首页 > 文章中心 > 高光谱遥感技术现状

高光谱遥感技术现状

高光谱遥感技术现状

高光谱遥感技术现状范文第1篇

关键词:遥感地质制图 蚀变信息提取 构造信息提取 高光谱遥感技术

中图分类号:P237 文献标识码:A 文章编号:1672-3791(2015)05(c)-0000-00

一、遥感技术的基本特征

长期以来,地质工作者迫切希望能有一种“窥一斑而知全豹”的方法来找矿,因此遥感技术以其独有的远程观测以及判断特点在地质找矿中的作用就突显出来。首先,由于遥感是远距离探测技术,所以遥感可以不对物体进行接触而进行探测,正因为如此遥感技术可以覆盖更广的范围,因此在进行找矿工作时,遥感可以将所观测范围内地表以及地貌的情况通过影像传输给卫星,然后由地面接收站接收图像,让工作人员对观测到的数据进行处理和分析。其次,因为遥感技术覆盖范围广,并且能同时观测多个区域,所以节省了观测时间,并且传输的图像信息更加准确,工作人员能够通过处理后的数据和图像找到矿产资源的位置,甚至能了解大致的分布范围,这为找矿工作节省了人力以及物力。通过研究遥感影像上的地质构造与成矿的关系,可认识成矿规律并圈定找矿远景区,通过对遥感图像进行增强处理,综合分析,可提取地质信息,在我国最早使用遥感图像的行业是地质行业。

遥感技术从字面上可以理解为“遥远的感知”,因此遥感技术是通过远距离传输来进行观测和新词采集的,这就需要电磁波、红外线以及可见光等的帮助。遥感技术在进行影像分析时,检测到的影像中会出现特定的光谱特征和纹理特征,含矿区域会呈现出较为明显的标志。现人们将许多先进的科学技术应用到遥感技术当中,其中对计算机的应用是必不可少的,因为通过遥感技术传输到地面的图像需要经过计算机软件的图像和数据处理,才能将含矿区域显示出来,从而根据显示的情况进行工作项目计划的设计以及开展。遥感技术在地质方面的应用一般都是以制图为主,并与地质图相套合,使得遥感影像图与地质图具有相同的地图投影坐标系统,这可使工作区遥感概貌与地质图相互对应的,并能产生立体感较强的画面,以综合图件来反应工作成果。

随着现有矿产资源不断地被发现并且开采,导致矿产所在地普遍有自然及地理环境较为恶劣的情况,不便于人工的探测及寻找,因此遥感技术在这种地形条件差、交通不便的高寒地区具有常规地质方法不可替代的优越性。

二、遥感技术的找矿应用

遥感探测矿产的核心就是通过遥感探测器以及遥感图像等提取岩矿蚀变情况以及区域地质信息。在找矿中的直接应用就是提取遥感蚀变信息,围岩蚀变是热液与原岩发生的相互作用,是成矿作用。因此,蚀变岩矿物的存在能够帮助遥感技术进行探测,因为这种物质有光谱特征,在遥感影像上具有特殊的显示,因此能够根据蚀变的类型,预测矿物的种类以及分布。

遥感技术进行矿物探测的原理,是因为地物普遍都能够进行电磁波的反射和投射,而每种地物因为其结构以及特性不同,所以反射出的光谱也不相同,因此就可以根据地物反射出的光谱特征,判断地物的种类,并通过光谱图像进行信息的提取。

遥感技术能够对地物进行探测,并向地面传回遥感图像以及数据,通过对遥感影像的前期处理,进行图像的降噪,以及真彩色或者假彩色的合成,对遥感影像进行目视解译,所谓的目视解译就是通过以往的经验以及知识,对遥感影像上存在的地物根据其形状、颜色、周围环境等情况进行判读,从而判断出影像中存在的物体都是什么。在利用遥感影像进行找矿的应用时也是如此,需要针对遥感图像的内容联系周边地质环境判断是否有成矿的可能。利用遥感技术进行找矿时,可以通过多种空间影像进行信息的提取,比如影像上的线状区域、环状区域、带状区域等情况,都能够研究矿物资源是否存在。除此之外,对于色异常以及断裂构造的信息提取都能够进行隐秘矿物资源分布的探测,这是找隐伏矿床的重要手段之一,是区域地质填图的理想技术之一。

