首页 > 文章中心 > 高光谱遥感技术

高光谱遥感技术

高光谱遥感技术

高光谱遥感技术范文第1篇

关键词:高光谱 分类 提取 投影寻踪

1 高光谱遥感概述

高光谱遥感(Hyper spectral Remote Sensing 简称HRS)起步于80年代,发展于90年代,至今已解决了一系列重大的技术问题。它是光谱分辨率在10-2λ的光谱遥感,其光谱分辨率高达纳米(nm)数量级,具有波段数众多,连续性强的特点,其传感器在可见光到红外光的波长范围内(0.4μm~2.5μm)范围内以很窄的波段宽度(3~30nm) 获得几百个波段的光谱信息,相当于产生了一条完整而连续的光谱曲线,光谱分辨率将达到5nm~10nm[1]。高光谱遥感数据的表现可以从以下三个方面来理解[2]:图像空间、光谱空间和特征空间。此外,随着高光谱遥感分辨率的增加,特征空间的维数很高,因而表现不同地物类别的能力也随之不断提高,这也是高光谱遥感之所以能够更精确识别地物的主要原因。

2 高光谱遥感的应用

高光谱影像包含了丰富的地表空间、光谱和辐射的三重信息,它同时表现了地物的空间分布并获得了以像元为目标的地物光谱信息。高光谱遥感技术作为连接遥感数据处理、地面测量、光谱模型和应用的强有力工具,其显著特点是在特定光谱区域以高光谱分辨率同时获取连续的地物光谱影像,其超多波段信息使得根据混合光谱模型进行混合像元分解获取“子像元”或“最终光谱单元”信息的能力得到提高,使得遥感应用着重于在光谱维上进行空间信息展开,定量分析地球表层生物、物理、化学过程和参数,随着成像光谱技术的发展与成熟,遥感技术已经大大拓宽了其原来的应用领域,归纳起来主要包括以下几个方面[5]-[19]:1)在精准农业领域的应用(作物参数反演);2)在林业领域的应用(树种识别、森林生物参数填图、森林健康检测等);3)在水质检测领域的应用(反演水质参数);4)在大气污染检测领域的应用(气溶胶、二氧化氮等的检测与反演);5)生态环境检测领域的应用(检测生物多样性、土壤退化、植被重金属污染等);6)在地质调查领域的应用(矿物添图,岩层识别,矿产资源、油气能源探测等);7)在城市调查领域的应用(城市绿地调查、地物及人工目标识别)。

3 高光谱遥感图像分类与信息提取

3.1 遥感图像处理

遥感数字图像处理是以遥感数字图像为研究对象,综合运用地学分析、遥感图像处理、地理信息系统、模式识别与人工智能技术,实现地学专题信息的自动提取[18],要素分类与提取在图像处理过程中占有决定性的地位。遥感图像分类是统计模式识别技术在遥感领域中的具体应用,统计模式识别的关键是提取待识别模式的一组统计特征值,然后按照一定准则做出决策,从而对数字图像予以识别。其主要依据是地物的光谱特征,即地物电磁波辐射的多波段测量值,这些测量值可以用作遥感图像的原始特征值。

3.2 高光谱遥感图像分类与提取

目前,高光谱遥感数据分析方法主要有两个方向[19]-[30]:第一是基于光谱空间的分析方法,其基本原理是化学分析领域常用的光谱分析技术;第二个方向是基于特征空间分析技术,该方向的基本思想是把组成光谱曲线的各光谱波段组成高维空间中的一个矢量,进而用空间统计分析的方法分析不同地物在特征空间中的分布规律。

3.2.1 基于光谱空间的分析方法

高光谱遥感技术的最大特点就是:在地物的每一个像元处,可以得到一条连续的光谱曲线,所有的光谱曲线的集合则构成了光谱空间,不同的地物对应于光谱空间中的一条光谱曲线。因此,基于光谱空间的数据分析方法是高光谱数据分析的主要技术之一,其主要思想类似于化学上常用的光谱分析技术,主要是通过对光谱曲线进行特征分析,发现不同地物的光谱曲线变化特征,从而达到识别地物的目的。由于这种分析方法与地物的物理化学属性直接相关,因此可以方便地对分析结果进行物理解释:由于分析过程主要是针对一个像元的光谱曲线,因此,算法往往比较直观和简单。这些特点使得基于光谱空间的分析技术成为引人注目的一种技术,因而,近年来在这方面产生了许多实用的研究结果。

常用的分析方法包括:(1)光谱角填图法(SAM-Spectral Angle Mapping):又称光谱角度匹配法.是以实验室测得的标准光谱或从图像上提取的一直已知点的平均光谱为参考,求算图像中每个像元矢量(将像元n个波段的光谱响应作为n维空间的矢量与参考光谱矢量之间的广义夹角,根据夹角的大小来确定光谱间的相似程度,以达到识别地物的目的。(2)光谱解混技术(Spectral Unmixing):就是假设某一像元的光谱是由有限几种地物的光谱曲线按某种函数关系和比例混合而成,解混的目的就是通过某种分析和计算,估计出光谱混合方式和混合像元包含的光谱成分及相应比例。(3)光谱匹配滤波技术(Matched Filter):是通过部分光谱解混技术求解端元光谱丰度值的技术。由于前面介绍的线性光谱解混技术要求端元光谱足够完全,而实际上很难确定一幅待研究的高光谱图像所包含的全部端元光谱。匹配滤波技术则选定某些感兴趣的端元光谱的情况下,把未知的光谱归为背景光谱(Unknown background),最大化地突出已知端元光谱而同时尽可能抑制背景光谱,这种方法提供了一种快速探测指定地物种类的技术,而不必知道一幅图像中包含的全部端元光谱。(4)光谱特征匹配(SFF-Spectral Feature Fitting):根据电磁波理论,不同的物质有不同的光谱曲线。人们可以通过分析不同地物的光谱吸收表现,达到识别不同地物的目的。首先把反射光谱数据的吸收特征突出出来,然后用仅保留了吸收特征的光谱与参考端元光谱逐个波段进行最小二乘匹配,并计算出相应的均方根误差(RMS-Root Mean Square),消除背景影响的方法主要是包络线法。

