首页 > 文章中心 > 卷积神经网络实现过程

卷积神经网络实现过程

卷积神经网络实现过程

卷积神经网络实现过程范文第1篇

关键词:树叶识别;支持向量机;卷积神经网络

中图分类号 TP18 文献标识码:A 文章编号:1009-3044(2016)10-0194-03

Abstract: In this paper, the convolution neural network recognition in the leaves, and the process by convolution of image visualization. Experiments show that the neural network application identification convolution leaves a 92% recognition rate. In addition , this neural network and support vector machine comparative study can be drawn from the study , convolutional neural network in either speed or accuracy better than support vector machines, visible, convolution neural network in the leaves aspect has good application prospects.

Key words recognition leaves; SVM; convolutional neural network

1 概述

树叶识别与分类在对于区分树叶的种类,探索树叶的起源,对于人类自身发展、科普具有特别重要的意义。目前的树叶识别与分类主要由人完成,但,树叶种类成千上万种,面对如此庞大的树叶世界,任何一个植物学家都不可能知道所有,树叶的种类,这给进一步研究树叶带来了困难。为了解决这一问题,一些模式识别方法诸如支持向量机(Support Vector Machine,SVM)[1],K最近邻(k-NearestNeighbor, KNN)[2]等被引入,然而,随着大数据时代的到来,这些传统分类算法暴露出越来越多的不足,如训练时间过长、特征不易提取等不足。

上世纪60年代开始,学者们相继提出了各种人工神经网络[3]模型,其中卷积神经网络由于其对几何、形变、光照具有一定程度的不变形,因此被广泛应用于图像领域。其主要特点有:1)输入图像不需要预处理;2)特征提取和识别可以同时进行;3)权值共享,大大减少了需要训练的参数数目,是训练变得更快,适应性更强。

卷积神经网络在国内研究才刚刚起步。LeNet-5[4]就是一种卷积神经网络,最初用于手写数字识别,本文研究将卷积神经网络LeNet-5模型改进并应用于树叶识别中。本文首先介绍一下卷积神经网络和LeNet-5的结构,进而将其应用于树叶识别,设计了实验方案,用卷积神经网络与传统的模式识别算法支持向量机(SVM)进行比较,得出了相关结论,并对进一步研究工作进行了展望。

2人工神经网络

人工神经网络方面的研究很早就已开展,现在的人工神经网络已经发展成了多领域、多学科交叉的独立的研究领域。神经网络中最基本的单元是神经元模型。类比生物神经元,当它“兴奋”时,就会向相连的神经元发送化学物质,从而改变这些神经元的状态。人工神经元模型如图1所示:

上述就是一个简单的神经元模型。在这个模型中,神经元接收来自n个其他神经元传递过来的输入信号,这些信号通过带权重的w进行传递,神经元接收到的总输入值将与神经元的阈值进行比较,然后通过“激活函数”来产生输出。

一般采用的激活函数是Sigmoid函数,如式1所示:

[σz=11+e-z] (1)

该函数图像图2所示:

2.1多层神经网络

将上述的神经元按一定的层次结构连接起来,就得到了如图3所示的多层神经网络:

多层神经网络具有输入层,隐藏层和输出层。由于每一层之间都是全连接,因此每一层的权重对整个网络的影响都是特别重要的。在这个网络中,采用的训练算法是随机梯度下降算法[5],由于每一层之间都是全连接,当训练样本特别大的时候,训练需要的时间就会大大增加,由此提出了另一种神经网络―卷积神经网络。

2.2卷积神经网络

卷积神经网络(CNN)由于在图像分类任务上取得了非常好的表现而备受人们关注。发展到今天,CNN在深度学习领域已经成为了一种非常重要的人工神经网络。卷积神经网络的核心在于通过建立很多的特征提取层一层一层地从图片像素中找出关系并抽象出来,从而达到分类的目的,CNN方面比较成熟的是LeNet-5模型,如图4所示:

在该LeNet-5模型中,一共有6层。如上图所示,网络输入是一个28x28的图像,输出的是其识别的结果。卷积神经网络通过多个“卷积层”和“采样层”对输入信号进行处理,然后在连接层中实现与输出目标之间的映射,通过每一层卷积滤波器提取输入的特征。例如,LeNet-5中第一个卷积层由4个特征映射构成,每个特征映射是一个24x24的神经元阵列。采样层是基于对卷积后的“平面”进行采样,如图所示,在第一个采样层中又4的12x12的特征映射,其中每个神经元与上一层中对应的特征映射的2x2邻域相连接,并计算输出。可见,这种局部相关性的特征提取,由于都是连接着相同的连接权,从而大幅度减少了需要训练的参数数目[6]。

3实验研究

为了将LeNet-5卷积网络用于树叶识别并检验其性能,本文收集了8类树叶的图片,每一类有40张照片,如图5所示的一张树叶样本:

本文在此基础上改进了模型,使用了如图6卷积神经网络模型:

在此模型中,第一个卷积层是由6个特征映射构成,每个特征映射是一个28*28的神经元阵列,其中每个神经元负责从5*5的区域通过卷积滤波器提取局部特征,在这里我们进行了可视化分析,如图7所示:

从图中可以明显地看出,卷积网络可以很好地提取树叶的特征。为了验证卷积神经网络与传统分类算法之间的性能,本文基于Python语言,CUDA并行计算平台,训练同样大小8类,一共320张的一批训练样本,采用交叉验证的方法,得到了如表1所示的结论。

可见,无论是识别率上,还是训练时间上,卷积网络较传统的支持向量机算法体现出更好地分类性能。

4 总结

本文从人工神经网络出发,重点介绍了卷积神经网络模型LeNet-5在树叶识别上的各种研究并提取了特征且进行了可视化,并与传统分类算法SVM进行比较。研究表明,该模型应用在树叶识别上较传统分类算法取得了较好的结果,对收集的树叶达到了92%的准确率,并大大减少了训练所需要的时间。由于卷积神经网络有如此的优点,因此在人脸识别、语音识别、医疗识别、犯罪识别方面具有很广泛的应用前景。

本文的研究可以归纳为探讨了卷积神经网络在树叶识别上的效果,并对比了传统经典图像分类算法,取得了较好的分类精度。

然而,本文进行实验的样本过少,当数据集过多的时候,这个卷积神经网络算法的可行性有待我们进一步的研究;另外,最近这几年,又有很多不同的卷积神经网络模型出现,我们会继续试验其他的神经网络模型,力求找到更好的分类算法来解决树叶识别的问题。

参考文献:

[1]Bell A, Sejnowski T. An Information-Maximization Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation, 1995, 7(6):1129-59.

