的。

1.是科学素养,还是科学素质

《现代汉语词典》对素养的解释是"平日的修养,如艺术素养。"可见,科学素养即属于"如艺术素养"之类;对素质的解释是:(1)指事物的本来性质;(2)素养;(3)心理学指人的神经系统和感觉器官上的先天的特点。因此,素质包括先天和后天两个方面的因素,而素养则主要指后天培养的。所以说,科学素养与科学素质在内涵上是有区别的,科学素养是科学素质的重要组成部分。美国当代著名理科教育专家R.W.Bybee认为,第一个使用scientificliteracy一词的是美国学者Conant。literacy有两层不同的意思:一是指有学识、有文化,跟学者有关;二是指能够阅读、书写,针对一般公众。不管是学识、文化,还是阅读、书写,这些都为后天培养获得。因此,根据科学素养与科学素质的区别,把"scientificliteracy"译成"科学素养"更为确切。

2.科学素养概念的形成和发展

2.1美国三大组织的描述

在科学素养概念的形成和发展过程中,美国科学促进会(theAmericanAssociationfortheAdvancementofScience,简称AAAS)、国家科学院(theNationalAcademyofScience,简称NAS)以及国家科学基金(theNationalScienceFoundation,简称NSF)这三个组织起着重要作用。

AAAS从1985年开始发起了一个旨在通过长期的科学教育提高全美民众的科学素养的计划,即著名的2061计划(Project2061)。在试图说明科学素养这一概念的含义时,AAAS通过对一个具有科学素养的人(ascientificallyliterateperson)的描述来界定:一个有科学素养的人,"知道科学、数学和技术是相互联系的人类智慧的创造物,伟大但仍有局限;明白科学中的一些关键性概念和原理;对世界和自然了解,并认识到世界的多样性和统一性;在个人和社会生活中,能运用科学知识和科学的思考方式。"

NAS在介绍《国家科学教学标准》(NationalScienceEducationStandards)时,表达了以下观点:"科学素养是人们在进行个人决策,参与社会、文化和经济事务时所需要了解的科学知识、概念及过程,……科学素养有不同的层次和形式,科学素养的提高和扩展是一生的事,而非仅仅在校期间。"

NSF在其报告《影响未来:在科学、数学、工程和技术方面的本科生教育的新期待》(ShapingtheFuture:NewExpectationsforUndergraduateEducationinScience,Mathematics,Engineering,andTechnology)中认为,一个有科学素养的学生应该知道,"广义的科学到底是什么,科学、数学、工程和技术方面的专家们的工作内容和性质,如何评估所谓的''''科学''''信息,社会如何作出关于科学和工程方面的理性决策。"

从上述三个组织对科学素养的表述中可以看到,对科学素养的理解和定义,不同的组织之间,同中有异,异中有同。

2.2国外学者的见解

Roberts把1957-1963年这一阶段称为科学素养概念的"正名阶段"(periodoflegitimation)。然而,倡导这一概念的人,却没有给出其明确的定义,因此,紧接着正名阶段而来的,是"认真解释阶段"(periodofseriousinterpretation),这一阶段出现了有关科学素养的许多定义和解释。然后是进一步解释阶段。1976年,Gabel基于当时有关科学素养的含义的概括和分析,指出这一概念含义之庞杂,足以表示任何和科学教育有关的事。由于各种说法长期无法达成共识,这一概念实际上一度丧失了其使用价值。

1966年,Pella和同事仔细而系统地挑选100种1946-1964年之间出版的报刊文章,他们在这些文章中检查各种和科学素养有关的主题的出现频率。他们认为,一个具有科学素养的人应了解以下这些方面的内容(即所谓的"参照物"):(1)科学和社会的相互关系;(2)知道科学家工作的伦理原则;(3)科学的本质;(4)科学和技术之间的差异;(5)基本的科学概念;(6)科学和人类的关系。其中,头三个方面的内容尤其重要。

1974年,Showalter进一步深化了Pella等的工作。他们总结自50年代末到70年代初近15年间有关科学素养的文献后,认为科学素养有以下七个方面的含义(sevendimensions):(1)具有科学素养的人明白科学知识的本质;(2)有科学素养的人在和环境交流时,能准确运用合适的科学概念、原理、定律和理论;(3)有科学素养的人采用科学的方法来解决问题,作出决策,增进其对世界的了解;(4)有科学素养的人和世界打交道的方式和科学原则是一致的;(5)有科学素养的人明白并接受科学、技术和社会之间的相关性;(6)有科学素养的人对世界有更丰富、生动和正面的看法;(7)有科学素养的人具有许多和科学技术密切相关的实用技能。