3.2.2基于特征空间的分类方法

前面介绍的基于光谱空间的分析方法主要是通过比较待分像元的光谱曲线与参考光谱的光谱曲线之间的相似程度来达到分类判别的目的。这种思想看起来很直观和理想,类似于人的指纹识别一样,每一个人都有不同的指纹,通过与指纹库中的指纹相比较就可以确定人的身份。然而,遥感问题却远远复杂得多,由于太阳辐射、大气、空间分辨率和光谱分辨率,观测噪声,及多种多样难以确定的因素的影响,很难测得所谓“纯”的光谱曲线。尽管有多种多样的光谱解混技术被提出,但多种因素的影响很难被充分估计出来,因而无论何种光谱分析技术都无法完全达到遥感图像辩识的要求。

另一种遥感图像地物辩识的思想则是从统计分布规律出发,在同一幅图像上,不同地物的光谱数据呈现不同的分布状态,比如不同均值和方差,通过分析这种统计分布规律而实现地物识别的技术就是基于特征空间的分类方法。遥感图像上的每个像元对应n个光谱波段反射值。假若把这几个波段值组成的n维矢量看作是n维欧几里德空间中的一个点,则称矢量X=(X1,X2,…,Xn)为像元的特征值,相应的n维欧几里德空间称为特征空间。在特征空间的意义上,遥感图像上的任一像元对应于特征空间中的一个点,因此,分类的方法可以从寻找像元在特征空间中的分布规律入手,也就是在特征空间中进行判别的问题。

常用的分析方法包括:(1)高斯最大似然分类器(MLC):是遥感分类的主要手段,其基本思想是,假设各类样本数据都是高斯分布(正态分布),判别准则为所属类别的分布密度最大。其分类器被认为是一种稳定性、鲁棒性好的分类器。但是,如果图像数据在特征空间中分布比较复杂、离散,或采集的训练样木不够充分、不具代表性,通过直接手段来估计最大似然函数的参数,就有可能造成与实际分布的较大偏差,导致分类结果精度下降。(2)基于Bayes准则的分类器: 基于Bayes准则的判别函数是统计模式识别的参数方法,要求各类的先验概率P(ωi)和条件概率密度函数P(ωi x)已知。p(ωi)通常根据各种先验知识给出或假设它们相等: P(ωi x)则是首先确定其分布形式,然后利用训练样本估计其参数。一般假设为正态分布,或通过数学方法化为正态分布。其判别函数为:Di(X)=P(ωi) P(ωi x),i=1, 2,…,m。若Di(X)Dj(X) j=1,2,…,m,j≠i,则X为ωi类。判别函数集有多种导出形式,如最大后验概率准则、最小风险判决准则、最小错误概率准则、最小最大准则、Neyman-Pearson准则等,是依据不同的规则选择似然比的门限来实现的。(3)最小距离判别法:该方法是最直观的一种判别方法,假设在p维欧氏空间中,把c个不同的类别看成分布在空间中的不同位置,最小距离判别方法的思想就是,对待分类的样本,若与某一类的空间几何距离最近,则判别为属于此类。该方法的关键问题,一是如何定义空间距离;另一问题是,如何计算点到各类别的空间距离。(4)基于模糊集理论的判别分类方法:相邻波段影像间存在较大的相似性表明,它们的分类作用可以相互近似替代。因此,只需利用其中的一幅影像参加分类即可,其它与之相似的光谱波段都可被视为冗余波段。显然,要删除这些冗余光谱波段,应首先对原始波段集合中的光谱波段进行模糊等价划分,然后在每个模糊等价波段组中只选择一个光谱波段(或进行线性融合)。(5)基于人工神经网络的分类法:通过建立统一框架,实现对影像的视觉识别和并行推理,是近年来发展起来的综合数据分类方法之一。其目标是利用人工神经网络技术的并行分布式知识处理手段,以遥感影像为处理对象,建立基于人工神经网络的遥感影像分类专家系统。(6)支持向量机(Support Vector Machine )分类方法:支持向量机是一种建立在统计学习理论基础之上的机器学习方法。其最大的特点是根据Vapnik的结构风险最小化原则,尽量提高学习机的泛化能力,即由有限的训练样本集得到小的误差能够保证对独立的测试集保持小的误差。另外,由于支持向量算法是一个凸优化问题,局部最优解也是全局最优解,这是其它学习算法所不及的。以上介绍了几种分类方法,事实上,随着各学科的发展和交叉影响,基于特征空间的分析方法有许多新的进展。

4高光谱遥感数据分类存在的问题

随着光谱分辨率的提高,高光谱遥感能够提供对地物识别更充分的信息,对基于特征空间的分类而言,理论上说,随着特征空间维数的增加,分类精度将会越来越精确,但实际问题并非如此简单。综合以上高维空间的几何特征和统计特性[31]-[36],可以得出这样的结论:基于统计理论的参数估计若在原始高维空间进行,则需相当庞大的训练样本数才能得到比较满意的估计精度,非参数估计方法所需的样本数量更是不可想象。此外,原始高维数据空间的正态分布特性更是难以保证,而正态分布是许多参数估计方法的基础。因此,高光谱遥感分类的表现并未如人们所期望的那样简单,具体来说,在不讨论客观因素的情况下,影响高光谱遥感分类精度的主要因素主要是以下几条:

