首页 > 文章中心 > 燃料电池技术论文

燃料电池技术论文

燃料电池技术论文

燃料电池技术论文范文第1篇

关键词:质子交换膜燃料电池;双极板;电极;催化剂

1质子交换膜燃料电池的结构及原理

按照电解质的不同可将燃料电池分为磷酸燃料电池、碱性燃料电池、固体氧化物燃料电池、熔融碳酸盐燃料电池及质子交换膜燃料电池(PEMFC)等五类。PEMFC单电池由质子交换膜、气体扩散电极、双极板等构成,图1是其结构与工作原理示意图。

PEMFC的基本工作过程如下:

(1)氢气通过双极板上的导气通道到达电池的阳极,氢分子在催化剂的作用下解离形成氢离子和电子;

(2)氢离子以水合质子H+(xH2O)的形式通过电解质膜到达阴极,电子在阳极侧积累;

(3)氧气通过双极板到达阴极后,氧分子在催化剂的作用下变成氧离子,阴、阳极间形成一个电势差;

(4)阳极和阴极通过外电路连接起来,在阳极积聚的电子就会通过外电路到达阴极,形成电流,对负载做功。同时,在阴极侧反应生成水;

(5)只要持续不断地提供反应气体,PEMFC就可以连续工作,对外提供电能。

2质子交换膜燃料电池的特点

(1)高效率。PEMFC以电化学方式进行能量转换,不存在燃烧过程,不受卡诺循环限制,其理论热效率可达85-90%,目前的实际效率大约是内燃机的两倍。传统动力源为了提高效率必须将负荷限制在很小范围内,而PEMFC几乎在全部负荷范围内均有很高效率。

(2)模块化。PEMFC在结构上具有模块化的特点,可根据不同动力需求组合安装,采用“搭积木”式的设计方法简化了不同规模电堆的设计制造过程。

(3)高可靠性。由于PEMFC电堆采用模块化的设计方法,结构简单,易于维护。一旦某个单电池发生故障,可自动采取适当屏蔽措施,只会使系统输出功率略有下降,而不会导致整个动力系统的瘫痪。

(4)燃料多样性。PEMFC动力系统既可以纯氢为燃料,也可以重整气为燃料。氢气的来源可以是电解水的产物,也可以是对汽油、柴油、二甲醚等化石类燃料重整的产物。氢气的存储方式可以是高压气罐、液氢、金属氢化物等。

(5)环境友好。当采用纯氢为燃料时,PEMFC的唯一产物是水,可以做到零排放。以重整气为燃料时,相对于内燃机而言,排放也极大降低。此外,PEMFC噪声水平也很低,各结构部件均可回收利用。3研究现状

3.1关键部件

电解质膜、双极板、催化剂及气体扩散电极是质子交换膜燃料电池的四大关键部件。

电解质膜是PEMFC的核心部件,它直接影响燃料电池的性能与寿命。1962年美国杜邦公司研制成功全氟磺酸型质子交换膜,1966年开始用于燃料电池,其商业型号为Nafion,至今仍广泛使用。但由于Nafion膜成本较高,各国科学家正在研究部分氟化或非氟质子交换膜。

双极板在PEMFC中起着支撑、集流、分割氧化剂与还原剂并引导气体在电池内电极表面流动的作用,目前广泛采用的是以石墨为材料,在其上加工出引导气体流动的流场,基本流场形式有蛇形、平行、交指及网格状等。

铂基催化剂是目前性能最好的电极催化剂,为提高利用率,铂以纳米级颗粒形式高分散地担载到导电、抗腐蚀的担体上,目前广泛采用的担体为乙炔炭黑,比表面积约为250m2/g,平均粒径为30nm。

PEMFC的气体扩散电极由两层构成,一层为起支撑作用的扩散层,另一层为电化学反应进行的场所催化层。扩散层一般选用炭材如石墨化炭纸或炭布制备,应具备高孔隙率和适宜的孔分布,不产生腐蚀或降解。根据制备工艺和厚度不同,催化层分为厚层憎水、薄层亲水及超薄三种类型。

3.2测控系统

PEMFC的工作性能受多种因素(温度、压力等)的影响,为确保PEMFC正常运行,提高其可靠性和有效性,就必须监测各个影响因素。即运用有效的措施来连续监测PEMFC运行的关键或重要状态,并对收集到的信息进行必要的分析和处理,以便做到故障预测和及时诊断,为PEMFC管理系统提供依据。目前,进行PEMFC测试系统相关方面研究的公司和机构众多,但仍没有制定出有关PEMFC测试的国际标准和相应的标准测试设备,不过已有实用的测试系统投入使用。加拿大Hydrogenics公司的燃料电池测试站(FCATS)、美国Arbin公司的集成燃料电池测试系统(FCTS)是其中的突出代表。

4质子交换膜燃料电池的应用

质子交换膜燃料电池是目前各种燃料电池中实用程度较高的一类。其优越性不仅限于能量转换效率高、工作温度低,还体现在其可在较大的电流密度下工作,适宜于较频繁启动的场合。因此世界各大汽车生产厂商一致看好其在汽车工业中的应用前景,PEMFC已成为现今燃料电池汽车动力的主要发展方向。目前,通用、丰田等世界上知名的汽车公司,都在积极开发以PEMFC系统为动力源的PEMFC电动车,曾先后推出各种类型的样车,并进行PEMFC电动车队的示范运行。PEMFC电动车以其优异的性能和环境污染很少等突出特点引起了人们的普遍关注,甚至被认为将是21世纪内燃机汽车最为有力的竞争者。