上述Pella等学者和Showalte对科学素养的定义有两点值得注意:一是都认为科学素养是一个多维度概念(multi-dimensionconcept);二是两者对科学素养的定义,都是通过对"一个具有科学素养的人"的定义来进行的。其中,对科学素养概念所包含的不同维度(dimensions)的归纳和区分具有重要的意义,因为这些维度正是这一概念的基本特性(essentialqualities)。

1975年,Shen把科学素养区分为三类:实用的(practical),社会生活的(civic)和文化的(cultural)。这三类并不互斥,但在目标、对象和内容、方式及普及方法上各有特色。实用科学素养指一个人用科学知识和技能解决生活中遇到的实际问题的能力,如消费者的自我保护;社会生活方面的科学素养旨在提高公民对科学与科学相关议题的关注和了解,以便让公众参与到社会的相关决策中,包括健康、能源、食品、环境等方面的公共政策;而文化方面的科学素养,指把科学作为一种人类文化活动的理解和认同。Shen对科学素养不同类别的区分,进一步拓展了人们对这一概念丰富内涵的认识。

1983年,美国艺术和科学学院(AmericanAcademyofArtsandSciences)的会刊Daedalus发表了一期关于科学素养方面的研究专刊,许多作者就科学素养问题及美国面临的挑战发表意见。其中,JonMiller对科学素养的概念和经验测量的论文影响最为深远,因为他不仅提出了对科学素养的多维度定义,而且也提出了一套实际可操作的测量方法。Miller认为,科学素养是一个与时俱进的概念,时代不同,科学素养的内涵也会发生变化。他在"当代情景下"(contemporarysituation),定义了科学素养概念的三个维度如下:(1)对科学原理和方法(即科学本质)的理解;(2)对重要科学术语和概念(即科学知识)的理解;(3)对科技的社会影响的意识和理解。

1991年,Hazen&Trefil认为,在有关科学素养的讨论中,必须注意"从事科学"和"使用科学"(doingandusingscience)之间的重要区别,这涉及到科学素养的对象问题。他们认为,对公众而言,科学素养只涉及后者即使用科学,因此,对其科学素养的要求,也应只限于后者。这正如对于公众而言,计算机素养只要求会用计算机做自己想做的事就够了,不必了解计算机的工作原理和各种编程技巧。鉴于此,他们对科学素养的定义为"了解各种公共议题所需的知识,包括各种事实、词汇、概念、历史和基本哲学思想"。Hazen&Trefil的看法具有重要意义,因为它直接关系到科学素养的内涵和测量方法。即科学素养的一般性和特殊性。是否存在或应该存在一种普适的科学素养?抑或科学素养也要因人因地而异,注意具体场景?这都是仍待探讨的重要问题。

欧盟国家科学素养调查的领导人J·杜兰特认为,科学素养由三部分组成:理解基本科学观点、理解科学方法、理解科学研究机构的功能。

2.3我国专家的观点

在我国,中国科普研究所的专家认为,科学素养由三部分组成:科学知识(概念和术语)、科学方法、科学技术与社会。也有专家认为,可把科学素养分成四个方面来阐述:一是科学知识、技能和科学方法,二是科学能力,三是科学观,四是科学品质。还有专家把科学素养的结构划分为知识结构、智力结构和非智力结构来论述。《科学课程标准》(教育部基础教育课程教材发展中心,2001)中科学教育包括四个方面:科学探究(过程、方法与能力),科学知识与技能,科学态度、情感与价值观,科学、技术与社会的关系。

小结

综上所述,科学素养这一概念的含义和解释,从本质上是相对的而非绝对的,人们对其的理解和了解,实际上是各种不同含义和解释之间"争霸"的结果。科学素养概念含义是不断发展变化的,具有动态性、发展性特点。那么,当前是否有一个公认的科学素养定义了呢?对科学素养的概念的理解和界定,与其说是一个理论问题,不如说是一个实践问题。对公众科学素养的研究,最终要落实到具体的测量,以及对测量结果的评估,乃至随后的政策建议。在这个意义上,JonMiller对科学素养的多维度模型显然是一个受到广泛认可的概念定义,因此自1979年开始,基于Miller模型的科学素养调查在美国一直延续下来,并为欧美以及亚洲许多国家所借鉴。在我国,中国科普研究所于1992年开始,利用Miller模型对全国公众的科学素养进行了四次调查,得到了一些重要的数据。