[2]Altman N S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression[J]. American Statistician, 1992, 46(3):175-185.

[3]Ripley B D, Hjort N L. Pattern Recognition and Neural Networks[M]. Pattern recognition and neural networks. Cambridge University Press,, 1996:233-234.

[4]Lécun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.

卷积神经网络实现过程范文第2篇

关键词:深度学习;机器学习;卷积神经网络

1概述

深度学习(Deep Learning)是人工智能、图像建模、模式识别、神经网络、最优化理论和信号处理等领域的交叉学科,主要构建和模拟人脑进行分析学习,它属于机器学习的新兴领域。

2大数据与深度学习

目前,光学检测、互联网、用户数据、互联网、金融公司等许多领域都出现了海量数据,采用BP算法对于训练神经网络出现了梯度越来越稀疏、收敛到局部最小值只能用有标签的数据来训练等缺点。Hinton于2006年提出了深度学习的概念,Lecun等人提出了卷积神经网络,卷积神经网络利用空间关系减少参数数目以提高训练性能。

CPU和GPU计算能力大幅提升,为深度学习提供了硬件平台和技术手段,在海量大数据处理技术上解决了早期神经网络训练不足出现的过拟合、泛化能力差等问题。

大数据和深度学习必将互相支撑,推动科技发展。

3深度学习模型

深度学习模型实际上是一个包含多个隐藏层的神经网络,目前主要有卷积神经网络,深深度置信神经网络,循环神经网络。

1)卷积神经网络

在机器学习领域,卷积神经网络属于前馈神经网络的一种,神经元不再是全连接的模式,而是应用了局部感受区域的策略。然而传统的神经网络使用神经元间全连接的网络结构来处理图像任务,因此,出现了很多缺陷,导致模型⑹急剧增加,及其容易过拟合。

在卷积神经网络中,网络中的神经元只与前一层的部分神经元连接,利用图像数据的空间结构,邻近像素间具有更强的相关性,单个神经元仅对局部信息进行响应,相邻神经元感受区域存在重叠,因此,综合所有神经元可以得到全局信息的感知。

另外,一个卷积层中的所有神经元均由同一个卷积核对不同区域数据响应而得到,即共享同一个卷积核,使得卷积层训练参数的数量急剧减少,提高了网络的泛化能力。

一般在卷积层后面会进行降采样操作,对卷积层提取的特征进行聚合统计。降采样区域一般不存在重叠现象。降采样简化了卷积层的输出信息,进一步减少了训练参数的数量,增强了网络的泛化能力。

卷积神经网络实现了局部特征的自动提取,使得特征提取与模式分类同步进行,适用于处理高分辨率的图像数据。目前,卷积神经网络在图像分类、自然语言处理等领域得到广泛应用。

2)深度置信网络

深度置信网络是一种生成模型,网络中有若干隐藏层,同一隐藏层内的神经元没有连接,隐藏层间的神经元全连接。神经网络经过“反向运行”得到输入数据。

深度置信网络可以用做生成模型,通过前期的逐层无监督学习,神经网络可以较好的对输入数据进行描述,然后把训练好的神经网络看作深度神经网络,最后得到分类任务的深度神经网络。

深度置信网络可以用于图像识别、图像生成等领域,深度置信网络可以进行无监督或半监督的学习,利用无标记数据进行预训练,提高神经网络性能。但近几年由于卷积神经网络的飞速发展,深度置信网络已经很少被提及。

3)循环神经网络

循环神经网络是一种专门用于处理时序数据的神经网络,它与典型的前馈型神经网络最大区别在于网络中存在环形结构,隐藏层内部的神经元是互相连接的,可以存储网络的内部状态,其中包含序列输入的历史信息,实现了对时序动态行为的描述。这里的时序并非仅仅指代时间概念上的顺序,也可以理解为序列化数据间的相对位置。如语音中的发音顺序,某个英语单词的拼写顺序等。序列化输入的任务都可以用循环神经网络来处理。如语音、视频、文本等。对于序列化数据,每次处理时输入为序列中的一个元素,比如单个字符、单词、音节,期望输出为该输入在序列数据中的后续元素。循环神经网络可以处理任意长度的序列化数据。

循环神经网络可以用于机器翻译、连写字识别、语音识别等。循环神经网络和卷积网络结合,将卷积神经网络用于检测并识别图像中的物体,循环神经网络用于识别出物体的名称为输入,生成合理的语句,从而实现对图像内容的描述。

4深度学习应用

1)语音识别

语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。其应用领域主要有语音输入系统、语音控制系统和智能对话查询系统,语音识别极大地推动了人工智能的快速发展。1952年Davis等人研究了世界上第一个能识别10个英文数字发音的实验系统。大规模的语音识别研究是在20世纪70年代以后,在小词汇量、孤立词的识别方面取得了实质性的进展。2012年,微软研究院使用深度神经网络应用在语音识别上将识别错误率降低了20%,取得了突破性的进展。2015年11月17日,浪潮集团联合全球可编程芯片巨头Altera,以及中国最大的智能语音技术提供商科大讯飞,共同了一套DNN语音识别方案。

2)图像分析

图像是深度学习最早尝试的应用领域。1989年,LeCun和他的同事们就发表了卷积神经网络的工作。2012年10月,Hinton和他的两个学生用更深的CNN在ImageNet挑战上获得了第一名,使图像识别向前跃进了一大步。

自2012年以来,深度学习应用于图像识别使得准确率大大上升,避免了消耗人工特征抽取的时间,极大地提升了效率,目前逐渐成为主流的图像识别与检测方法。

卷积神经网络实现过程范文第3篇

关键词: 列车车号; 车号识别; 卷积神经网络; LeNet?5

中图分类号: TN911.73?34; TP391 文献标识码: A 文章编号: 1004?373X(2016)13?0063?04

Abstract: For the character recognition of freight train license, the improved recognition method based on convolutional neural network LeNet?5 is proposed. Considering the structural features of the hierarchical convolutional neural network and local field, the parameters of quantity and size of each layer feature pattern in the network were improved correspondingly to form the new network model suitable for the freight train license recognition. The experimental results show that the proposed method has strong robustness to solve the license breakage and stain, and high recognition rate, which provides a guarantee for the accuracy of the entire license recognition system.