(1)训练样本数量问题:根据Hughes的研究结果[37],随着特征空间维数的增加,类别可分性提高,但由于遥感中常用的监督分类方法首先要估计样本的分布函数,或分布函数中的一些参数,随着空间维数的增加,待估参数的个数急剧增加,在训练样本数量一定的条件下,导致分类精度在特征空间的维数增加到一定数量后,反而会随着维数的增加而下降。

(2)特征空间的组成:前一个问题导致基于特征空间的分析方法通常不能在原始空间中直接进行,必须对原始波段空间进行降维预处理,得到一个保持了原始空间全局和局部特征结构的低维空间,然后在低维子空间中进行分类判别。

(3)分类器的选择。

(4)类别可分性:类别可分性是数据集固有的一种性质,是由客观条件造就的数据集内在结构,由于客观因素的影响,待分辨的类别之间可区分的程度会有很大的差异,数据集的这种内在的可分离程度对分类精度的高低有着至关重要的影响。

5 结语

过去几十年高光谱遥感已经在各方面有了很大的应用,高光谱技术从遥感的角度提供了大尺度获取地面光谱数据的手段,为人们宏观分类识别地物提供了基础。但是人们在获取大量高光谱图像数据的同时,也面临着如何最大程度地利用这些海量数据的难题,关于高光谱分类与信息提取的技术,虽然取得了一些进展,但是从总体上仍落后于传感器的发展,因此对于高光谱分类与信息提取还有很大的空间值得去研究。

参考文献

[1] 童庆禧,张兵,郑兰芬.高光谱遥感的多学科应用[M].北京:电子工业出版社,2006:1-54.

[2] 许卫东.高光谱遥感分类与提取技术[J].红外(月刊),2004,28-34.

[3] 薛利红,罗卫红,曹卫星,等.作物水分和氮素光谱诊断研究进展[J].遥感学报,2003,7(1):73-80

[4] 金震宇,田庆久,惠凤鸣,等.水稻叶绿素浓度与光谱反射率关系研究[J].遥感技术与应用,2003,18(3):134-137.

[5] N.H.Younan, R.L.King, H.H.Bennett, and JR. Classification of Hyper spectral Data: A Comparative Study [J], Precision Agriculture, 2004(5):41-53.

[6] 程乾,黄敬峰,王人潮,等.MODIS植被指数与水稻叶面积指数及叶片叶绿素含量相关性研究[J].应用生态学报,2004,15(8):1363-1367.

[7] 张良培,郑兰芬,童庆禧,等.利用高光谱对生物变量进行估计[J].遥感学报,1997,1(2):111-114

[8] 赵德华,李建龙,宋子键.高光谱技术提取植被生化参数机理与方法研究进展[J].地球科学进展,2003,18(1):94-99.

[9] 方红亮,田庆久.高光谱遥感在植被监测中的研究综述[J].遥感技术与应用,1998,13(1):62-69.

[10] 陈楚群,潘志林,施平.海水光谱模拟及其在黄色物质遥感反演中的应用[J].热带海洋学报,2003,22(5):33-39.

[11] 李素菊,吴倩,王学军,等.巢湖浮游植物叶绿素含量与反射光谱特征的关系[J].湖泊科学,2002,14(3):228-234.

[12] 谭衢霖,邵芸.遥感技术在环境污染监测中的应用[J].遥感技术与应用,2000,15(4):246-251.

[13] 童庆禧,郑兰芬,王晋年.湿地植被成像光谱遥感研究[J].遥感学报,1997,1(1):50-57.

[14] 夏德深,李华.国外灾害遥感应用研究现状[J],国土资源遥感,1996,(3):1-8.

[15] 甘甫平,王润生,郭小方,等.高光谱遥感信息提取与地质应用前景――以青藏高原为试验区[J],国土资源遥感,2000,3:38-44.

[16] 王青华,王润生,郭小方.高光谱遥感技术在岩石识别中的应用[J].国土资源遥感,2000,4:39-43.

[17] 刘建贵,张兵,郑兰芬,等.城乡光谱数据在城市遥感中的应用研究[J].遥感学报,2000,4:221-228

[18] 梅安新,彭望,秦其明,等.遥感导论[M].北京:高等教育出版社.2002.

[19] 荆凤,陈建平.矿化蚀变信息的遥感提取方法综述[J].遥感信息,2005,2:62-65.

[20] 耿修瑞,张兵,张霞,等.一种基于高维空间凸面单形体体积的高光谱图像解混算法[J].自然科学进展,2004,14(7):810-814.

[21] CARL J. LEGLEITER. Spectrally Driven Classification of High Spatial Resolution, Huperspectral Imagery: A Tool for Mapping In-Stream Habitat [J].Environmental Management, 2003, 32(3):399-411.

[22] 甘甫平,王润生,马蔼乃,等.基于光谱匹配滤波的蚀变信息提取[J]. 中国图像图形学报,2003,8(A)(2):147-150.

[23] 李新双,张良培,李平湘.基于小波分量特征值匹配的高光谱影像分类[J].武汉大学学报•信息科学版,2006,31(3):274-277.

[24] P.Goovaerts. Geostatistical incorporation of spatial coordinates into supervised classification of hyperspectral data [J].Geograph Syst, 2002, (4):99-111.