此外,在航空航天特别是无人飞行器领域,以及家庭电源、分散电站、移动电子设备电源、水下机器人及潜艇不依赖空气推进电源等方面也有广泛应用前景。

5质子交换膜燃料电池的发展趋势

在关键部件方面,围绕电解质膜、催化剂及双极板的研究方兴未艾。全氟型磺酸膜价格昂贵,开发非全氟的廉价质子交换膜是今后的研究方向。近年来,新型质子交换膜的的研究热点是开发能够在100℃以上使用的高温电解质膜。在催化剂方面,研制高性能抗CO中毒电极催化剂是最紧迫的任务,此外,还要寻找非贵金属氮化物或碳化物作为现有铂催化剂的替代。目前广泛使用的石墨板具有较好的耐腐蚀能力和较高的热导率,但成本较高,加工难度大,强度、电导率和可回收性均不如金属板。金属板目前急需解决的问题是表面处理,以提高其耐腐蚀能力。复合材料双极板则结合了纯石墨板和金属板的优点,具有耐腐蚀、体积小、质量轻、强度大及工艺性良好等特点,是未来发展的趋势。

在电堆方面,今后的研究重点将是使电堆中的电池单元的性能接近于单电池的性能,这就需要对电堆的结构进行优化,保证电堆中每一片电池单元的整个活性面积处于一致的操作环境,并优化水、热管理,改善电流密度分布的均匀性。

参考文献

燃料电池技术论文范文第2篇

摘要:电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。 论文关键词:电力技术;电源 “电力技术是通向可持续发展的桥梁”,这个论断已经逐渐成为人们的共识。研究表明,为了实现可持续发展,应尽可能把一次能源转换为电能使用,提高电力在终端能源中的比例。因为,在保证相同的能源服务水平的前提下, 使用电力这种优质能源最清洁、方便,易于控制、效率最高。如果能将大量分散燃用的化石燃料都高效洁净地转换为电力使用,人们赖以生存的环境和生活质量就会大大改善。因此,电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。以下将对若干电力前沿技术的现状和未来发展前景进行简单评述。 1. 分布式电源 当今的分布式电源主要是指用液体或气体燃料的内燃机(IC)、微型燃气轮机(Microtur_bines)和各种工程用的燃料电池(Fuel Cell)。因其具有良好的环保性能,分布式电源与“小机组”已不是同一概念。 1.1 微型燃气轮机 微型燃气轮机(Micro Turbine),是功率为几千瓦至几十千瓦,转速为96 000 r/min,以天然气、甲烷、汽油、柴油为燃料的超小型燃气轮机,工作温度500 ℃,其发电效率可达30%。目前国外已进入示范阶段。其技术关键是高速轴承、高温材料、部件加工等。可见,电工技术的突破常常取决于材料科学的进步。 1.2 燃料电池 燃料电池是直接把燃料的化学能转换为电能的装置。它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。 1.2.1 燃料电池的工作原理 燃料电池的工作原理颇似电解水的逆过程。氢基燃料送入燃料电池的阳极(电源的负极)转变为氢离子,空气中的氧气送入燃料电池的阴极(电源的正极),负氧离子通过2极间离子导电的电解质到达阳极与氢离子结合成水,外电路则形成电流。 通常,完整的燃料电池发电系统由电池堆、燃料供给系统、空气供给系统、冷却系统、电力电子换流器、保护与控制及仪表系统组成。其中,电池堆是核心。低温燃料电池还应配备燃料改质器(又称为燃料重整器)。高温燃料电池具有内重整功能,无须配备重整器。磷酸型燃料电池(PAFC)是目前技术成熟、已商业化的燃料电池。现在已能生产大容量加压型11 MW的设备及便携式250 kW等各种设备。第2代燃料电池的溶融碳酸盐电池(MCFC),工作在高温(600~700 ℃)下,重整反应可以在内部进行,可用于规模发电,现在正在进行兆瓦级的验证试验。固体电解质燃料电池(SOFC)被称为第3代燃料电池。由于电解质是氧化锆等固体电解质,未来可用于煤基燃料发电。质子交换膜燃料电池是最有希望的电动车电源。 1.2.2 性能和特点 燃料电池有以下优点:(1)有很高的效率,以氢为燃料的燃料电池,理论发电效率可达100%。熔融碳酸盐燃料电池,实际效率可达58.4%。通过热电联产或联合循环综合利用热能,燃料电池的综合热效率可望达到80%以上。燃料电池发电效率与规模基本无关,小型设备也能得到高效率。处于热备用状态,燃料电池跟随负荷变化的能力非常强,可以在1 s内跟随50%的负荷变化。(3)噪音低;可以实现实际上的零排放;省水。(4)安装周期短,安装位置灵活,可省去新建输配电系统 目前燃料电池大规模应用的障碍是造价高,在经济性上要与常规发电方式竞争尚需时日。

燃料电池技术论文范文第3篇

关键词: 燃料电池 测试系统 性能参数

随着全球对能源需求的增长及人类对环境要求的提高,各个国家对燃料电池的研究和开发日益增多。燃料电池是最有希望为汽车和居民提供清洁高效能源的技术之一。燃料电池发动机被认为是最有希望取代内燃机的新型能源动力系统[1],[2]。燃料电池测试系统不仅在燃料电池系统的研发阶段十分重要,即使是在其投入使用之后对于维持电池的正常工作也是不可或缺的[3]。强大的测试能力能够提供对燃料电池可靠的监控,提供灵活的结构,具备了这种能力,科学界能够很方便地设计他们的系统,以跟踪燃料电池技术进步[4]。

1.国内外燃料电池测试系统整体研究现状及水平

由于燃料电池还处于开发阶段,汽车工业还没有制定燃料电池的标准测试仪器,更谈不上统一规范的测试仪器供应商。许多公司开始走近这项挑战,研究准确测试燃料电池的解决方案。这些公司中最引人注目的是美国的Hydrogenics公司和美国国家仪器公司(National Instruments,简称NI),它们推出了一些软硬件测试产品,能够兼容多种燃料电池,测得几乎所有设计指标[5]。Hydrogenics的Greenlight公司是世界上最大的燃料电池测试系统生产基地,它是燃料电池工业测试诊断设备引领全球的供应商。NI是全球基于计算机测量的领导者,许多领先的燃料电池制造商都在开发的各个阶段使用NI硬件及软件工具来测试燃料电池。