Keywords: train license; license recognition; convolutional neural network; LeNet?5

0 引 言

目前货运列车车号识别系统[1?2]主要是基于RFID技术实现的,但是,由于该系统的准确性依赖于列车底部安装的RFID标签,而RFID标签容易损坏、丢失,因此,此类系统无法保证车号识别的准确性。为此,研究者开发了基于图像的货运列车车号识别系统,系统根据视频采集到的图像,利用模糊集合论[1?2]、人工神经网络[3]、支持向量机[4]以及隐马尔可夫模型[4]等技术进行车号字符的识别。但是,由于货运列车车号存在因喷涂方式而导致的单个字符断裂,或者列车长期的野外运行导致的车厢污损,车号字符的残缺等现象,这使得目前的基于图像的货运列车车号识别系统的鲁棒性与识别率还有待进一步提高。

LeNet?5[5?7]是由YannLecun等人提出的一种专门用于二维图像识别的卷积神经网络,该网络避免了人工提取特征依赖于主观意识的缺点,只需要将归一化大小的原始图像输入网络,该网络就可以直接从图像中识别视觉模式。LeNet?5把特征提取和识别结合起来,通过综合评价和学习,并在不断的反向传播过程中选择和优化这些特征,将特征提取变为一个自学习的过程,通过这种方法找到分类性能最优的特征。LeNet?5已经成功应用于银行对支票手写数字的识别中。

为此,本文将卷积神经网络LeNet?5应用于列车车号字符的识别中,为了使之适用于列车车号字符的识别需求,去除掉了LeNet?5中的一些针对手写字符识别而特别设计的连接方式及参数,并在此基础上,改变网络中各层特征图的数量以形成新的网络模型。

1 LeNet?5的改进

卷积神经网络可以从很多方面着手改进。诸如多层前馈网络,可以考虑在误差函数中增加惩罚项使得训练后得到趋向于稀疏化的权值,或者增加一些竞争机制使得在某个特定时刻网络中只有部分节点处在激活状态等。本文主要从卷积神经网络的层次化以及局部邻域等结构上的特点入手,考虑卷积神经网络中各层特征图数量及大小对网络训练过程及识别结果的影响。

以LeNet?5结构为基础,去除掉LeNet?5中的一些针对手写字符识别而特别设计的连接方式及参数,得到改进后的神经网络。在此基础上,改变网络中各层特征图的数量以形成新的网络模型。定义一种新的网络模型,将其命名为LeNet?5.1,该网络结构与LeNet?5基本相同,主要做出以下改变:

(1) 将原先LeNet?5所采用的激活函数由双曲正切函数修改为Sigmoid函数,此时,网络中所有层的输出值均在[0,1]区间内,输出层的最终结果也将保持在[0,1]区间内。

(2) 省略掉F6层,将输出层与C5层直接相连,连接方式为全连接,而不是原LeNet?5中所采用的径向基函数(RBF)网络结构。

(3) 简化原LeNet?5中的学习速率。原LeNet?5网络中采用的学习速率为一个特殊的序列,而在本网络中将学习速率固定为0.002。

(4) 输入数据原始尺寸为28×28,采取边框扩充背景像素的方法将图像扩充至32×32。

之所以做以上相关改动,是因为原始的LeNet?5就是专门为手写字符识别任务而特殊设计的,这就造成了LeNet?5网络中相关的预处理及参数的选择过程或多或少均带有一些针对特定问题的先验知识。例如激活函数中参数的选择,学习速率定的速率序列以及数据预处理殊的填充方式等,这些特定的设计使得LeNet?5在其他任务的识别过程中并不一定适用,或者需要进行长期的观察实验以选得一组针对特定任务的较好的值,造成了LeNet?5不能快速的应用于除手写字符外其他的识别任务中。

2 改进后的网络对列车车号字符的识别

车号经过分割之后为一个个的单字符图像,采用边框扩充背景像素的方法将其归一化为32×32,如图1所示。

由图1中可以看出,待识别的字符图像质量不高,有的数字字符出现残缺、断裂或者严重变形。这都给识别任务提出了一定的挑战。

本文采集到的车号图像来自于不同型号的货运列车。从中选取400幅图像作为训练集,另外选取400幅图像作为测试集。用上一节提出的LeNet?5.1网络进行训练,误分类率曲线如图2所示。可以看出,在LeNet?5.1训练过程中,训练MCR(Misclassification Rate)和测试MCR的变化过程相对稳定,验证了改进后网络结构的合理性。在经过16次的迭代之后,测试MCR降至最低(5.75%),之后基本保持稳定,即16次迭代之后,网络达到了当前的最佳训练效果,达到了收敛状态。这时,训练MCR为0.5%,测试MCR是5.75%。

训练过程中的误分类率曲线

而针对相同的数据,采用原始的LeNet?5进行训练和测试后,误分类率如图3所示。从图3中可以看出,LeNet?5经过了18次的迭代后,测试MCR才达到相对稳定的状态,降至6%,最终的训练MCR为1%。相比之下,经过简化和改进的LeNet?5.1,由于改进了原始的LeNet?5中专门为手写字符识别任务而特殊设计的一些预处理及函数选择等固定模式,并且精简了网络结构,使得LeNet?5.1在列车车号的识别方面具有了更快的训练速度和收敛速度,另外,最终达到的准确度也有所提升。

在证明了改进后的LeNet?5.1网络的合理性之后,增加训练图像的规模,采用10 000幅车号数字字符图像用来训练,5 000幅用来测试。为了与其他方法进行比较,采用相同的训练数据对车号识别中常用的三层BP网络进行训练和测试,这里采用的BP网络隐含层节点数量为450,学习速率采用0.01。实验结果比较如表1所示。从表1可以看出,改进后的LeNet?5.1网络的识别率比BP网络的识别率高出4.62个百分点,在识别速度方面,LeNet?5.1也明显优于传统的BP神经网络。

3 针对车型号字母识别而改进的神经网络及其结果

货运列车车号的组成是由车型号与车号共同组成的,因此还需要对车型号进行识别,车型号中除了有阿拉伯数字字符之外,还有很多表示车种及车厢材质等属性的英文字母,这些英文字母同样采用卷积神经网络来识别。由于车型号很多,初期针对若干常用型号的列车进行识别,以测试网络的性能,后期对全车型进行识别。

3.1 常用列车车型的识别

在试运行阶段主要识别的车型局限于7种主要的车型:C64K,C64H,C70A,C70E,C80,C62AK和C62BK。由于车种都为敞篷车(第一个大写字母C),主要对后面代表该车型载重量的两位数字以及最后代表车厢材质等属性的字母进行识别。考虑到车型号字符串的固定模式,如图4所示,可以分别建立两个不同的卷积神经网络分别用来识别数字和字母,由于之前已经解决了数字的识别问题,接下来主要进行字母的识别。要识别的代表车厢材质的字母共有6个:K,H,A,E,A和B,为了尽可能的避免因字母分割问题而导致的识别错误,把AK和BK分别作为一个整体来识别,那么需要识别的字符组合变为:K,H,A,E,AK和BK。由于识别种类的减少,可以对网络模型LeNet?5.1进行相应的简化,命名该模型为LeNet?5.2。