三、遥感地质找矿技术的发展趋势及前景

(一)高光谱数据的应用

遥感技术一直被作为辅助手段应用于地质学中,但随着计算机领域高新技术的快速发展,遥感技术的进步和应用,尤其是作为现展的技术手段也愈加显得重要,领域也在不断的扩大。遥感技术本身包含多方面的内容导致其复杂无比,但是因为高光谱遥感的广泛应用,利用这种方法辅助地质工作进行探测的技术也开始逐步成熟。高光谱遥感技术在地质找矿中因其高空间分辨率给遥感地质找矿添加新的血液,高光谱是集多种探测及信息处理技术于一体的综合性技术。它的基础工作原理是利用成像光谱仪与纳米级的光谱分辨率来进行成像,成像的同时记录下成百条的光谱通道数据,这种技术能够进行辐射信息、光谱信息、地物空间信息的同步获取,从每个像元上均可以提取一条连续的光谱曲线。高光谱图像能够显示出丰富的信息,并可通过反演圈出矿化区。

(二)3S技术的结合

所谓的3S技术就是遥感(RS)、地理信息系统(GIS)及全球定位系统(GPS)这三种技术,3S技术是目前地质勘探的业界利器,三种技术各自有各自的优势。利用GPS能够通过微信信号进行定位,并能够测量三维空间数据,在信号足够好的情况下,探测的数据是十分准确的。地理信息系统作为地理信息的集合,具有储存、处理地理信息数据等多种功能,并且地理信息系统的数据库具有高集成、一体化并且储存空间大的特点,因此地理信息系统与遥感技术的结合,能够为遥感技术提高海量的数据储存空间,并且还能够进行数据以及图像的管理及浏览,并能够将搜集到的海量地理数据信息然后回馈给信息中心进行分析,然后遥感技术RS负责在地理区域内进行找矿工作。

(三)遥感技术与传统地物化找矿方法的融合

因为矿床的形成并不是一种物质造成的结果,因此想要实现利用遥感技术进行找矿工作,就必须要将遥感技术与地、物、化找矿方法结合起来,避免因为探测单一的物质而造成的失误和阻碍情况的发生。目前以遥感信息为主体,建立多源地学数据库进行综合信息找矿法势在必行。

结束语:

遥感技术作为地质勘查的重要手段,对矿产资源的可持续发展有着积极的作用。利用这一高新技术不但破解了我国目前由于资源匮乏而出现的深层次找矿难题,也为我国勘探科学的进步找到了新的出发基点。因为遥感技术实时、准确的特性,被广泛应用于地质找矿工作中,这项技术在地质找矿中的运用,不仅有效地提高了地质找矿的质量以及数量,还提高了找矿工作的准确性,并且提高了工作效率,因此遥感找矿技术的实运用还拥有更加广阔的发展空间。

参考文献

[1] 钱建平,伍贵华,陈宏毅.现代遥感技术在地质找矿中的作用【L】.地质找矿论丛, 2012,27(3):355-359.

高光谱遥感技术现状范文第2篇

【关键词】海上溢油;遥感;监测

中图分类号:C35文献标识码: A

0.引言

在各类海洋污染中,造成主要污染的因素就是海上溢油。由于轮船的碰撞、海上油井的破裂、翻船、海底油田泄露等各种不同的意外事故,造成大海大面积的石油污染,不仅损害海洋、自然环境,对生态环境、人体健康也是一种危害。溢油对海洋的污染已经引起了各国政府的重视,很多国家都建立了海上溢油的探测系统,对近海领域进行巡视、监测和管理。一旦发生溢油事故,能够在最短的时间内了解到溢油发生的位置以及扩散趋势。通过建立完整的监测系统,大范围有效了解海洋面积的动态信息,对于海洋溢油污染进行定量分析,准确反映溢油污染的情况与程度。