[25] 刘汉湖,杨武年,沙晋明.高光谱分辨率遥感在地质应用中的关键技术及前景[J]. 世界地质,2004,23(1):45-49.

[26] Francesco Lagona. Adjacency selection in Markov Random Fields for high spatial resolution hyperspectral data [J].Geograph Syst, 2002(4):53-68.

[27] 李石华,王金亮,毕艳.遥感图像分类方法研究综述[J]. 国土资源遥感,2005,2:1-6.

[28] 王国明,孙立新. 高光谱遥感影像优化分类波段选择[J].东北测绘,1999,22:21-23.

[29] Allan Aasbjerg Nielsen. Spectral Mixture Analysis: Linear and Semi-parametric Full and Iterated Partial Unmixing in Multi-and Hyperspectral Image Data [J]. Mathematical Imaging and Vision. 2001(15): 17-37.

[30] 修丽娜,刘湘南. 人工神经网络遥感分类方法研究现状及发展趋势探析[J].遥感技术与应用,2003,18(5):339-345.

[31] 张连蓬.基于投影寻踪和非线性主曲线的高光谱遥感图像特征提取及分类研究[D].山东:山东科技大学,2003.

[32] Shailesh Kumar, Joydeep Ghosh and Melba M. Crawford.Hierarchical Fusion of Multiple Classifiers for Hyperspectral Data Analysis [J]. Pattern Analysis & Application, 2002 (5): 210-220

[33] 谭璐,易东云,冯国柱,等.局部不变投影[J].自然科学进展,2004,14(3):282-287.

[34] 李智勇,郁文贤,匡纲要,等.基于高维几何特性的高光谱异常检测算法研究[J].遥感技术与应用,2003,18(6):379-383.

[35] 周晓云,孙志挥,张柏礼. 一种大规模高维数据集的高效聚类算法[J].应用科学学报.2006, 24(4):396-400.

[36] 易尧华. 基于投影寻踪的多(高)光谱影像分析方法研究[D].武汉:武汉大学,2004.

高光谱遥感技术范文第2篇

关键词:遥感地质制图 蚀变信息提取 构造信息提取 高光谱遥感技术

中图分类号:P237 文献标识码:A 文章编号:1672-3791(2015)05(c)-0000-00

一、遥感技术的基本特征

长期以来,地质工作者迫切希望能有一种“窥一斑而知全豹”的方法来找矿,因此遥感技术以其独有的远程观测以及判断特点在地质找矿中的作用就突显出来。首先,由于遥感是远距离探测技术,所以遥感可以不对物体进行接触而进行探测,正因为如此遥感技术可以覆盖更广的范围,因此在进行找矿工作时,遥感可以将所观测范围内地表以及地貌的情况通过影像传输给卫星,然后由地面接收站接收图像,让工作人员对观测到的数据进行处理和分析。其次,因为遥感技术覆盖范围广,并且能同时观测多个区域,所以节省了观测时间,并且传输的图像信息更加准确,工作人员能够通过处理后的数据和图像找到矿产资源的位置,甚至能了解大致的分布范围,这为找矿工作节省了人力以及物力。通过研究遥感影像上的地质构造与成矿的关系,可认识成矿规律并圈定找矿远景区,通过对遥感图像进行增强处理,综合分析,可提取地质信息,在我国最早使用遥感图像的行业是地质行业。

遥感技术从字面上可以理解为“遥远的感知”,因此遥感技术是通过远距离传输来进行观测和新词采集的,这就需要电磁波、红外线以及可见光等的帮助。遥感技术在进行影像分析时,检测到的影像中会出现特定的光谱特征和纹理特征,含矿区域会呈现出较为明显的标志。现人们将许多先进的科学技术应用到遥感技术当中,其中对计算机的应用是必不可少的,因为通过遥感技术传输到地面的图像需要经过计算机软件的图像和数据处理,才能将含矿区域显示出来,从而根据显示的情况进行工作项目计划的设计以及开展。遥感技术在地质方面的应用一般都是以制图为主,并与地质图相套合,使得遥感影像图与地质图具有相同的地图投影坐标系统,这可使工作区遥感概貌与地质图相互对应的,并能产生立体感较强的画面,以综合图件来反应工作成果。

随着现有矿产资源不断地被发现并且开采,导致矿产所在地普遍有自然及地理环境较为恶劣的情况,不便于人工的探测及寻找,因此遥感技术在这种地形条件差、交通不便的高寒地区具有常规地质方法不可替代的优越性。

二、遥感技术的找矿应用

遥感探测矿产的核心就是通过遥感探测器以及遥感图像等提取岩矿蚀变情况以及区域地质信息。在找矿中的直接应用就是提取遥感蚀变信息,围岩蚀变是热液与原岩发生的相互作用,是成矿作用。因此,蚀变岩矿物的存在能够帮助遥感技术进行探测,因为这种物质有光谱特征,在遥感影像上具有特殊的显示,因此能够根据蚀变的类型,预测矿物的种类以及分布。

遥感技术进行矿物探测的原理,是因为地物普遍都能够进行电磁波的反射和投射,而每种地物因为其结构以及特性不同,所以反射出的光谱也不相同,因此就可以根据地物反射出的光谱特征,判断地物的种类,并通过光谱图像进行信息的提取。