LeNet?5.2是在LeNet?5.1的基础上进行改动而得到的:

(1) 卷积层C1的特征图由6个减少为4个,相应地,S2层的特征图也由6个减少为4个。

(2) 卷积层C3的特征图由16个减少为11个,相应地,S4层的特征图也由16个减少为11个。

(3) 卷积层C5的特征图个数由120个减少为80个。

(4) 输出分类的数目由10个减少为6个。

另外,卷积层C3层与次抽样层S2层的连接情况如表2所示。

表2的连接方式采用与表1相同的思想,每一列都说明了C3层中的一个特征图是由S2中的那几个特征图结合而成。卷积层C3中第0个至第5个特征图分别与次抽样层S2中的两个特征图相连接,一共6种组合。C3中的这6个特征图负责抽取上一层中某两个特征图所潜在的特征。C3层中第6个至第9个特征图中每个特征图分别对应上一层中的3个特征图的组合,而C3层中最后一个特征图则与上一层中所有的特征图相连接。这样卷积层C3中的特征图就包含了次抽样层S2中多个特征图的所有组合,这样使得卷积层C3抽取到的特征比S2层更抽象、更高级,同时,相对于输入数据,C3层相比S2层具有更好的对位移、扭曲等特征的不变性。

相比LeNet?5.1,LeNet?5.2将网络层中的特征图数量做了相应的削减,减少了网络中可训练参数的数量。

实验数据来自以上提到的7类常用车型。经过前面过程的定位和分割之后,将分割之后代表车厢材质等属性的字母图像收集起来。本实验中,共收集到6种代表不同车厢材质属性的字母共800幅,其中400幅用作训练数据,另外400幅用作测试数据。

图5为LeNet?5.2使用以上数据训练过程中得到的MCR曲线图。由图5中可以看出,在经过13次迭代之后,测试MCR达到最低的3.25%,并且在随后的迭代过程中基本保持稳定,而对应的训练MCR为0.75%。

3.2 全车型识别

经过对铁道行业标准《铁路货车车种车型车号编码》(TB2435?93)里面包含的所有车型号进行统计,除了10个阿拉伯数字外,包括了除O,R,V,Z四个字母外所有的大写英文字母,总共有32类字符。

训练过程中的误分类率曲线

针对车型号的识别需求,本文在LeNet?5.1的基础上提出了一种新的网络模型,称之为LeNet?5.3。与LeNet?5.2相反,LeNet?5.3是在LeNet?5.1的基础上对网络中各层的特征图数量进行扩充:

(1) 卷积层C1的特征图由6个增加至8个,相应地,S2层的特征图也由6个增加至8个。

(2) 卷积层C3的特征图由16个增加至24个,相应地,S4层的特征图也由16个增加至24个。

(3) 卷积层C5的特征图个数由120个增加至240个。

(4) 输出层神经元的个数由10个增加至32个。

其中卷积层C3层与次抽样层S2层的连接情况参考LeNet?5.2所采用的原则,使卷积层C3中的特征图包含次抽样层S2中多个特征图的主要组合。

与LeNet?5.1相比,LeNet?5.3需要有更多的输出类别,各层的特征图数量也做了相应的增加,以增加整个网络的识别性能。为了验证改进后的LeNet?5.3的性能,收集了大量真实列车车厢图片,经过车号定位和分割之后,将单个的数字字符或者大写字母字符图像尺寸依次归一化为32×32,分别建立训练图像库和测试图像库。

由于LeNet?5.1各层的特征图数量多,因此该网络涉及到的可训练参数也大大增加,这也意味着需要更多的数据样本用于网络训练。若训练集和测试集规模依然采用跟前面实验中一样的各400幅,训练过程中的误分类率曲线如图6所示,图6中的曲线变化非常不稳定,波动较大。测试MCR达到最低点后又突然升高,不能获得稳定的分类结果,训练过程无法收敛。

网络训练过程中无法收敛的主要原因在于相比网络中过多的需要训练确定的权值,数据集规模过小,已然不能满足学习的要求。从特征图角度来看,网络无法通过不充足的训练样本学习到稳定而有效的特征图组合,从而导致了网络不收敛。要解决这个问题需要加大测试样本的数量。

为了训练和测试LeNet?5.3,对数据集进行了扩充:训练图像库包含字符图像4 000幅,测试图像库包含字符图像2 000幅。训练过程中的误分类率曲线如图7所示。从图7中可以看出,经过32次迭代之后网络趋于收敛,并且达到了较好的识别率。

4 结 语

本文针对货运列车车号识别的难题,提出了基于卷积神经网络LeNet?5改进后的识别方法,主要对卷积神经网络中各层特征图数量及大小进行了改进。且与传统的BP网络进行了比较,从实验结果可以看出,改进后的卷积神经网络无论在鲁棒性还是识别率以及识别速度上都优于BP网络,可以很好地胜任列车车号识别任务。

参考文献

[1] 宋敏.铁路车辆车号自动识别系统的研究和开发[D].天津:河北工业大学,2011:1?5.

[2] LU S, CHEN B M, KO C C. Perspective rectification of document images using fuzzy set and morphological operations [J]. Image and vision computing, 2005, 23(5): 541?553.

[3] SHAH P, KARAMCHANDANI S, NADKAR T, et al. OCR?based chassis?number recognition using artificial neural networks [C]// Proceedings of 2009 IEEE International Conference on Vehicular Electronics and Safety (ICVES). [S.l.]: IEEE, 2009: 31?34.

[4] CHEN D, BOURLARD H, THIRAN J P. Text identification in complex background using SVM [C]// Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2001: 621?626.

[5] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient?based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278?2324.

[6] LECUN Y A, BOTTOU L, ORR G B, et al. Efficient backprop [M]// Anon. Neural networks: tricks of the trade. Berlin: Springer Berlin Heidelberg, 1998: 9?50.