1996年的世界竞争力报告表明,现在国家之间竞争已从原来的产品竞争、加工竞争和结构竞争,转向了国民素质的竞争,作为国民素质的重要组成部分的国民科学素养正日益成为国家间竞争的焦点。从2001年我国公众科学素养调查的数据看,我国公众具备基本科学素养的比例为1.4%(每千人中有14人具备基本公众科学素养),而美国公众科学素养在1990年就为6.9%。当前,提高国民科学素养已成为我国进一步发展的迫切需要。显然只有正确把握科学素养的含义,才能采取相应的措施提高国民科学素养。

参考文献

[1]朱效民.国民科学素质-现代国家兴盛的根基[J].自然辩证法研究,1999(1).

[2]李大光.科学素养研究[J].科普论坛,2000(9).

[3]中国社会科学院语言研究所词典编辑室,现代汉语词典[M].商务印书馆,1992.

[4]周超,朱志方.逻辑历史与社会:科学合理性研究[M].北京:中国社会科学出版社,2003.

科学教育范文第5篇

[关键词]科学教育学;科学教育改革;科学教育研究

科学教育是与人文教育相对应的一个教育领域,旨在形成人的科学素质,提高人的科学探究与应用能力,培养人的科学态度与科学精神,树立正确的科学观和科学本质观。作为普通教育(Generaleducation)的一个重要组成部分,科学教育与人文教育一样都致力于“为一个负责任的人和公民的生活做准备的那部分教育”。在此意义上,科学教育与人文教育的目的是一致的。

科学教育有狭义与广义之分。狭义的科学教育仅指自然科学教育,即包括物理、化学、生物和地球科学等分科学科在内的,同时也涵盖综合科学教学的学校科学教育。广义的科学教育则包括数学教育、技术教育和社会科学教育(如美国“2061计划”的科学教育文献所表明的那样)。相应地,科学教育学也有狭义与广义之分。狭义的科学教育学,主要研究各级各类学校的自然科学教育、课程、教学、学习与评价等方面的理论与实践问题,而在广义上,科学教育学也涉及数学教育、技术教育、乃至社会科学教育及校外科技教育等方面的理论与实践问题。从世界范围来说,科学教育作为学校课程体制的一部分是从19世纪中叶以后开始进入中小学课程中;而科学教育学作为教育科学中的一个分支研究领域,则是从20世纪中叶以来的历次科学教育改革中兴起与发展起来的。

在我国,科学教育研究的兴起只是近年来的事,迄今尚未从学科建制层面上成为我国教育研究的一部分。科学教育学是一个广泛而复杂的教育理论和实践研究领域,它涉及从幼儿园、中小学至高等学校各个阶段的课程、教学与评价等方面的科学教育问题,同时也包括以提高公众对科学的理解为目标的校外科技普及与科学传播教育。本文的论述主要限于高中以下阶段的学校科学教育改革,着重探讨科学教育学与科学教育改革之间的关系。

一、作为一个研究领域的科学教育学

从20世纪初期开始,在英语国家,“教育”与“教育学”基本上都使用同一个词来表达,即Education。在欧洲国家,由于其教育学传统不同于英语国家,一般使用DidacticsofScience来表达“科学教育学”。而在我国,科学教育学作为教育科学的一个分支在学科建制里尚未正式建立起来,尽管最近几年关于科学教育学的研究已开始增多。

国际上,科学教育学作为教育科学中一个独立的分支学科或研究领域是从20世纪60年代以后随着科学教育改革的需要而产生的。2004年,澳大利亚莫纳什大学著名的科学教育学家彼特.范仙(Fensham,P.J.)教授出版了《科学教育学:一门新兴学科的发展历程》一书,全面论述了世界范围内科学教育学作为一个独立的学术领域的诞生与发展历程。根据范仙教授的研究,一个学科或研究领域的建立,需要满足一定的标准。他提出了三类标准:结构性标准、研究内部标准和结果标准。其中,结构性标准作为最基本的标准共有6条:(1)获得学术承认,即大学里设立某一学科的教授职位,获得学术界的承认;(2)创办研究期刊,传播研究成果;(3)建立专业学会;(4)定期举行学术研究会议;(5)建立研究中心;(6)进行研究训练,培养研究人才。这6条标准是相互关联的,它们表明一个独立的学术研究领域或学科的形成及其形成的基本条件,缺一不可。