在整个电池行业研发出燃料电池测试系统的公司屈指可数,且在2004年之前均为国外厂家[6]。为使研发燃料电池的专家能利用测量、控制、分析及可视化工具进行评估,武汉力兴测试设备有限公司紧跟世界燃料电池的最前沿技术,自主开发出具有国内领先水平的燃料电池测试系统,并于2004年一月推出国内首台燃料电池测试系统,该系统的推出填补了我国在燃料电池测试领域的空白,在推广国内燃料电池产业发展的里程碑上有着非同寻常的意义。

2.燃料电池测试系统的基本理论

2.1测试目的

虽然研究、开发、制造和应用部门的总目标各有不同,它们对于燃料电池的检测和监视项目要求却是相似的。对于研发部门,测试要求是确定输出能量、使用寿命和电池组的耐用性。在设计验收阶段,主要任务是优化设计以备大规模生产,以及在不降低效率的情况下降低电堆总成本。对于生产应用,要求燃料电池符合规范要求。而在实际使用中,监测电池的寿命和工作状态是非常重要的。好在这些不同的任务对电池测试系统的要求都差不多。

2.2测试系统的主要特点

①隔离。燃料电池测试系统先要进行各种需要信号调理的测量,然后原始信号才能有数据采集系统数字化。大容量电堆具有数百个单电池,从而电压测量要求数百伏的共模抑制。因此,测试不仅必须具有多个每个通道都能读取1-10V的通道,而且必须保持电堆的每一个和最后一个电池之间高达数百伏的隔离。

②数据采集系统必须能够扩展。由于燃料电池测试系统的通道数目可以从100个到1000多个,所以数据采集系统必须能够扩展,并且这些系统也要求可以进行信号的衰减和放大。

③模块化。对于今天的测试系统,模块化也是必需的。因为测试系统必须能够随着生产及验证技术的变革而变革。

④标定。任何测试系统都应该进行标定以确保测量有效和准确。

2.3测试的主要性能参数

燃料电池测试系统需要精确的监测和控制成百上千次测量,范围从燃料和氧化剂的流量、温度、压力和湿度到燃料电池组的输出电压和电流。测试燃料电池的性能是很重要的,而监测影响性能的变量更为重要,但最重要的是控制这些变量参数,安全运行也是至关重要的。所以监测控制的主要参数有:

(1)电压。在有负载的情况下,单电池的输出电压会从开路电压的1V左右降到0.6V左右,知道了每个单电池的电压就可以更近的了解电堆的健康情况。如果哪个单电池显示出不同电压,就表明此电池有问题,或者温度不正常,或者电极被淹。测试单电池或电堆的电压就可以正确操作、测试和设计燃料电池。

(2)电流。输出电流有时候很高,所以通常利用高斯效应来测,这种方法可以不直接使用导线来测试电流,而通过监测信号并按比例转换成电流读数。

(3)温度。要高效地产生电能,PEMFC必须在60-80℃的范围内工作,监视温度的目的是优化温度的改变以提高输出功率,热电偶和电阻是温度传感器,是监视电池组温度及反应气体温度的良好传感器。

(4)湿度。电池单元的每一个膜片必须保持一定的湿度,太干或太湿都会影响燃料电池的工作效率。因此测定和控制燃料电池的湿度非常重要。一种测试湿度的方法是通过电子湿度传感器,根据湿度的大小成比例的输出4-20mA的电流,测试仪器的输入通道可以读入这个电流信号。

(5)气体压力。在许多应用中,气流压力较大,此压力必须进行监视和管理。压力通过压力传感器进行测量并进行信号调理。

(6)气体流速。氢气流速一般使用产生正比于气流速率脉冲的质量流量计来测量,然后这些脉冲由计数器/定时器接口板进行监视,并使用软件换算成流量。电子调节器可通过试验台输出的电压或电流来控制压力和流量。

(7)负载。可利用可编程负载来改变阻值,改变阻值可利用可控制的GPIB负载设备或通过数字继电器并行连接各个电阻。第一种方法可以安装单独的一个单元通过GPIO来改变加在电堆上的电阻,第二种方法可利用继电器和开关改变阻值。

2.4燃料电池测试系统基本结构

燃料电池测试系统由硬件和软件两大块组成。硬件部分主要有控制器,传感器和加载装置;控制器主要基于计算机控制,这种方法充分发挥了计算机的优势:速度快,记忆能力强大和可升级。软件要易于升级并极具灵活性,用户界面友好,用户可很容易地进行各种复杂程度的编程及实验。表1列出了燃料电池测试系统基本结构单元。

3.结论

工程师们不断将新方法应用到燃料电池的测试中,不断寻求可靠、精确及灵活的测试系统来辅助缩短开发周期、提高燃料电池质量和降低成本,以开发出下一代燃料电池。凭借着燃料电池发展因环境、政府和消费者的压力而增加,加之政府的巨大投资,燃料电池测试系统的开发和应用定会取得更大进展。

参考文献:

[1]何仁.燃料电池汽车研究现状及发展前景[J].汽车工业研究,2001,(2):1-2.

[2]阿布里提.燃料电池汽车(FCEV)的现状及开发动向[J].电工电能新技术,2001,(3):4-6.

[3]燃料电池的测试[J].汽车工程,2002,24(1):84-87.

[4]杨靖云.燃料电池测试系统引人注目[J].电源技术,2004,28(5):311.

燃料电池技术论文范文第4篇

关键词:电动汽车;电池技术;研究;展望

一、电动汽车动力电池技术研究

(一)铅酸蓄电池技术

铅酸蓄电池是目前能够大量生产供应、在汽车领域应用最为广泛的电池。它主要由分别浸入电解液的正极板(PbO2)、负极板(Pb)组成。

(二)铅酸蓄电池技术的充放电原理分析

铅酸蓄电池是利用元素Pb化学上的不稳定性产生电子迁移提供电能的。当正、负极板用导体相连,负极板上的Pb失去两个电子与电解液中的S042-生成化学特性更加稳定的PbSO4,电子通过导体被正极板上的Pb4+捕获也生成PbSO4,以此持续地为用电器提供电能。当正、负极上的活性物质被大量消耗,放电反应无法持续地大量发生,造成蓄电池亏电,需要进行充电。充电时,负极板上的PbSO4被电解,Pb2+获得电子还原为Pb;正极板上的Pb2+失去电子被氧化生成PbO2。