卷积神经网络实现过程范文第4篇

关键词】人工智能 AlphaGo 神经突触 机器学习 模式识别

【中图分类号】TP18 【文献标识码】 A

【DOI】10.16619/ki.rmltxsqy.2016.07.002

2016年3月9~15日,谷歌公司研发的AlphaGo围棋软件与韩国棋圣李世石进行了五场人机对决,AlphaGo以4比1的比分取得了压倒性的胜利。这个比赛结果不仅震惊了整个围棋界,也让人工智能领域的许多专家学者跌破眼镜,更让人工智能走出象牙塔,成为许多普通百姓茶余饭后的热点话题。这场人机围棋巅峰对决不仅向全世界展示了人工智能的强大实力与巨大应用潜力,也在人类社会引起了不小的恐慌和忧虑。人们开始认真思考以下这些问题:机器智能最终会超越人类智能吗?人工智能将会如何改变人类社会?未来的智能机器会像电影《终结者》里所描述的那样试图主宰人类、甚至消灭人类吗?要想回答这些问题,我们首先需要了解人工智能的本质及其基本原理,进而讨论其发展的规律和前景。当前,人工智能领域最前沿的分支学科当属机器学习分支。本文首先对机器学习分支中最受世人瞩目的研究成果――深度学习卷积神经网络――做一个简单综述,进而围绕机器学习的本质及其基本原理进行探讨。接下来,通过对人脑认知机理最新研究成果的概括介绍,揭示机器智能与人类智能的本质差异,比较两种智能的优势与劣势。通过机器智能与人类智能的优劣势比较,试图找出上述几个问题的答案。

深度学习卷积神经网络

过去几年里,深度学习卷积神经网络所取得的成就足以使它成为人工智能王冠上最光彩夺目的明珠。基于深度学习卷积神经网络的语音识别系统把语音识别的精度提高到了产品级的精度,从而为人类与计算机及各种智能终端之间提供了一种崭新的、更为便捷的交互方式。将深度学习卷积神经网络应用于图像内容及人脸的识别,科学家们取得了能够与人类视觉系统相媲美的识别精度。战胜韩国棋圣李世石的谷歌围棋软件AlphaGo能够取得如此辉煌的战绩,深度学习卷积神经网络也发挥了关键性的作用。接下来,我们对深度学习卷积神经网络的起源及其原理做一个简单介绍。

脑神经科学领域的大量研究表明,人脑由大约1011个神经细胞及1015个神经突触组成,这些神经细胞及其突触构成一个庞大的生物神经网络。每个神经细胞通过突触与其它神经细胞进行连接与信息传递。当通过突触所接收到的信号强度超过某个阈值时,神经细胞便会进入激活状态,并通过突触向上层神经细胞发送激活信号。人类所有与意识及智能有关的活动,都是通过特定区域神经细胞之间的相互激活与协同工作而实现的。

早于1943年,美国心理学家W.S. McCulloch和数学家W. A. Pitts就在他们的论文中提出了生物神经元的计算模型(简称M-P①模型),为后续人工神经网络的研究奠定了基础。M-P模型的结构如图1(a)所示,它包含n个带有权重的输入,一个输出,一个偏置b和一个激活函数组成。n个输入代表来自下层n个神经突触的信息,每个权重W)代表对应突触的连接强度,激活函数通常采用拥有S-型曲线的sigmoid函数(参见图1(b)),用来模拟神经细胞的激活模式。

早期的人工神经网络大都是基于M-P神经元的全连接网络。如图2所示,此类网络的特点是,属于同一层的神经元之间不存在连接;当前层的某个神经元与上一层的所有神经元都有连接。然而,人们很快发现,这种全连接神经网络在应用于各种识别任务时不但识别精度不高,而且还不容易训练。当神经网络的层数超过4层时,用传统的反向传递算法(Back Propagation)训练已经无法收敛。

1983年,日本学者福岛教授基于Hubel-Wiese的视觉认知模型提出了卷积神经网络计算模型(Convolution Neural Network,简称CNN)。早在1962年,Hubel和Wiesel通过对猫视觉皮层细胞的深入研究,提出高级动物视觉神经网络由简单细胞和复杂细胞构成(如图3所示)。神经网络底层的简单细胞的感受野只对应视网膜的某个特定区域,并只对该区域定方向的边界线产生反应。复杂细胞通过对具有特定取向的简单细胞进行聚类,拥有较大感受野,并获得具有一定不变性的特征。上层简单细胞对共生概率较高的复杂细胞进行聚类,产生更为复杂的边界特征。通过简单细胞和复杂细胞的逐层交替出现,视觉神经网络实现了提取高度抽象性及不变性图像特征的能力。

卷积神经网络可以看作是实现上述Hubel-Wiesel视觉认知模型的第一个网络计算模型。如图4所示,卷积神经网络是由卷积层(Convolution Layer)与降采样层(Sampling Layer)交替出现的多层神经网络,每层由多个将神经元排列成二维平面的子层组成(称为特征图,Feature Map)。每个卷积层和上层降采样层通常拥有相同数量的特征图。构成卷积层x的每个神经元负责对输入图像(如果x=1)或者x-1降采样层的特征图的特定小区域施行卷积运算,而降采样层y的每个神经元则负责对y-1卷积层的对应特征图的特定小区域进行Max Pooling(只保留该区域神经元的最大输出值)。卷积运算中所使用的卷积核系数都是通过学习训练自动获取的。卷积层中属于同一个特征图的神经元都共享一个卷积核,负责学习和提取同一种图像特征,对应Hubel-Wiesel模型中某种特定取向的简单细胞。卷积层中不同的特征图负责学习和提取不同的图像特征,对应Hubel-Wiesel模型中不同类型的简单细胞。而降采样层y中神经元的Max Pooling操作等同于Hubel-Wiesel模型中复杂细胞对同类型简单细胞的聚类,是对人脑视觉皮层复杂细胞的简化模拟。

上世纪90年代初期,贝尔实验室的Yann LeCun等人成功应用卷积神经网络实现了高精度手写数字识别算法,所提出的系列LeNet,都达到商用级识别精度,被当时美国邮政局和许多大银行用来识别信封上的手写邮政编码及支票上面的手写数字。然而,受制于90年代计算机有限的内存和弱小的运算能力,LeNet网络采用了较浅的网络结构,每层使用的特征图数目也很少。尽管它在小规模图像识别问题上取得了较好的效果,但与传统机器学习算法(如SVM,AdaBoost等)相比,优势并不十分明显。此外,由于卷积神经网络拥有很高的自由度,设计出一款性能优异的网络需要灵感并配合丰富的经验积累,是一项极具挑战性的工作。因此卷积神经网络在被提出后的很长一段时间里并未得到足够的重视和广泛的应用。