遥感技术能够对地物进行探测,并向地面传回遥感图像以及数据,通过对遥感影像的前期处理,进行图像的降噪,以及真彩色或者假彩色的合成,对遥感影像进行目视解译,所谓的目视解译就是通过以往的经验以及知识,对遥感影像上存在的地物根据其形状、颜色、周围环境等情况进行判读,从而判断出影像中存在的物体都是什么。在利用遥感影像进行找矿的应用时也是如此,需要针对遥感图像的内容联系周边地质环境判断是否有成矿的可能。利用遥感技术进行找矿时,可以通过多种空间影像进行信息的提取,比如影像上的线状区域、环状区域、带状区域等情况,都能够研究矿物资源是否存在。除此之外,对于色异常以及断裂构造的信息提取都能够进行隐秘矿物资源分布的探测,这是找隐伏矿床的重要手段之一,是区域地质填图的理想技术之一。

三、遥感地质找矿技术的发展趋势及前景

(一)高光谱数据的应用

遥感技术一直被作为辅助手段应用于地质学中,但随着计算机领域高新技术的快速发展,遥感技术的进步和应用,尤其是作为现展的技术手段也愈加显得重要,领域也在不断的扩大。遥感技术本身包含多方面的内容导致其复杂无比,但是因为高光谱遥感的广泛应用,利用这种方法辅助地质工作进行探测的技术也开始逐步成熟。高光谱遥感技术在地质找矿中因其高空间分辨率给遥感地质找矿添加新的血液,高光谱是集多种探测及信息处理技术于一体的综合性技术。它的基础工作原理是利用成像光谱仪与纳米级的光谱分辨率来进行成像,成像的同时记录下成百条的光谱通道数据,这种技术能够进行辐射信息、光谱信息、地物空间信息的同步获取,从每个像元上均可以提取一条连续的光谱曲线。高光谱图像能够显示出丰富的信息,并可通过反演圈出矿化区。

(二)3S技术的结合

所谓的3S技术就是遥感(RS)、地理信息系统(GIS)及全球定位系统(GPS)这三种技术,3S技术是目前地质勘探的业界利器,三种技术各自有各自的优势。利用GPS能够通过微信信号进行定位,并能够测量三维空间数据,在信号足够好的情况下,探测的数据是十分准确的。地理信息系统作为地理信息的集合,具有储存、处理地理信息数据等多种功能,并且地理信息系统的数据库具有高集成、一体化并且储存空间大的特点,因此地理信息系统与遥感技术的结合,能够为遥感技术提高海量的数据储存空间,并且还能够进行数据以及图像的管理及浏览,并能够将搜集到的海量地理数据信息然后回馈给信息中心进行分析,然后遥感技术RS负责在地理区域内进行找矿工作。

(三)遥感技术与传统地物化找矿方法的融合

因为矿床的形成并不是一种物质造成的结果,因此想要实现利用遥感技术进行找矿工作,就必须要将遥感技术与地、物、化找矿方法结合起来,避免因为探测单一的物质而造成的失误和阻碍情况的发生。目前以遥感信息为主体,建立多源地学数据库进行综合信息找矿法势在必行。

结束语:

遥感技术作为地质勘查的重要手段,对矿产资源的可持续发展有着积极的作用。利用这一高新技术不但破解了我国目前由于资源匮乏而出现的深层次找矿难题,也为我国勘探科学的进步找到了新的出发基点。因为遥感技术实时、准确的特性,被广泛应用于地质找矿工作中,这项技术在地质找矿中的运用,不仅有效地提高了地质找矿的质量以及数量,还提高了找矿工作的准确性,并且提高了工作效率,因此遥感找矿技术的实运用还拥有更加广阔的发展空间。

参考文献

[1] 钱建平,伍贵华,陈宏毅.现代遥感技术在地质找矿中的作用【L】.地质找矿论丛, 2012,27(3):355-359.

高光谱遥感技术范文第3篇

【关键词】海上溢油;遥感;监测

中图分类号:C35文献标识码: A

0.引言

在各类海洋污染中,造成主要污染的因素就是海上溢油。由于轮船的碰撞、海上油井的破裂、翻船、海底油田泄露等各种不同的意外事故,造成大海大面积的石油污染,不仅损害海洋、自然环境,对生态环境、人体健康也是一种危害。溢油对海洋的污染已经引起了各国政府的重视,很多国家都建立了海上溢油的探测系统,对近海领域进行巡视、监测和管理。一旦发生溢油事故,能够在最短的时间内了解到溢油发生的位置以及扩散趋势。通过建立完整的监测系统,大范围有效了解海洋面积的动态信息,对于海洋溢油污染进行定量分析,准确反映溢油污染的情况与程度。

1.遥感技术监测海上溢油范围

海面发生溢油灾害后,溢油区域水面的电磁波谱特性发生变化,相对于没有石油区域的水面有明显差别,利用这种光谱特性的差异可以划分油水分界线,从而确定溢油范围。

1.1可见光、近红外红外遥感技术

利用可见光、近红外红外波段的遥感监测技术是我国针对溢油污染发展最为成熟的监测技术。在其波段的范围内,入射物表面的电磁波与物体发生光学作用,监测系统的传感器通过记录来源物与入射电磁波发生的反射作用,由于物体不同,对电磁波的反射率也不同。实验表明,油种的类型以及厚度都会对海面油膜的光谱曲线造成影响,卫星遥感的最佳敏感波段也存在差异[1]。