1、铅酸蓄电池技术的特点分析

铅酸蓄电池比能量和比功率低、循环使用寿命短、充电时间长,极大地限制了其在电动车领域的推广应用。作为电动车的动力电池,目前仅仅应用在行驶里程短、对充电要求不高的场合,如观光车、叉车、短途公共汽车等。

2、铅酸蓄电池技术的应用前景分析

虽然铅酸蓄电池作为电动车的动力源存在许多先天不足,许多人并不看好其应用前景,但它技术成熟、可大量生产、造价低,如果能够改善其比能量和比功率、提高其充电性能和使用寿命,在新的动力电池技术发展成熟、广泛应用之前,仍具有一定的应用空间。

(三)锂离子电池技术

锂离子电池是20世纪90年代索尼公司推出的新型高能蓄电池,已经在便携式信息产品中获得推广应用。电动车用锂离子电池性能明显高于上述两种电池,是目前动力电池的发展主流。典型的锂离子动力电池由锂离子金属氧化物(LiMO2)构成的正极、焦炭或石墨(C)构成的负极以及溶有锂盐的有机溶液组成。

1、锂离子电池技术的充放电原理分析

充电时,正极的Li失去电子变为Li+,脱离金属氧化物进入电解液,负极的碳呈层状结构,它有许多微孔,从电解液中来的Li+和电子嵌入其中,嵌入的Li越多,容量就越高;放电时,嵌在负极碳层的Li释放电子,从碳层中脱出变为Li+进入电解液,电子经过用电器到达正极,和电解液中Li+以及正极金属氧化物重新组合成LiMO2。

2、锂离子电池技术的特点分析

锂离子电池比能量比镍氢电池高出一倍多,但是它也存在一些问题,如快速放电性能差、价格过高和过放电保护问题,更严重的是大容量的、高功率的锂离子电池安全性上存在较大问题,限制了锂离子电池在电动汽车里的大规模推广运用。目前,主要在小容量、低功率的电动汽车上广泛应用。

3、锂离子电池技术的应用前景分析

离子电池普遍被科学家们看好,认为它是21世纪纯电动汽车发展的主要动力电池之一。各国汽车生产厂商都将发展锂离子电池技术列为新能源汽车研究的重点项目,未来具有广阔的研究和应用前景。

(四)燃料电池技术

燃料电池是一种存在于燃料和氧化剂之中的化学能直接转化为电能的装置,目前研究较多的是以氢气为燃料的氢燃料电池。它的结构同一般蓄电池类似,由正极、负极和电解质隔膜组成。不同的是,燃料电池的正、负极不包含活性物质,仅仅作为催化转换元件,电池工作时,氢气和氧气由外部供给。理论上,只要不断输入反应物,不断排除反应产物,燃料电池就能持续地供应电能。

1、燃料电池技术的放电原理分析

电池工作时,分别给正、负极供应氧气和氢气,氢气在负极失去电子变为H+进入电解质隔膜,正极处的氧气捕获负极而来的电子,并与电解质隔膜中的H+反应生成H20。

2、燃料电池技术的特点分析

燃料电池只需补充燃料与空气就可以源源不断地产生动力,并不需要一般蓄电池长时间的充电储能过程,更加接近内燃机汽车,能够更加快速方便地补给。氢燃料电池作为能源的突出特点是无污染、效率高、高功率密度、可循环利用。

3、燃料电池技术的应用前景分析

短期内,燃料电池很难大规模推广应用,但随着技术成熟进步,燃料电池相对于一般蓄电池会体现出其先天优势。燃料电池不仅是未来电动汽车主要的动力电池之一,并且它自身可以产生电能而不需要充电,是未来缓解能源危机的一种新型绿色能源,具有广泛的前景。

二、电动汽车动力电池技术的未来展望研究

目前,没有哪一种动力电池完全占据了主导地位。它们在各自应用领域、不同的时间段内发挥着各自的作用。铅酸蓄电池成本低、技术成熟,适用于现阶段的短距离电动汽车;锂离子电池体积小、质量轻且容量大,只要解决了充电、安全性等问题,极有可能在不久的将来广泛应用于纯电动汽车,使电动汽车逐渐取代内燃机汽车;燃料电池通过添加可再生燃料续航,不需要进行充电,是未来电动汽车的发展方向,同时也是解决能源危机的一种新型能源。

参考文献:

燃料电池技术论文范文第5篇

关键词:燃料电池技术路线

燃料电池发电是将燃料的化学能直接转换为电能的过程,其发电效率不受卡诺循环的限制,发电效率可达到50%一70%,被誉为二十一世纪重要的发电新技术之一。目前,国际上磷酸型燃料电池已进入商业化,其它几种燃料电池预计在2005年一2010年200kw一将全面进入商业此。对于这种蓬勃发展的发电新技术,国家电力公司应该采取怎样态度?要不要发展?怎样发展?这些问题亟待解决。

l燃料电池发电的技术特点和应用形式

1.1技术特点

燃料电池发电是在一定条件下使燃料(主要是h2)和氧化剂(空气中的02)发电化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环的限制,能量转换效率高。与常规发电相比燃料电池具有以下优点:

(1)理论发电效率高,发展潜力大。燃料电池本体的发电效率可达到50一60%,组成的联合循环发电系统在(10—50)mw规模即可达到70%以上的发电效率。

(2)污染物和温室气体排放量少。与传统的火电机组相比,c02排出量可减少40%一60%。nox(<2ppm)和sox(<1ppm)排放量很少。

(3)小型高效,可提高供电可靠性。燃料电池的发电效率受负荷和容量的影响较小。

(4)低噪音。在距发电设备3英尺(1.044米)处噪音小于60db(a)。

(5)电力质量高。电流谐波和电压谐波均满足ieee519标准。

(6)变负荷率高。变负荷率可达到(8%一lo%)/min,负荷变化的范围大(20一120)。

(7)燃料电池可使用的燃料有氢气、甲醇、煤气、沼气、天然气、轻油、柴油等。

(8)模块化结构,扩容和增容容易,建厂时间短。

(9)占地面积小,占地面积小于lm2/kw。

(10)自动化程度高,可实现无人操作。

总之,燃料电池是一种高效、洁净的发电方式,既适合于作分布式电源,又可在将来组成大容量中心发电站,是2l世纪重要的发电方式。制约燃料电池走向大规模商业化的主要因素是:高价格和寿命问题。

2.1燃料电池的应用形式

(1)现场热电联供,常用的容量为200kw一1mw。

(2)分布式电源,容量比现场用燃料电池大,约(2—20)mw。

(3)基本负荷的发电站(中心发电站),容量为(100—300mw)。

(4)燃料电池还可用于100w—100kw多种可移动电源、便携式电源、航空电源、应急电源和计算机电源等。

2为什么要在我国电力系统发展燃料电池发电技术?