2012年,加拿大多伦多大学Geoffrey Hinton教授的团队提出了一个规模比传统CNN大许多的深度卷积神经网络(简称AlexNet)。该网络拥有5个卷积与降采样层、3个全连接层,每个卷积与降采样层拥有96384个特征图,网络参数达到6000多万个。利用AlexNet,Hinton团队在国际上最具影响力的图像内容分类比赛(2012 ImageNet ILSVRC)中取得了压倒性胜利,将1000类图像的Top-5分类错误率降低到15.315%。在这次比赛中,获得第二、三、四名的团队均采用了传统机器学习算法。三个团队的Top-5图像分类错误率分别是26.17%、26.98%和27.06%,相差不到1个百分点,而他们的成绩和第一名相比却低了超过10个百分点,差距十分明显。当前,深度卷积神经网络(Deep CNN)相对传统机器学习算法的优势还在不断扩大,传统学习方法在多个领域已经完全无法与Deep CNN相抗衡。

机器学习算法的基本原理及其本质

在几千年的科学探索与研究中,科学家们提出了许多描述自然界及人类社会中各种事物与现象的数学模型。这些模型主要可以被归纳为以下三大类别。

归纳模型:由少数几个参数(变量)构成,每个变量都具有明确的物理意义。这类模型能够真正揭示被描述对象的本质及规律,许多数学和物理定律都是典型的归纳模型。

预测模型:用一个拥有大量参数的万能函数来拟合用户所提供的训练样本。万能函数的参数一般不具备任何物理意义,模型本身往往只能用来模拟或预测某个特定事物或现象,并不能揭示被描述事物或现象的本质及内在规律。当代的大多数机器学习算法都是构建于预测模型之上的。例如,单隐层全连接神经网络所使用的数学模型是:

上式中,x代表神经网络的输入,代表神经网络的参数集,M是隐层神经元的个数。这个数学模型如同一个橡皮泥,可以通过变换它的参数集被塑造成任何形状。给定一个训练样本集,其中分别代表训练样本i以及人工赋予该样本的标签(标签表示样本的类别或某种属性),通过利用T进行训练,我们就能够得到一个优化的参数集,使神经网络能够很好地拟合训练样本集T。当新的未知样本x出现时,我们就能够利用训练好的神经网络预测出它的标签y。显而易见,神经网络的参数集规模与神经元的数目及输入x的维数成正比,所有参数没有任何物理意义,模型本身也不具备揭示被描述对象的本质及内在规律的能力。

直推模型:没有明确的数学函数,利用所采集的大数据预测特定输入的标签。此类模型认为针对某个事物或现象所采集的大数据就是对该事物或现象的客观描述。大数据的规模越大,对事物或现象的描述就越全面和准确。当新的未知样本x出现时,我们可以在大数据中找到x的K近邻,根据K近邻的标签或属性来决定x的标签或属性。显而易见,由于不需要定义明确的数学模型,与其它模型相比,直推模型最简单直接,但因为依靠大数据来决定未知样本的标签,直推模型往往需要较高的计算量及使用成本。同样,直推模型也不能被用来揭示事物或现象的本质及内在规律。

应当指出,随着互联网用户数量的不断增长以及互联网技术的快速进步,利用互联网获取内容或用户大数据变得越来越简单廉价,利用直推模型来预测某个事物或现象也变得越来越普及。例如,许多互联网搜索引擎利用每个网页的用户点击率来改进搜索网页的排序精度,就是直推模型在互联网内容搜索领域的一个成功应用。

综上所述,机器学习算法的本质就是选择一个万能函数建立预测模型。利用用户提供的训练样本对模型进行训练的目的,就是选择最优的参数集,使模型能够很好地拟合训练样本集的空间分布。通过训练得到的预测模型,实际上把训练样本集的空间分布提取出来并编码到其庞大的参数集中。利用这个训练好的预测模型,我们就能够预测新的未知样本x的标签或属性。当今大多数机器学习算法都是基于这个原理,谷歌公司的AlphaGo也不例外。

针对某个事物或现象所采集的训练样本,是对该事物或现象的直观描述,蕴藏着大量与之相关的先验知识。例如,ImageNet ILSVRC国际图像内容分类比赛所提供的训练样本集拥有1000类、总共一百多万张彩色图像。每一类都对应自然界中的一种常见物体,如汽车、飞机、狗、鸟,等等,包含大约1000张从不同场景及不同角度拍摄的该种物体的彩色图像。利用这个训练样本集训练出来的深度卷积神经网络,实际上是将每类物体的共性特征及个体差异等进行信息提取与编码,并记忆到其庞大的参数集中。当新的未知图像出现时,神经网络就能够利用已编码到参数集中的这些先验知识,对输入图像进行准确的识别与分类。

同样,谷歌公司在训练AlphaGo时,收集了20万个职业围棋高手的对局,再利用AlphaGo不同版本间的自我对弈生成了3000多万个对局。3000多万个围棋对局包含了人类在围棋领域所积累的最为丰富和全面的知识与经验。当新的棋局出现时,AlphaGo利用被编码于其庞大参数集中的这些先验知识,预测出胜率最高的一步棋,以及这步棋所产生的最终胜率。由于AlphaGo针对3000多万个对局进行了学习与编码,它对每一步棋的胜负判定甚至比九段棋手还要准,人类棋圣输给AlphaGo也就不足为奇了。

人类智能的本质与特性

对于人脑及其高度复杂的智能,人类至今还所知甚少。关于“智能”这个名词的科学定义,学术文献中就存在着许多个版本。即使是少数几个被深入研究的认知功能(如人脑的视觉认知功能)的工作机理,也还存在着各种各样的假说和争议。在这里,我们列出若干较具代表性、认可度相对较高的关于人脑智能的假说及阐述。

人类智能的本质是什么?这是认知科学的基本任务,也是基础科学面临的四大难题(Simon)中最后、最难解决的一个。每门基础科学都有其特定的基本单元,例如高能物理学的基本粒子,遗传学的基因、计算理论的符号、信息论的比特等。因此,“人类智能的本质是什么”这个问题在某种程度上取决于“什么是认知基本单元”。众所周知,适合描述物质世界的变量并不一定适合描述精神世界。因此,认知基本单元是什么这个问题,不能靠物理的推理或计算的分析来解决,根本上只有通过认知科学的实验来回答。大量实验结果显示,认知基本单元不是计算理论的符号,也不是信息论的比特,而是知觉组织形成的“知觉物体”。例如,实验表明,当人的视觉系统注意一只飞鸟的时候,它所注意的是整只鸟(即一个知觉物体),而不是鸟的某个特性(形状、大小、位置等)。尽管在飞行过程中鸟的各种特征性质在改变,但它是同一个知觉物体的性质始终保持不变。诺奖得主Kahneman认为,知觉物体概念的直觉定义正是在形状等特征性质改变下保持不变的同一性。中科院陈霖院士领导的团队在发展了30多年的拓扑性质知觉理论的基础上,提出大范围首先的知觉物体拓扑学定义:知觉物体的核心含义,即在变换下保持不变的整体同一性,可以被科学准确地定义为大范围拓扑不变性质。应当指出,上述大范围首先知觉物体的概念,与人工智能领域广为认同与采纳的由局部到整体,由特征到物体,由具体到抽象的认知计算模型是完全背道而驰的,因而在人工智能领域并没有得到足够的重视及应用。