从这些标准看,除美国以外的所有其他国家的科学教育学都是在20世纪60年代以后才产生和发展起来的。如英国伦敦大学国王学院和里兹大学分别于60年代和70年代在其教育学院建立了科学与数学教育研究中心,并设立了“科学教育学”教席(ProfessorshipofScienceEducation)。到1985年英国已经有11所大学培养科学教育学博士生。德国于1966年在基尔大学(UniversityofKiel)建立了部级的科学教育研究所,共有50余名科学教育研究人员。法国于1970年在国家教育研究所内建立科学教育研究部。澳大利亚1967年在新建立的莫纳什大学建立了第一个科学教育学教席,聘请彼特.范仙为澳大利亚第一位科学教育学教授。80年代澳大利亚的科廷理工大学建立了科学与数学教育中心,现已后来居上成为全世界最大的科学与数学教育博士生培养基地,目前共有400多名博士研究生。在亚洲国家中,日本、印度、韩国、泰国、马来西亚与新加坡等国家也从20世纪70年代起先后在大学建立了科学教育学博士点,培养科学教育博士生。

从专业组织和学术期刊来看,美国的全国科学教学研究协会创办于1928年,现已成为世界上最大的科学教育研究专业学会,每年4月份召开一次国际性的科学教育年会,2006年的年会上,与会者多达1000多人。其会刊《科学教学研究学刊》每年出10期。英国的科学教育学会创建于1963年(其前身是男科学教师协会与女科学教师协会,最早追溯到20世纪初),定期于每年一月份召开一次年会,发行《科学教育》(EducationinScience)、《小学科学评论》(PrimaryScienceReview)、《学校科学评论》(SchoolScienceReview)和《科学教师教育》(ScienceTeacherEducation)等期刊。1995年成立的欧洲科学教育研究会每两年召开一次学术年会,并每隔一年举办一次专门针对欧洲国家科学教育博士研究生的暑期研究班。其他国家如澳大利亚科学教育学会出版《科学教育研究》(ResearchinScienceEducation)期刊,每年也举行一次科学教育学术年会。另外,还有一些不隶属于学会的著名期刊,如美国的《科学教育》》(ScienceEducation),创刊于1916年;英国里兹大学的《科学教育研究》(StudiesinScienceEducation)创刊于1974年;《国际科学教育学刊》(InternationalJournalofScienceEducation),创刊于1979年,在国际科学教育学界影响都很大。

科学教育研究与科学教育改革是分不开的。科学教育改革需要科学教育研究的学术支撑;反过来,科学教育研究也需要科学教育改革的推动。科学教育研究又分理论研究与基于实证的经验性研究。前者从科学哲学、科学社会学、认知心理学等学科视野出发进行包括建构主义在内的当代各种教学理论探讨,后者则从科学课堂教学实践的视角开展定量研究、质性研究、行动研究、案例研究、叙事研究等。这些研究都为各国的科学教育改革政策制定和基础科学教育中科学课程、教学及评价的改革提供了强有力的理论与学术支持。如1989年美国出版的《2061计划:面向全体美国人的科学》这本权威的科学教育政策文献中,在附录B中列出了26条关于科学教育或与科学教育有关的最重要的参考文献(专著、研究报告或专题论文),都是1980年至1988年期间出版的。可见,即使是一个国家科学教育改革的政策文件,也要以大量的高质量的学术研究为依据制定。又如1995年出版的美国《国家科学教育标准》,每一章的后面都列出了大量的参考文献(可惜中文译本都把它们删除了)。再如20世纪80年代以来,西方各国在科学教育研究中,基于建构主义理论框架的经验性研究论文和专著数不胜数。由此可见,倘若没有这些基础性的科学教育理论研究和经验性研究,美国《国家科学教育标准》就不可能达到这样的高水准。其他国家(如英国、德国、澳大利亚及新西兰等)新一轮的科学教育改革也无不得力于本国和国际的科学教育研究及其为科学教育改革所提供的充分的学术支持。

当前,我国正在进行新一轮科学教育改革。新的改革亟须科学教育研究的支持。无论是科学教育政策的制定,新的科学课程的开发,还是探究式科学教学的实施和课程与教学评价的运用,以及科学教师的专业成长,都迫切需要科学教育学提供学术支撑。但总体上,我国科学教育学科建设还很落后,甚至尚未引起教育管理部门、教育学界及社会的足够重视和支持。