1.2微波雷达遥感技术

合成孔径雷达(synthetic aperture radar,SAR)和侧视机载雷达(side-looking radar,SLAR)是微波雷达的遥感技术用于溢油范围监测的两种雷达。前者是利用多普勒效应,依靠短天线达到高空间分辨率。后者是一种传统雷达,造价低,空间分辨率与天线长度成正比。现阶段,合成孔径雷达已经被广泛运用到溢油范围监测。SAR传感器通过接收仪器发出的电磁波信号,对物体进行识别。海面的毛细波是可以反射雷达的波束,从而造成海面杂波,在SAR传感器的图像上呈现亮图像,油膜覆盖海水表面,致使雷达传感器接收到的波束减少,无法在SAR传感器上体现亮的颜色。

2.遥感技术监测海上溢油类型

如何判断海面上的溢油类型,是遥感技术中的模式识别问题,也是遥感监测中较难实现的问题。

2.1激光荧光遥感技术

激光荧光法是利用激光作为激励光源,激发物质的荧光效应,利用物质的荧光光谱作为信息的参照,通过SAR传感器的监测,进行输入远的荧光光谱分析方法。当物质被光波照射时,基态的物质分子吸收光能量,由原来的能级跃转移到较高的第一电子单线激发态或者第二电子激发态。所谓的荧光效应,就是指通常情况下,转移的电子会急剧地降落,降至最低振动能级,并且以光的形式释放能量。每种物质的荧光谱不同,由于石油油膜中所含有的荧光基质种类的不同以及各种基质比例不同,在相同激光照射条件下所反馈的荧光也不同,荧光谱通常具有不同的强度和形状,这就是激光荧光遥感技术鉴别溢油种类的原理[2]。

2.2红外偏振遥感技术

作为一种新颖的遥感监测手段,被动傅里叶变换红外遥感(Fourier transform infrared spectroscopy,FTIR)是一种检测多原子分子的方法,可以实现多组目标的同时进行检测与鉴别。这和传统的红外遥感技术不同,红外偏振遥感技术是能够获取物质表面的状态以及物质的信息等相关偏振信息,这样有助于识别石油的种类。

2.3高光谱遥感技术

在针对溢油种类进行检测时,需要得到足够多的光谱信息,高光谱遥感技术是以其宽度与庞大的波段数量为主要特点,使其成为溢油种类的一种可行手段。通过光谱混合分析的方法对溢油高光谱数据进行研究分析。利用Hyerion高光谱卫星数据进行溢油监测研究,对多种原油的高光谱波谱进行分析,同时利用GA-PCA特征进行提取法与SAM-SFF方法对不同的油种的高光谱波进行提取,以达到鉴别油种的差异。

3.遥感技术监测海上溢油量

溢油量取决于溢油油膜的厚度,根据油膜的厚度对其进行分布以及估算,可以大致得出溢油总量。

3.1紫外遥感技术

紫外遥感技术是通过紫外传感器油膜油层进行探测,对于小于0.05um的薄油层即使在紫外波段也具有很高的反射,通过紫外光与红外光的叠加,大致可以得到油膜的厚度。但是,紫外遥感技术有一个很大的缺点,就是紫外遥感很容易受到外界环境因素的干扰,一旦受到外界因素的干扰紫外遥感就很容易出现虚假信息。

3.2热红外遥感技术

由于油膜在吸收太阳辐射之后会将一部分能量以热能的形式进行释放,所以采用热红外遥感技术,这种技术中红外波段包含地物的温度信息,所以能够辨别油层的厚度,较厚油层表现为“热”的特性,中等厚度油层表现为“冷”的特性。经相关研究表明,发生“冷”、“热”的油膜厚度范围大致为50-150um之间,而这种技术的最小探测油层厚度大约为20-70um之间,由于厚度的区间很小,所以SAR传感器的敏感性因此受到限制[3]。

3.3微波雷达遥感技术

由于海洋的海水本身会发射微波辐射,而海上溢油发生以后油膜区域会发射比海水更强的微波信号,水的微波辐射发射率约为0.4,而油的发射率约为0.8,因此在海水背景中,溢油区域呈现亮信号,并且信号强弱与油膜厚度具有一定的比率。通过微波雷达遥感技术监测溢油量,一方面能够监测海上溢油的范围,一方面可以通过被动式的微波辐射大致计算油膜厚度。但是,我国这方面的技术还不是很发达,油膜厚度的微波遥感定量技术受到环境、传感器等多方面因素的影响,其精度仍然有待提高[4]。

4.结语

本文介绍了海上溢油的三大监测指标,海上溢油监测指标分为溢油范围、溢油类型和溢油量。但是,针对溢油类型和溢油量的监测技术仍不成熟,随着我国海上溢油监测系统的不断完善,溢油遥感技术不断发展,为实现全面监测海上溢油指标而不懈努力。

【参考文献】

[1]李栖筠,陈维英,肖乾广,等.老铁山水道溢油事故卫星监测[J].环境遥感,2010,9(4):256-262.

[2]李四海.海上溢油遥感探测技术及其应用进展[J].遥感信息,2012,03(2)::53-56.