2.1采用燃料电池发电是提高化石燃料发电效率的重要途径之一

以高温燃料电池组成的联合循环发电系统,可使发电效率达到60—75(lhv),这一目标将在2005年左右实现。预计到2010年,发电效率可超过72%。煤气化燃料电池联合循环(igfc)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。

2.2燃料电池发电可有效地降低火力发电的污染物和温室气体排放量

燃料电池发电中几乎没有燃烧过程,nox排放量很小,一般可达到(o.139一0.236)kg/mw·h以下,远低于天然气联合循环的nox排放量(1kg/mw·h一3kg/mw.h)。由于燃料进入燃料电池之前必须经过严格的净化处理,碳氢化合物也必须重整成氢气和co,因此,尾气中s02、碳氢化合物和固态粒子等污染物排量也污染物的含量非常低。与常规燃煤发电机组相比,c02的排放量可减少40%一60.在目前co2分离和隔绝技术尚不成熟的状况下,通过提高能源转换效率减少co2排放是必然的选择。

2.3采用燃料电池发电可提高供电的灵活性和可靠性

燃料电池具有高效率、低污染、低噪声、模块化结构、体积小、可靠性高等突出特点,是理想的分布式电源。与目前一些可做为分布式电源的内燃机相比,燃料电池的发电效率更高、污染更低。在250kw—lomw的功率范围内,具有与目前数百兆瓦中心电站相当甚至更高的发电效率。作为备用电源的柴油发电机由于污染和噪声大不宜在未来的城市中应用。低温燃料电池不仅发电效率高,而且启动快、变负荷能力强,是很好的备用电源。现代社会对供电的可靠性和环境的兼容性要求越来越高,高效、低污染的分布式电源系统日益受到重视。近年来美国、加拿大、台湾相继发生因自然灾害或人为因素造成的大面积停电,许多重要用户长期不能恢复供电,给社会和经济造成了巨大的损失。北约轰炸南联盟,使电力系统严重受损。这些由不可抗力引起的电网破坏无不使人引发出一个重要的思考:提高我国电力系统供电的可靠性和供电质量,虽然主要依靠电网的改造和技术革新,但如果在电网中有许多分布式电源在运转,供电的可靠性将会大大提高。

对于象军事基地、指挥中心、医院、数据处理和通讯中心、商业大楼、娱乐中心、政府要害部门、制药和化学材料工业、精密制造工业等部门,对电力供应的可靠性和质量要求很高。目前采用的备用电源效率低、污染严重、电压波动大。而采用燃料电池作为分布式电源向这些部门提供电力,会使供电的可靠性和电力质量大大提高。他们将是燃料电池发电技术的第一批用户。

对于边远地区,负荷小且分散,若建设完善的电网,不仅投资大,线损大,且电网末端地区电力质量不稳定。对于这些区域若辅助燃料电池发电的分布式电源,更能有效地解决这些地区的电力供应问题。燃料电池的重量比功率和体积比功率均比常规的小型发电装置大,因此,它也是理想的移动电源,适合于各种建设工地、野外作业和临时急用。

2.4发展燃料电池发电技术是提高国家能源和电力安全的战略需要

美国已将燃料电池发电列为国家安全关键技术之一。美、日之所以能在燃料电池技术方面处于世界领先地位,与国家从战略高度予以组织、资助和推动密不可分。在目前复杂的国际环境下,高技术的垄断日趋严重,掌握清洁高效发电的高新技术对未来国家的能源和电力安全具有重要的战略意义,而燃料电池发电技术,正是这种高效清洁的高新发电技术之一。燃料电池突出的优点,以及发达国家竟相投入巨资研究开发的行动,足以说明燃料电池发电技术在21世纪会起到越来越重要的作用。

2.5发展燃料电池发电技术是国电公司“加强技术创新,发展高科技,形成高新技术产业”的需要

燃料电池发电技术是电力工业中的高新技术,己受到普遍重视。美国燃料电池发电技术的研究开发主要由美国能源部组织实施,其中一个重要的目的就是形成新的高技术产业,为美国的经济注入新的活力。日本的东京电力公司、关西电力公司及其它公用事业单位是日本燃料电池开发及商业化的主要承担者和推动者,其目的也是为电力公司注入新的经济增长点以获得巨大的经济效益和社会效益。

国家电力公司处在完成“两型”、“两化”、“进入世界500强”的历史时刻,恰逢党中央国务院号召全国各行业“加强技术创新,发展高科技,实现产业化”的有利时机,在国家电力公司内不失时机地进行燃料电池发电技术的研究开发是非常必要的。采取引进、消化、吸收和再创新的技术路线,以高起点,在尽可能短的时间内初步形成自主产权的燃料电池发电关键技术,不仅可以使我国在燃料电池发电技术领域与国外的差距大大缩小,而且,对国家电力公司进行发电系统的结构调整、技术创新、形成高新技术产业、实现跨越式发、提高国际竞争能力都具有非常重要的意义。

2.6燃料电池发电技术在我国有广阔的发展前景

未来二十年,随着我国“西气东送”,全国天然气管网的不断完善及液化天然气(lng)的广泛应用,燃用天然气的燃料电池发电将会有很大市场。煤层气也是燃料电池的理想燃料。我国丰富的煤层气资源也将是燃料电池发电的巨大潜在能源之一。燃料电池可与常规燃气一蒸汽联合循环结合,形成更高效率的发电方式。与煤气化联合循环(igcc)结合,形成数百兆瓦级的大型、高效、低污染的中心发电站,比igcc效率更高,污染更小。