二、科学教育改革:国际经验与本土建构

改革开放以来,我国基础科学教育经历了三次改革浪潮,差不多每隔10年就要进行一次科学教育改革。第一次改革浪潮从1978年开始至20世纪80年代中期,主要特点是拨乱反正,恢复正常教育教学秩序,编写新的科学教学大纲和教科书。这次科学教育改革吸收了世界各国60年代以来科学课程改革的经验,使中学的数学、物理、化学和生物等自然科学的课程内容实现了现代化。第二次科学教育改革从20世纪80年代中期至90年代,其特点在初等教育阶段开始重视幼儿园与小学的科学教育改革(当时叫自然学科改革),在中等教育阶段则降低科学课程的难度,同时追求科学课程的本土化。第三次科学教育改革始于世纪之交,至今仍在进行之中。其特点是进一步与国际科学教育改革接轨,试图衔接小学与初中的科学教育,促使义务教育阶段科学教育课程与教学改革一体化,面向全体学生,以科学素养为目标,注重培养学生的科学探究能力,等等。

第一次科学教育改革基本上是从翻译国外中小学科学教材开始的,作为我国自己编写的新科学教材的素材,其理论基础是美国著名心理学家和教育改革家布鲁纳的学科结构课程理论。第二次科学教育改革主要涉及两个方面,一是重视了小学科学教育,如由人民教育出版社刘默耕先生主持,引进了哈佛大学小学科学教育专家兰本达的“探究一研讨”教学法,并系统地编写了小学1~6年级的自然(科学)教材;二是在中学阶段改进了统编教材,使原先引进的过于理论化、抽象化和高难度的科学教材内容逐渐变成适合我国国情和学生需要的科学教材,这实际上是由20世纪80年代国际化到90年代本土化的一次转换。这次改革虽然不乏历史意义和贡献,但鲜有深化且缺少突破,只能说是修修补补而已。第三次科学教育改革的背景不同于前两次。一方面,我国市场经济和现代化事业进一步发展,改革开放随着我国成功地加入WTO进一步向前推进,为新一轮科学教育改革提供了社会需求和动力;另一方面,90年代以来新一轮国际科学教育改革在发达国家方兴未艾,为我国科学教育改革提供了良好的国际背景。1997年,中国科学技术协会与美国科学院签订了科学教育合作备忘录,为两国科学教育合作提供了有利的合作机制,其重要成果之一是合作建立了科学教育网站,翻译出版了美国科学教育改革的重要文献,如《国家科学教育标准》(1999),等等。此后,国家教育部组织一批科学教育专家和教师编写出全日制义务教育《科学(3~6年级)课程标准》(实验稿)和《科学(7~9年级)科学课程标准》(实验稿),由此拉开了新一轮科学教育改革的序幕。此外,我国教育部和科学技术协会还从法国引进了“做中学”幼儿园和小学科学教育项目,在全国许多大中城市的幼儿园和小学里进行基于“动手做”的探究式科学教育的实验。

从科学教育改革的主体来看,第三次改革不同于以往历次科学教育改革。首先,这次科学教育改革开始有一些科学家参与进来,如中国科协的科技专家、中国科学院和中国工程科学院的一些院士、大学(特别是师范大学)理科院系的一些教授都参与了这次科学教育改革,只是这些主体的参与的深度和广度还不够。第二,自20世纪80年代起,我国学科教育研究逐渐兴起,其中物理、化学、生物、地理等理科成长起来一批学科教育专家,成为第三次科学教育改革的重要参与者,为新一轮科学教育改革做出了贡献,是我国第一批受过专业训练的科学教育研究者。第三,广大的中小学科学教师也成为中坚力量。特别在小学科学教育改革中,一大批优秀的科学教师在改革中脱颖而出,茁壮成长。

但我们也发现,这三次科学教育改革都存在一个共同的问题,即每次科学教育改革在理论准备上都明显不足,原因在于缺乏有计划、有组织、系统而深入的科学教育研究。迄今为止,我国教育行政管理部门、高等学校和教育理论界都尚未重视科学教育研究。虽然我国各级各类教育研究人员成千上万,但专门进行科学教育研究的人员却寥寥无几,即使包括上文提到的理科各学科的科学教育专家也仍然为数不多。长期以来,我国的科学教育改革是在整个基础教育改革的总格局下进行的,只考虑采用教育的一般理论作为课程与教学改革指导思想,没有也不可能采用科学教育学的学科领域的理论。