大量认知科学领域的实验研究表明,人类智能具有以下几个特性。

人类智能的目标不是准确。人类智能并不追求在精神世界里客观准确地再现物理世界。上帝设计人类智能时,不假思索地直奔“生存”这一终极目标而去:用最合理的代价,获取最大的生存优势。人类大脑的平均能耗大约只有20瓦,相对于庞大的计算机系统来说只是九牛一毛。尽管人脑的重量只有1400克左右,约占人体重量的2.3%,但它的血液供应量却占到了全身的15.20%,耗氧量超过全身的20%,对于人类已经接近其生理可以负担的极限。在这种资源极其有限的条件下,人脑通过以下几种方式实现了最有效的资源调配,由此来保障最有意义的生理和智能活动。

第一,主观能动的选择性。精神世界不是对物理世界的简单映射,而是非常扭曲和失真的。体积相对较小的手指、舌头等重点区域,在感觉运动中枢里却占据大部分的皮层区域。同样,在视觉上只有对应中央视野的视网膜具有很高的空间、颜色分辨率,而更广泛的外周视野只对物体的突然出现或消失,以及物体的运动更敏感。人类视觉处理的通常方式是,外周视野的显著变化会在第一时间被捕获,做出应激反应,然后再把中央视野移动到目标上进行后续的处理。

人类通过知觉组织的选择性注意机制,直接感知输入信号中的大范围不变性质,而忽略大量的局部特征性质。大量视而不见的现象,在实验室研究中表现为注意瞬脱、变化盲视等等。比如,尽管可以清晰地分辨出霓虹灯中的色块颜色、形状各不相同,甚至在空间和时间上都不连续,人脑仍然把这些色块看成是同一个物体,从而产生运动的感觉。研究表明,这种运动错觉本质上不是运动,其生态意义在于对知觉对象进行不变性抽提。另一方面,人脑会主动把忽略的部分补充回来。而通过经验知识,上下文关系等补充回来的信息,难免有错。所谓错觉就是精神世界和物理世界的错位。这些错觉的生态意义在于在有限资源条件下,快速直接地形成稳定的感知。这种机制既是人类天马行空的联想能力和创造力的源泉,同时也是各种精神心理疾患的生物学基础。

第二,模块化的层次结构和分布式表征。当前认知科学越来越依赖于脑成像技术的发展。功能模块化假设认为,大脑是由结构和功能相对独立、专司特定认知功能的多个脑区组成。这些模块组成复杂的层次结构,通过层次间的传递和反馈实现对输入信号的主动调节。大量脑成像的研究实验也支持了这一假设,特别是视觉研究发现了非常详细而复杂的功能模块及其层次结构。另一方面,分布式表征的假说认为,认知功能的神经机制是相对大范围的分布式脑状态,而不是特定脑区的激活与否。当前研究认为,人脑是模块化和分布式表达共存的自能系统。

第三,反应性活动和内生性活动。人脑不是一个简单的刺激―反应系统,大量的内生性活动甚至比反应性活动还多。人脑在所谓的静息状态下的耗氧量与任务状态下相比差别很小。然而几乎所有的经典认知科学研究都是建立在刺激反应实验范式的基础之上。这种实验范式是让实验对象在特定的条件下完成特定的认知任务,收集并分析实验对象的行为或生理反应,通过对实验数据的充分比照,建立人脑某种活动模式或认知机理的假设。内生性活动因其往往只能通过内省的方式进行研究,而被长期排除在认知科学的研究主流之外。随着脑成像技术的发展,功能连接成为分析静息态大脑自发活动的有力工具。特别是默认网络的发现,创立了强调内生性活动的全新脑功能成像研究范式。默认网络被认为涉及警觉状态、自我意识、注意调控以及学习记忆等心理认知过程,已被广泛应用于社会认知、自我、注意、学习、发育、衰老机制的研究,有力推动了各种脑生物指标的完善和脑疾病的治疗,这些疾病包括阿尔兹海默病、帕金森病、抑郁症、精神分裂症和自闭症等等。

因此,整合现有研究中有关分布式表达和内生性活动的最新研究成果,可能会带来对人脑活动模式(人类智能的物质基础)一种全新的理解。

人类智能的本质不是计算。人类智能体现在对外部环境的感知、认知、对所观察事物或现象的抽象、记忆、判断、决策等。然而,这些智能并不是人类所独有。许多高等动物,如狗、猴子、猩猩,也或多或少具有类似的能力。同时,计算并不是人类智能的强项。真正将人类与其它动物区分开来的,是人类的逻辑推理能力、想象力、创造力以及自我意识。人类利用这类能力能够想象并且创造出自然界中不存在的东西,如汽车、飞机、电视、计算机、手机,互联网。这类能力是推动人类社会不断发展与进步的源泉,是生物智能的圣杯。

而对代表生物智能最高水平的上述能力,人类目前还所知甚少,对其机理的研究还处于启蒙阶段。研究表明,这些能力不是依靠计算得来的,而似乎是与联想记忆及人类丰富的精神世界有关。基于脑信号的分析实验发现,人脑的海马回、海马旁回、杏仁核等脑区中存在着大量专司特定联想记忆的神经细胞。例如,上述脑区中存在单个或一小簇神经细胞,会被与美国前总统克林顿相关的所有刺激信号所激活,无论刺激信号是关于克林顿的图片,还是Clinton这个英语单词,还是克林顿本人的语音回放。显然,这些神经细胞并不是被某个模态的特定特征所激活,它们所对应的是克林顿这个抽象概念。此外,脑成像研究表明,围棋专业棋手相对于业余棋手更多的是依赖联想记忆系统,而非逻辑推理来下棋。实际上,围棋界训练棋手的最常用方法就是将高手对局中的关键部分拆解成许多死活题,棋手通过大量死活题的解题训练来提高自己联想记忆的经验和效率。