燃料电池可与水电、风电和太阳能发电等结合,在高出力时,利用电解水制氢,低出力时用燃料电池发电,达到既储能,又高效发电的目的。采取气化或厌氧处理的方法将生物质变为燃料气,通过燃料电池发电,提高能源转换效率,并降低污染物排放量。对一些经济欠发达但有丰富的沼气资源的地区,利用燃料电池发电技术有可能更有有效地解决这些地区的电力供应问题。

2.7与国外有较大的差距

在燃料电池发电技术方面,我国与国际先进水平有较大的差距。在mcfc和sofc技术方面,国外已分别示范成功了2mw和100kw的燃料电池发电机组,而我国在这方面才刚刚起步,2000年才可望研制出2kw左右的试验装置。在pafc和pefc技术方面,国内与国外的差距更大。倘若我们现在不开始研究开发燃料电池发电技术,等到燃料电池完全成熟后再引进,不但会受制于人,还将付出更大的经济代价,更谈不上尽快形成燃料电池发电的产业化。若不能形成燃料电池的产业化并在电力系统广泛应用,那么,也谈不上提高发电效率和降低污染物的排放。只有从现在开始,在国外的基础上,高起点研究,经过10—20年的努力,有可能在国电公司形成燃料电池的产业和广泛的商业应用。

2.8在我国电力系统发展燃料电池发电技术是市场经济条件下的迫切要求

分散式电源作为大电网的有效补充己得到许多国家的重视,而电源提供者的多元化更是一种趋势。我国电网的容量大、技术水平和可靠性还较低、抵御各种灾害的能力较差,在这种情况下,小型高效的燃料电池分布式电源随着技术的商业化市场潜力巨大。

倘若电力系统不及时进行研究开发,在未来几年内,有可能被国外企业和国内其它其它行业或民营企业占领燃料电池分散电源市场。在市场经济条件下,国电公司既是用户,又是开发者。对于燃料电池这样重要的发电高新技术,应不失时机地着手研究开发,联合国内一些基础研究单位,争取纳入国家的攻关计划,获得国家支持,在尽可能短的时间内,形成燃料电池发电技术研究开发的优势,开发燃料电池发电关键技术和成套技术,形成国电公司的高新技术产业,既可优化调整电力结构,又能满足市场的不同需求。

3国外燃料电池发展计划及商业化的预测

研究美、日、欧洲等国家和地区燃料电池的发展进程及商业化的预测,对我们制定燃料电池的发展战略和预测应用前景会有一定的参考价值。

3.1美国燃料电池发电技术研究开发状况

(1)美国燃料电池发电技术的研究开发计划

1997年,美国总统克林顿颁发了"改善气候行动计划”,燃料电池被确定为一项关键技术,联邦政府为此制定了一项“美国联邦燃料电池发展计划”,目的是通过燃料电池的商业化来减少温室气体排放量。在这项计划中,对每一个燃料电池的新用户资助l000/kw的优惠。结果,仅在1998年,就有42台200kwpafc发电机组投入运行。

美国政府鼓励在一些对环境敏感的地区建立燃料电池发电站。此外,政府已促使美国所有的军事基地安装200kw燃料电池发电机组。通过这些措施,加速燃料电池的商业化,并提高国家能源的安全性。美国政府投入巨资研究开发燃料电池发电技术的另一个目的,就是要保持美国在这一领域的领先地位。随着商业化过程不断深入,将逐步形成新的高技术产业,为美国的经济注入新的活力,提供更多的就业机会。

美国doe的燃料电池发展计划如下:

pafc己商业化,不再投入资金进行研究开发。pafc目前的发电效率为40%一45(lhv),热电联产的热效率为80%(lhv)。

已完成250kw和2mwmcfc的现场示范,预计2002年进行20mw的示范;2003年左右,使250kw和mw级mcfc达到商业化;2010年,燃用天然气的250kw一20mwmcfc分散电源达到商业化,100mw以上mcfc的中心电站也进入商业化;2020年,100mw以上燃煤mcfc中心发电站进入商业化。mcfc技术目标是运行温度为650℃,发电效率达到60%(lhv),组成联合循环的发电效率为70(lhv),热电联产的热效率达到85(lhv)以上。

目前,己完成25kw和100kwsofc现场试验,正在进行sofc的商业化设计。预计2002年左右,进行mw级sofc示范;2003年左右,100kw一1mwsofc进行商业化:2010年,250kw一20mw燃用天然气的sofc以分布式电源形式进入商业化,100mw以上燃用天然气的sofc以中心电站形式进入商业化;2020年,100w及以上容量的燃煤s0fc以中心电站的形式进入商业化。sofc技术目标是:运行温度为1000℃,发电效率达到62%(lhv),组成联合循环的发电效率达到72%(lhv),热电联产的热效率达到85(lhv)以上,燃煤时发电效率可达到65%(lhv),这一目标预计2010完成。

美国是最早研究开发pefc的国家,但在大容量化和商业应用方面已落后于加拿大。目前美国生产的质子交换膜仍居世界领先水平。美国在pefc的开发方面是面向家庭用分散式电源,实现热电联供。plugpower公司与ge合作,计划2001年使10kwpefc进入商业化,价格达到s750—1000/kw,大批量生产后,使pefc的价格达到$350/kw。

(2)市场预测

美国能源部(doe)对美国潜在的燃料电池市场的预测认为:在2005年一2010年,美国年需求燃料电池发电容量约2335mw一4075mw。现在美国的燃料电池年生产能力为60mw,商业化的价格为$2000一$3000/kw,若年生产能力达到100mw/a,商业化的价格则可达到$l000—$1500/kw。若能达到(2000—4000)mw/a的生产能力,燃料电池的原材料费仅$200一$300/kw。那么燃料电池的价格则有可能达到$900—$l100/kw,此时可完全与常规的发电方式竞争。