高光谱遥感技术范文第4篇

【关键词】遥感技术;3S;结合发展前景

【中图分类号】TP 【文献标识码】A

【文章编号】1007-4309(2013)07-0060-2

一、遥感技术的找矿应用

1.地质构造信息的提取

内生矿产在空间上常产于各类地质构造的边缘部位及变异部位,重要的矿产主要分布于板块构造不同块体的结合部或者近边界地带,在时间上一般与地质构造事件相伴而生,矿床多成带分布,成矿带的规模和地质构造变异大致相同。

遥感找矿的地质标志主要反映在空间信息上。从与区域成矿相关的线状影像中提取信息往往要包括断裂、节理、推覆体等类型,从中酸性岩体、火山盆地、火山机构及深亨岩浆、热液活动相关的环状影像提取信息泡括与火山有关的盆地、构造,从矿源层、赋矿岩层相关的带状影像提取信启、住要表现为岩层信息,从与控矿断裂交切形成的块状影像及与感矿有关的色异常中提取信息位口与蚀变、接触带有关的色环、色带、色块等)。当断裂是主要控矿构造时,对断裂构造遥感信息进行重点提取会取得一定的成效。

遥感系统在成像过程中可能产生“模糊作用”,常使用户感兴趣的线性形迹、纹理等信息显示得不清晰、不易识别。人们通过目视解译和人机交互式方法,对遥感影像进行处理,如边缘增强、灰度拉伸、方向滤波、比值分析、卷积运算等,可以将这些构造信息明显地突现出来。除此之外,遥感还可通过地表岩性、构造、地貌、水系分布、植被分布等特征来提取隐伏的构造信息,如褶皱、断裂等。提取线性信息的主要技术是边缘增强。

2.植被波谱特征的找矿意义

在微生物以及地下水的参与下,矿区的某些金属元素或矿物引起上方地层的结构变化,进而使土壤层的成分产生变化,地表的植物对金属具有不同程度的吸收和聚集作用,影响植叶体内叶绿素、含水量等的变化,导致植被的反射光谱特征有不同程度的差异。矿区的生

物地球化学特征为在植被地区的遥感找矿提供了可能,可以通过提取遥感资料中由生物地球化学效应引起的植被光谱异常信息来指导植被密集覆盖区的矿产勘查,较为成功的是某金矿的遥感找矿东南地区金矿遥感信息提取。

不同植被以及同种植被的不同器官问金属含量的变化很大,因此需要在己知矿区采集不同植被样品进行光谱特征测试,统计对金属最具吸收聚集作用的植被,把这种植被作为矿产勘探的特征植被,其他的植被作为辅助植被。遥感图像处理通常采用一些特殊的光谱特征增强处理技术,采用主成分分析、穗帽变换、监督分类非监督分类等方法。植被的反射光谱异常信息在遥感图像上呈现特殊的异常色调,通过图像处理,这些微弱的异常可以有效地被分离和提取出来,在遥感图像上可用直观的色调表现出来,以这种色调的异同为依据来推测未知的找矿靶区。植被内某种金属成分的含量微小,因此金属含量变化的检测受到谱测试技术灵敏度的限制,当金属含量变化微弱时,现有的技术条件难以检测出,检测下限的定量化还需进一步试验。理论上讲,高光谱提取植被波谱的性能要优于多光谱很多倍,例如对某一农业区进行管理,根据每一块地的波谱空间信息可以做出灌溉、施肥、喷洒农药等决策,当某农作物十枯时,多光谱只能知道农作物受到损害,而高光谱可以推断出造成损害的原因,是因为土地干旱还是遭受病虫害。因此利用高光谱数据更有希望提取出对找矿有指示意义的植被波谱特征。

3.矿床改造信息标志

矿床形成以后,由于所在环境、空间位置的变化会引起矿床某些性状的改变。利用不同时相遥感图像的宏观对比,可以研究矿床的侵蚀改造作用;结合矿床成矿深度的研究,可以对类矿床的产出部位进行判断。通过研究区域夷平而与矿床位置的关系,可以找寻不同矿床在不同夷平而的产出关系及分布规律,建立夷平而的找矿标志。另外,遥感图像还可进行岩性类型的区分应用于地质填图,是区域地质填图的理想技术之一,有利于在区域范围内迅速圈定找矿靶区。

二、遥感找矿的发展前景

1.高光谱数据及微波遥感的应用

高光谱是集探测器技术、精密光学机械、微弱信号检测、计算机技术、信息处理技术于一体的综合性技术。它利用成像光谱仪以纳米级的光谱分辨率,成像的同时记录下成百条的光谱通道数据,从每个像元上均可以提取一条连续的光谱曲线,实现了地物空间信息、辐射信息、光谱信息的同步获取,因而具有巨大的应用价值和广阔的发展前景。成像光谱仪获得的数据具有波段多,光谱分辨率高、波段相关度高、数据冗余大、空间分辨率高等特点。高光谱图像的光谱信息层次丰富,不同的波段具有不同的信息变化量,通过建立岩石光谱的信息模型,可反演某些指示矿物的丰度。充分利用高光谱的窄波段、高光谱分辨率的优势,结合遥感专题图件以及利用丰富的纹理信息,加强高光谱数据的处理应用能力。微波遥感的成像原理不同于光学遥感,是利用红外光束投射到物体表而,由天线接收端接收目标返回的微弱同波并产生可监测的电压信号,由此可以判定物体表而的物理结构等特征。微波遥感具有全天时、全天候、穿透性强、波段范围大等特点,因此对提取构造信息有一定的优越性,同时也可以区分物理结构不同的地表物体,因为穿透性强,对覆盖地区的信息提取也有效。微波遥感技术因其自身的特点而具有很大的应用潜力,但微波遥感在天线、极化方式、斑噪消除、几何校止及辐射校止等关键技术都有待于深入研究,否则势必影响微波遥感的发展。

2.数据的融合

随养遥感技术的微波、多光谱、高光谱等大量功能各异的传感器不断问世,它们以不同的空间尺度、时间周期、光谱范围等多方面反映地物目标的各种特性,构成同一地区的多源数据,相对于单源数据而高,多源数据既存在互补性,又存在冗余性。任何单源信息只能反映地物目标的某一方面或几个方面的特征,为了更准确地识别目标,必须从多源数据中提取比单源数据更丰富、有用的信息。多源数据的综合分析、互相补充促使数据融合技术的不断发展。通过数据融合,一方面可以去除无用信息,减少数据处理量,另一方面将有用的信息集中起来,便于各种信息特征的优势互补。