一个学科或学术领域的形成和发展,虽则首先要看社会对它是否需要,但也必须意识到这种社会需要是否为人们所认识。从上文的分析中可以看出,由于缺乏科学教育理论研究,我国的科学教学与课程改革、中小学科学教师的培养和在职科学教师的专业发展都受到极大的制肘。比如,1978年以后,我国的基础科学教育课程从内容上说是国际化和现代化了,但在课程设计、开发和实施方面,在科学教学和评价方面,都远远没有实现现代化和国际化。证据之一是,我国幼儿园与中小学的科学课程与教学的方式和方法仍然是以传统的讲授法为主,探究式教学方式并没有在课堂上得到实施。这种情况基本上至今为止依然如故。证据之二是,尽管我国近30年来,九年义务教育的普及率比较高,小学、初中和高中普遍开设科学课程,但据近些年的公民科学素养监测发现,我国公民的科学素养水平仍然不高。从普及科学教育、提升国民的科学素养的意义上说,我国以往的科学教育不能说是成功的。证据之三是,我国在科技研究上和工农业生产中科技创新水平远远低于发达国家,甚至在某些领域不及印度等亚洲发展中邻国。证据之四是,我国近代以来进行学校科学教育虽有百余年的历史,并且建立了系统的科学与技术体制,但公民的科学精神仍然比较缺乏。不但一般社会大众,就是科技人员中也有不少缺乏科学精神的。近年来,科技界与科学哲学和科学史学界关于科学文化之争、关于中医存废之争,等等,其中的某些观点从一个侧面反映了“唯科学主义”在我国社会中仍然根深蒂固,而这实质上乃是缺乏科学精神和对科学本质理解片面的一种表征。

当前,我国科学教育研究的社会需要是显而易见的。我国政府早已提出“科教兴国”的战略方针。现在又提出建设创新型国家的战略目标。笔者认为,有效的基础科学教育改革是实现这个方针和这一目标的基础之基础。基础科学教育需要告别传统的“死读书、读死书”的教学方式,需要真正以自主、合作、探究、建构的教学方式与方法教学生生动活泼地学科学、做科学、用科学和理解科学。只有这样,我们才可以真正提高公民的科学素养,才可以在普及科学教育的基础上为高等学校输送真正爱科学、主动学科学、既敢于又善于进行科学创新的大学生和研究生。只有培养了大批具有创新精神和创新能力的科技人才,我国的科学与技术才能推动知识经济的发展,才可能赶超世界科技先进水平。

有效的科学教育改革不仅是当前改革的需要,也是今后我国科学教育改革长远的需要。国际国内的科学教育改革经验业已证明,中小学科学教育改革是随着科技发展和社会与人的发展需要与时俱进,所以,无论是从科学与技术发展的角度考虑,还是从科学教育改革的当下和长远的需要出发,我国都必须尽快形成科学教育研究的学科建制,培养从事科学教育研究和管理的高级人才及科学教育教师。

从2001年开始,国家教育部先后分四批批准了共60所高校设立科学教育本科专业,开始为小学和初中培养能够承担综合科学课教学的科学教师。这是这次科学教育改革催生的教师教育的新专业。但是,我们应当认识到,这些新建立的科学教育专业目前在课程设置和师资上还存在诸多问题,其中一个核心问题是,这些新设置的科学教育专业缺乏高水平的科学教师教育者。科学教师教育者是指既具有科学背景又具有科学教育理论与实践知识的教师教育者。在国外,这样的人才一般都具有科学教育博士学位,是既能进行科学教育研究又能进行科学教育人才培养的高级人才。这样的人才哪里来?需要有条件的研究型大学培养科学教育博士研究生。实际上,不仅这60所设立科学教育本科专业的高校需要科学教师教育者,其他所有进行理科教师培养的高校都需要科学教师教育者。没有这样的专门人才,我国的基础科学教育就难以达到国际一流的水平。

不仅高等院校培养理科教师需要科学教育专家,我们的科学教育改革也需要在各级各类教育研究机构和教研机构配备科学教育专家。比如,各省、市、县的教科院所或教师进修学校需要科学教育研究人员,甚至中小学也需要一批具有科学教育博士或硕士学位的科学教师。这样算起来,我国科学教育专业的博士研究生的需要量是非常大的,至少需要5000人以上。(作为一个参照,美国科学教学研究会的会员是1700人,其中大多数是美国人)。