3.2日本燃料电池发电技术的发展进程及应用前景预测

(1)发展进程

日本在pafc研究方面,走的是一条引进合作、消化吸收、再提高的路线。1972年东京煤气公司从美国引进两台pafc燃料电池发电机组,大阪煤气公司也在1973年引进两台pafc机组。日本政府于1981年设立了以开发节能技术为宗旨的“月光计划”,燃料电池发电是其中一项重要内容。此后,日本国内的电力公司、煤气公司和一些大型的制造厂纷纷投入燃料电池的研究开发,并与美国ifc合作,使日本的pafc得到更大的发展。目前,日本的pafc技术已赶上了美国,商业化程度超过了美国。5mw(富士电机制造)和11mw(东芝与ifc合制)均在日本投运,日本公司制造的pafc机组已运行了近100多台。

日本有关mcfc的研究是从1981年开始的,通过自主开发并与美国合作。1987年10kwmcfc开发成功,1993年100kw加压型mcfc开发成功,1997年开发出1mw先导型mcfc发电厂,并投入运行。mcfc已被列为日本“新阳光计划”的一个重点,目标是2000年一2010年,实现燃用天然气的10mw一50mw分布式mcfc发电机组的商业化,并进行100mw以上燃用天然气的mcfc联合循环发电机组的示范,2010年后,实现煤气化mcfc联合循环发电,并逐步替代常规火电厂。

日本的sofc技术也是从1981年的“月光计划”开始研究的,立足于自主开发。1989年一1991年,开发出l00w一400wsofc电池堆,1992年一1997年开发出l0kw平板型sofc。sofc的研究进展也远远落后于nedo原来的计划。“新阳光计划”中预计2000年一2010年,使sofc达到mw级,并形成联合循环发电。日本的pefc也被列入“新阳光计划”,目前开发的容量为(1—2)kw。

(2)政府采取的措施

日本政府在“月光计划”和“新阳光计划”中,先后资助了3台200kw、2台lmw和l台5mw的pafc;1台100kw和1台1mw的mcfc示范电站研究开发、建设及运行。

在通产省和nedo的统一组织和管理下,使公用事业单位(电力公司和煤气公司)和开发商及研究单位紧密结合,实现燃料电池研究开发和商业示范应用一体化。日本电力公司和煤气公司,过去十年来安装了约80多台燃料电池机组,装机容量达到20.1mw,燃料电池及电厂的费用主要由业主承担,但是制造商和政府也各承担一部分。这种政府和企业联合研究开发的方式促进了日本燃料电池的发展。使用燃料电池发电享有许多优惠政策:燃料电池的相关设备,在未超过一定规模时,其工程计划仅须申报即可动工。对500kw以下的常压燃料电池生产与使用的审批手续大大简化。在医院、旅馆、办公大楼等安装的燃料电池发电机组,政府提供的经费资助。新建的燃料电池发电设备享有10的免税额,并获有30%的加速折旧。对装设于电力公司或自备发电用的燃料电池项目,日本开发银行将提供投资额40%的低息贷款。

(3)市场预测

1990年,日本通产省发表了“长期电源供需展望”报告,预计日本国内的燃料电池发电容量到2000年约2250mw;2010年约10720mw,电力系统用5500mw,其中约有2400mw是mcfc和sofc高温型燃料电池;2010年煤气化mcfc和sofc达到实用化;发电效率达到50%一60%。由于燃料电池发电技术仍有许多技术上的难题没有突破,进展速度低于预期值,因此日本目前已将原目标做了修正,预计2000年燃料电池装机容量将达到200mw,其中分布式电源l12mw,工业用热电联产型为88mw;2010年将达到2200mw,其中分布式电源型为735mw,工业用热电联产型为1465mw。

3.3其它国家和地区的发展进程

目前,欧洲的燃料电池发电技术远远落后于美国和日本。80欧洲又重新开始研究燃料电池发电技术。它们采用向美国、日本购买电池组,自行组装发电厂的方式来发展pafc发电技术。1990年成立了一个“欧洲燃料电池集团(efcg)”。意大利已完成了一座1mw的pafc示范工程,由ifc供应,bop由欧洲制造。意大利、西班牙与美国ipc合作,于1993年在米兰建了一座l00kwmcfc电厂,1996年投运。德国正在开发250kwmcfc。德国西门子公司于1998年收购了美国西屋公司的管形sofc技术后,现在拥有世界上最先进的平板型和管形sofc技术。

加拿大在pefc方面居世界领先地位,在继续开发交通用pefc的同时,目前也将pefc应用于固定电站,已建成250kwpefc示范电站,目标是在近几年内使250kw级pepc商业化。澳大利亚在1993年一1997年,共投资3000万美元,研究开发平板型sofc,目前正在开发(20一25)kwsofc电池堆。韩国电力公司于1993年从日本购进一座200kwpafc进行示范运行。

3.4国外发展燃料电池发电技术的经验总结

回顾国外燃料电地发展的道路,有许多值得我们吸取和借鉴的经验。下面归纳几点:

美国在燃料电池发电技术的研究开发方面始终处于世界领先地位。除了雄厚的财力之外,还有三方面重要的原因:一是政府将燃料电池发电技术视为提高火力发电效率、减少污染物和温室气体排放的重要措施,列入政府的“改变气侯技术战略”中,并大力投入资金和力量研究开发;二是燃料电池技术提高到“国家能源安全并大力投入资金和力量研究开发;二是将燃料电池技术提高到“国家能源安全关键技术”的战略高度,dod和doe均投入资金研究开发;三是对燃料电池的应用前景充满信心,希望能形成新的高技术产业,给美国的经济注入新的活力,政府和企业共同投入资金研究开发,力图保持领先地位。

日本走的是一条通过与美国合作、引进技术并消化吸收实现产业化的路线,并在pafc的商业化方面己超过了美国,在mcfc的研究开发方面也接近美国。成功的重要经验也是政府对燃料电池给予高度重视,先后列入了“月光计划”和“新阳光计划”,大力投入研究开发。另一条经验是研究机构、企业和用户联合,组成从研究、开发到商业应用一体化集团,既承担研究开发的风险,也享受成功的优惠。