机器智能与人类智能的优势与劣势

当代的计算机拥有强大的存储与运算能力。伴随着计算技术的不断发展与进步,这些能力的增长似乎还远没有到达尽头。早在1997年,IBM的“深蓝”超级电脑就战胜了国际象棋冠军卡斯帕罗夫。但这次胜利在人工智能领域并没有产生太大的反响,原因在于,“深蓝”几乎纯粹是依靠强大的运算能力遍历所有的可能性,利用“蛮力”取胜的。“深蓝”所遵循的,就是“人工智能即是计算加记忆”这个简单法则。由于围棋的搜索空间比国际象棋大很多,“深蓝”的这种制胜策略针对围棋是行不通的。与“深蓝”相比,AlphaGo的最大进步就是从“计算加记忆”进化到“拟合加记忆”法则。它利用深度卷积神经网络这个万能函数,通过学习来拟合两千多年来人类所积累的全部经验及制胜模式,并将其编码到神经网络的庞大参数集中。对于当前棋局的任何一个可能的落子,训练好的神经网络都能够预测出它的优劣,并通过有限数量的模拟搜索,计算出最终的获胜概率。这样的战略不需要对棋局的所有可能性做遍历搜索,更像人类棋手所使用的策略。然而,由于AlphaGo对每个落子以及最终胜率的预测,是建立在围棋界两千多年来所形成的完整知识库之上的,它的预测比人类最优秀的棋手更准确。与其说李世石输给了机器系统,不如说输给了人类棋艺的集大成者。由此推断,AlphaGo取胜也是情理之中的事。

与机器相比,人类智能的最大优势当属它的逻辑推理能力、想象力、创造力及其高效性。人脑功耗只有20多瓦,处理许多感知及认知任务(如图像识别、人脸识别、语音识别等)的精度与拥有庞大内存、运算速度达到万亿次的超级电脑相比却毫不逊色。尽管机器智能很可能在不远的将来在类竞赛中全面超越人类,但现有的机器学习框架并不能模拟出人类的想象力和创造力。因此,在当前情况下,机器智能全面超越人类智能的预测是不会成为现实的。

随着机器学习算法的不断发展与进步,计算机借助强大的存储与运算能力,学习人类几千年来发展与进化过程中所积累的完整知识的能力越来越强,借助完整知识库对复杂事务进行预测与判断的准确度将会全面超越人类。由此推断,在未来几十年里,不仅是那些简单重复性的体力劳动将会全面被机器取代,而且那些需要对复杂事务进行评估与判断的工作,如金融投资、企业管理、军事指挥等,也有可能被让位于机器智能。甚至大到整个国家,也可能会越来越依靠机器智能预测政治、经济、外交发展趋势,制定最优的政策方针及发展规划。实际上,许多发达国家的智囊机构已经在利用各种评估及预测模型为政府提供对各种事物的预测与判断,提出政策建议或解决方案。

然而,当前的机器学习框架无法模拟人类的想象力及创造力,科学研究与发明创造仍将是人类的优势所在。不难预测,在未来人类社会的发展进程中,将有越来越多的人从事科学研究以及新产品的设计研发工作。社会对每个人的知识能力、智慧以及发明创造力的要求将会越来越高,不具备这些能力的人们将会无法找到满意的工作,逐渐成为处于社会底层的贫困阶层。了解并解决科技迅速发展所带来的社会挑战,仍然是人类需要面对的任务,而机器是无法替代人类解决这些问题的。

(中科院生物物理所脑与认知国家重点实验室周天罡、西安交通大学电信学院韩劲松对本文亦有贡献)

责 编/凌肖汉

卷积神经网络实现过程范文第5篇

(一)网络建设整体运行水平和质量不高,如信息反馈不及时、四员互控能力不强、特别是在线扣款落实力度不大,处于全市落后名次,有待进一步提高。

(二)卷烟结构不够优化,一、二类烟、省外烟需要进一加大促销力度,在不同程度上制约了太康卷烟销售工作有效开展。

(三)思想认识存在问题。有安于现状、干劲不够足、眼光狭隘、胸怀不够宽,束手无策、办法不够多等落后思想观念。

二、造成工作被动的原因:

一是思想认识问题没有真正解决,主观努力不够,存在被动应付问题;二是工作中谋划、组织不力,推动工作的力度不够,积极应对、克服困难的办法欠缺;三是从职工队伍素质看,有的精神状态不佳,没有进取意识,有的作风不扎实,没有创新意识。个别营销人员的工作积极性、主动性不高,货源向商户公开不及时,个别品牌宣传不到位,服务不完善,在品牌的市场培育工作方面欠缺。

三、推进卷烟上水平具体工作措施针对存在问题,在下一步工作中我们将采取切实有效的措施,认真加以克服和解决,重点抓好以下工作:

一是狠抓作风建设。按照国家局提出的“四要”作风要求和市局提出的“六个反对、六个提倡”的工作要求,结合正在开展的机关作风建设活动,在干部职工中认真开展思想作风纪律大整顿,切实解决干部职工满足现状、标准不高,精神不佳、状态不好的问题,力求思想观念更新,纪律意识增强,工作作风改观,以更高的目标、更实的作风和更加良好的精神状态,促进“卷烟上水平”各项工作顺利开展。

二是稳增卷烟销量。继续把销量稳定增长作为经济运行调控的首要指标,摆在突出位置,量化分解任务,加大考核奖惩,增强全员责任感、压力感。认真研究和分析我县卷烟市场状况和客户资源,及时把握市场需求和消费潜力,密切关注市场走势,适时研究制订并实施应对措施,全力以赴确保卷烟销量稳步增长。把农村市场扩销为重点,提高服务市场、营销水平,深挖市场潜力,努力扩增销量。认真做好零售客户业态分类,精心培育有效客户,发展提升核心客户,为销量增长提供保证。

三是注重结构转型。把品牌培育作为实现卷烟销售结构优化上水平的重要措施,完善品牌培育规划和推进计划,发挥市场经理和客户经理职能,做好客户宣传引导工作,使重点品牌培育有实质性进展。继续推进“两转一扩”,狠抓城区高档消费场所和乡镇集贸市场的销售,专卖部门加大对这些场所的管理,与公安部门配合,搞好宣传检查,对符合办证条件的尽快办证入网。充分调动一切积极因素,努力扩销一、二类烟,着力提升销售结构。

四是提升网建水平。针对我们网建基础薄弱的实际,借鉴先进单位经验,大力推进网上订货、在线代扣工作,加大宣传力度,积极与邮政部门搞好协调,实行“责任到人、服务到户”的工作原则,充分调动客户经理工作积极性、主动性,提高办事效率和服务质量,切实提高卷烟货款在线代扣率。同时,保质保量完成村村通网络工程任务,认真抓好按订单组织货源工作,切实增强网络建设软实力。

相关期刊更多

数据采集与处理

北大期刊 审核时间1-3个月

中国科学技术协会

北华大学学报

统计源期刊 审核时间1-3个月

吉林省教育厅

遥测遥控

统计源期刊 审核时间1-3个月

中国航天科技集团有限公司