蚀变矿物特征光谱曲线的吸收谷位于多光谱数据的波段位置,因此可以识别蚀变矿物,但是波段较宽,只对蚀变矿物的种属进行分类。与可见一红外波段的电磁波相比,达波对地而的某些物体具有强的穿透能力,能够很好地反映线性、环性沟造。达图像成像系统向多波段、多极化、多模式发展,获取地表信息的能力越来越强。总的来说,多光谱、高光谱数据的光谱由线特征具有区分识别岩石矿物的效果,所以对光学图像与雷达图像进行融合处理,既能提高图像的分辨率、增强纹理的识别能力,又能有效地识别矿物类型。

尽管融合技术的研究取得了一些可喜的进展,但未形成成熟的理论、模型及算法,缺乏对融合结果的有效评价手段。在以后的研究中,应该深入分析各种图像的成像机理及数据间的相关性、互补性、冗余性等,解决多源数据的辐校止问题,发展空间配准技术。优化信息提叉的软件平台,实现不同格式图像问的兼容性。

三、结束语

综上所述,遥感技术作为矿产勘查的一种手段应用于找矿取得了一定成就。遥感技术的直接应用是蚀变遥感信息的提取,遥感技术的间接应用包括地质构造信息、植被的光谱特征及矿床改造信息等方面。遥感找矿具有很大的发展前景的领域主要有:高光谱数据、数据融合技术、3s的紧密结合、计算机技术的发展。

【参考文献】

[1]吴晓伟.测绘工程GPS三维空间大地控制网的建设[J].硅谷,2013,4(2).

[2]杨巨平,唐立哲.浅谈GPS在测绘中运用的几全要点[J].科技风,2013,10(4).

高光谱遥感技术范文第5篇

1遥感估产的原理及建模基础

任何物体都具有吸收和反射不同波长电磁波的特性,这是物体的基本特性。相同的物体具有相同的波谱特征,不同的物体,其波谱特征也不同,遥感技术就是基于该原理,利用搭载在各种遥感平台上的传感器接收电磁波,根据地面上物体的波谱反射和辐射特性,识别地物的类型和状态[1]。卫星遥感数据具有高度的概括性,卫星获取的光谱植被指数反映了植物叶绿素和形体的变化[3]。大量的研究也表明,植物的叶面积系数、生物量、干物重与光谱植被指数间存在着较好的相关关系[4]。因此,利用从卫星获取的植被光谱信息估测产量成为了可能。用于区域植物生物量估测的遥感模型基础是从光合作用即植被生产力形成的生理过程出发,在建立模型的过程中,根据植物对太阳辐射的吸收、反射、透射及其辐射在植被冠层内及大气中的传输,结合植被生产力的生态影响因子,最后在卫星接收到的信息之间建立完整的数学模型及其解析式[5]。

2遥感估产模型的类型

20世纪70年代后期估产模型将遥感信息作为变量加入到模型中,建立了大量的遥感估产模型。理论上探讨植物光合作用与植物光谱特征间的内在联系以及植物的生物学特性与产量形成的复杂关系等,方法上从单纯建立光谱参数与产量间的统计关系,发展到考虑植物生长的全过程,将光谱的遥感物理机理与植物生理过程统一起来,建立基于成分分析的遥感估测模型,使估算精度不断提高[6]。由于研究对象的不同,选用的估产参数也不尽相同,模型种类也较多,基本上可以分为2类[7-8],即统计模型和综合模型。

2.1遥感统计模型

目前,基于统计的遥感估产有3种技术路线:一是遥感光谱绿度值(植被指数)-生物量关系模式。在对作物、草原、森林的估产中,这是一种常用的思路,但是该方法得到的遥感估产等级图只反映卫星摄影时的植物长势和生物量的空间分布状况;二是遥感光谱绿度值-地物光谱绿度值-生物量关系模式,即先分析实测地物光谱绿度值与生物量之间的关系,建立相应模型,再分析卫星遥感植被指数与地物光谱绿度值的关系,建立卫星遥感植被指数与生物量之间的关系模型,最后利用光谱监测模型和卫星遥感监测模型进行监测与估产;三是遥感-地学综合模式。该方法将气温、降水等环境因子引入模型,与遥感-生物量模型互相补充,克服各自存在的缺陷,可进一步提高估产精度。建立的统计模型有线性、幂函数、指数、对数等,回归的方法也有一元回归、多元回归、逐步回归等,得到的系数差别较大,并且应用也局限于建模的时间和地点,在很多情况下地面资料的数也影响模型的精度。

2.2遥感综合模型

综合模型借助遥感信息和植被信息、气象因子等来建立,其包含了更多的信息量,可以更加精确地反映植被的生物物理参数。尽管这类方法前景广阔,但受到模型中大量的参数和变量获取的限制(例如呼吸、衰老、光合作用、碳分配、凋落物的分解等),以及当物种的组成在时空上变化较大时出现复杂的、异质性的、冠层的描述问题的影响,部分模型只适用于当时的研究区域,如何通过“尺度扩大”来改进模式中的区域限制,更好地适应遥感信息的同化需要,也是亟需解决的一个关键问题。

相关期刊更多

广告主

省级期刊 审核时间1个月内

吉林省新闻出版局

广告导报

部级期刊 审核时间1个月内

中国市场学会

广告大观

省级期刊 审核时间1个月内

江苏省广播电视总台(集团)