加拿大ballard公司在pefc方面成功的经验告诉我们:只要坚定不移地进行研究开发,一个小公司也能在10—20年内成为举世瞩目的燃料电池技术拥有者。

燃料电池起源于欧洲,但是,现在欧洲的燃料电池技术已远远落后于美国和日本。主要原因是政府和企业对燃料电池发电技术重视不够。目前,欧洲已经意识到这一点,成立了—个燃料电池发电技术集团,引进美国、日本的技术,并进行研究开发。

4各种燃料电池发电技术综合比较

(1)afc:与其它燃料电池相比,afc功率密度和比功率较高,性能可靠。但它要以纯氢做燃料,纯氧做氧化剂,必须使用pt、au、ag等贵金属做催化剂,价格昂贵。电解质的腐蚀严重,寿命较短,这些特点决定了afc仅限于航天或军事应用,不适合于民用。

(2)pafc:以磷酸做为电解质,可容许燃料气和空气中c02的存在。这使得pafc成为最早在地面上应用或民用的燃料电池。与afc相比它可以在180℃一210℃运行,燃料气和空气的处理系统大大简化,加压运行时,可组成热电联产。但是,pafc的发电效率目前仅能达到40%一45%(lhv),它需要贵金属铂做电催化剂;燃料必须外重整:而且,燃料气中c0的浓度必须小于1%(175℃)一2(200℃),否则会使催化剂中毒;酸性电解液的腐蚀作用,使pafc的寿命难以超过40000小时。pafc目前的技术已成熟,产品也进入商业化,做为特殊用户的分散式电源、现场可移动电源和备用电源,pafc还有市场,但用作大容量集中发电站比较困难。

(3)mcfc:在650℃一700℃运行,可采用镍做电催化剂,而不必使用贵重金属:燃料可实现内重整,使发电效率提高,系统简化;co可直接用作燃料;余热的温度较高,可组成燃气/蒸汽联合循环,使发电容量和发电效率进一步提高。与sofc相比,mcfc的优点是:操作温度较低,可使用价格较低的金属材料,电极、隔膜、双极板的制造工艺简单,密封和组装的技术难度相对较小,大容量化容易,造价较低。缺点是:必须配置c02循环系统;要求燃料气中h2s和co小于0.5ppm;熔融碳酸盐具有腐蚀性,而且易挥发;与sofc相比,寿命较短;组成联合循环发电的效率比sofc低。与低温燃料电池相比,mcfc的缺点是启动时间较长,不适合作备用电源。mcfc己接近商业化,示范电站的规模已达到2mw。从mcfc的技术特点和发展趋势看,mcfc是将来民用发电(分散电源和中心电站)的理想选择之一。

(4)sofc:电解质是固体,可以被做成管形、板形或整体形。与液体电解质的燃料电池(afc、pafc和mcfc)相比,sofc避免了电解质蒸发和电池材料的腐蚀问题,电池的寿命较长(已达到70000小时)。co可做为燃料,使燃料电池以煤气为燃料成为可能。sofc的运行温度在1000℃左右,燃料可以在电池内进行重整。由于运行温度很高,要解决金属与陶瓷材料之间的密封也很困难。与低温燃料电池相比,sofc的启动时间较长,不适合作应急电源。与mcfc相比,sofc组成联合循环的效率更高,寿命更长(可大于40000小时);但sofc面临技术难度较大,价格可能比mcfc高。示范业绩证明sofc是未来化石燃料发电技术的理想选择之一,既可用作中小容量的分布式电源(500kw一50mw),也可用作大容量的中心电站(>l00mw)。尤其是加压型sofc与微型燃气轮结合组成联合循环发电的示范,将使sofc的优越性进一步得到体现。

(5)pefc:pepc的运行温度较低(约80℃),它的启动时间很短,在几分钟内可达到满负荷。与pafc相比,电流密度和比功率都较高,发电效率也较高(45%一50(lhv)),对co的容许值较高(<10ppm)。pefc的余热温度较低,热利用率较低。与pafc和mcfc等液体电解质燃料电池相比,它具有寿命长,运行可靠的特点。pefc是理想的可移动电源,是电动汽车、潜艇、航天器等移动工具电源的理想选择之一。目前,在移动电源、特殊用户的分布式电源和家庭用电源方面有一定的市场,不适合做大容量中心电站。

5结论

选择适合于我国电力系统发展的燃料电池发电技术,应综合考虑以下几点:较高的发电效率;环保性能好;既能作为高效、清洁的分布电源,又具有形成大容量的联合循环中心发电站的发展潜力;既能以天然气为燃料,又具有以煤为燃料的可能性;技术的先进性及商业化进程;运行的可靠性和寿命;降低造价的潜力;国内的基础。综合考虑以上几点,对适合于我国电力系统发展的燃料电池发电技术,提出以下几点选择意见:

(1)优先发展高温燃料电池发电技术。即选择mcfc和sofc为我国电力系统燃料电池发电技术的主要发展方向,这两种燃料电池既能以天然气为燃料作为高效清洁的分布电源,又具有形成大容量的联合循环中心发电站(以天然气或煤为燃料)的发展潜力。

(2)mcfc和sofc各有特点,都存在许多问题,尚未商业化。若考虑技术难度和成熟程度以及商业化的进程,对于mcfc,应走引进、消化吸收、研究创新,实现国产化的技术路线,并尽快投入商业应用:对于sofc,应立足于自主开发,走创新和跨越式发展的技术发展路线。

(3)随着氢能技术的发展,pefc在移动电源、分散电源、应急电源、家庭电源等方面具有一定优势和的市场潜力,国家电力公司应密切跟踪研究。

(4)afc不适合于民用发电。pafc技术目前已趋于成熟,与mcfc、sofc和pefc比较,已相对落后。因此,afc和pafc不应做为国家电力公司研究开发的方向。

相关期刊更多

燃料与化工

省级期刊 审核时间1个月内

中冶焦耐工程技术有限公司

润滑油与燃料

部级期刊 审核时间1个月内

中国石油润滑油研究开发中心

燃料化学学报

北大期刊 审核时间1-3个月

中国科学院