1.遥感技术监测海上溢油范围

海面发生溢油灾害后,溢油区域水面的电磁波谱特性发生变化,相对于没有石油区域的水面有明显差别,利用这种光谱特性的差异可以划分油水分界线,从而确定溢油范围。

1.1可见光、近红外红外遥感技术

利用可见光、近红外红外波段的遥感监测技术是我国针对溢油污染发展最为成熟的监测技术。在其波段的范围内,入射物表面的电磁波与物体发生光学作用,监测系统的传感器通过记录来源物与入射电磁波发生的反射作用,由于物体不同,对电磁波的反射率也不同。实验表明,油种的类型以及厚度都会对海面油膜的光谱曲线造成影响,卫星遥感的最佳敏感波段也存在差异[1]。

1.2微波雷达遥感技术

合成孔径雷达(synthetic aperture radar,SAR)和侧视机载雷达(side-looking radar,SLAR)是微波雷达的遥感技术用于溢油范围监测的两种雷达。前者是利用多普勒效应,依靠短天线达到高空间分辨率。后者是一种传统雷达,造价低,空间分辨率与天线长度成正比。现阶段,合成孔径雷达已经被广泛运用到溢油范围监测。SAR传感器通过接收仪器发出的电磁波信号,对物体进行识别。海面的毛细波是可以反射雷达的波束,从而造成海面杂波,在SAR传感器的图像上呈现亮图像,油膜覆盖海水表面,致使雷达传感器接收到的波束减少,无法在SAR传感器上体现亮的颜色。

2.遥感技术监测海上溢油类型

如何判断海面上的溢油类型,是遥感技术中的模式识别问题,也是遥感监测中较难实现的问题。

2.1激光荧光遥感技术

激光荧光法是利用激光作为激励光源,激发物质的荧光效应,利用物质的荧光光谱作为信息的参照,通过SAR传感器的监测,进行输入远的荧光光谱分析方法。当物质被光波照射时,基态的物质分子吸收光能量,由原来的能级跃转移到较高的第一电子单线激发态或者第二电子激发态。所谓的荧光效应,就是指通常情况下,转移的电子会急剧地降落,降至最低振动能级,并且以光的形式释放能量。每种物质的荧光谱不同,由于石油油膜中所含有的荧光基质种类的不同以及各种基质比例不同,在相同激光照射条件下所反馈的荧光也不同,荧光谱通常具有不同的强度和形状,这就是激光荧光遥感技术鉴别溢油种类的原理[2]。

2.2红外偏振遥感技术

作为一种新颖的遥感监测手段,被动傅里叶变换红外遥感(Fourier transform infrared spectroscopy,FTIR)是一种检测多原子分子的方法,可以实现多组目标的同时进行检测与鉴别。这和传统的红外遥感技术不同,红外偏振遥感技术是能够获取物质表面的状态以及物质的信息等相关偏振信息,这样有助于识别石油的种类。

2.3高光谱遥感技术

在针对溢油种类进行检测时,需要得到足够多的光谱信息,高光谱遥感技术是以其宽度与庞大的波段数量为主要特点,使其成为溢油种类的一种可行手段。通过光谱混合分析的方法对溢油高光谱数据进行研究分析。利用Hyerion高光谱卫星数据进行溢油监测研究,对多种原油的高光谱波谱进行分析,同时利用GA-PCA特征进行提取法与SAM-SFF方法对不同的油种的高光谱波进行提取,以达到鉴别油种的差异。

3.遥感技术监测海上溢油量

溢油量取决于溢油油膜的厚度,根据油膜的厚度对其进行分布以及估算,可以大致得出溢油总量。

3.1紫外遥感技术

紫外遥感技术是通过紫外传感器油膜油层进行探测,对于小于0.05um的薄油层即使在紫外波段也具有很高的反射,通过紫外光与红外光的叠加,大致可以得到油膜的厚度。但是,紫外遥感技术有一个很大的缺点,就是紫外遥感很容易受到外界环境因素的干扰,一旦受到外界因素的干扰紫外遥感就很容易出现虚假信息。

3.2热红外遥感技术

由于油膜在吸收太阳辐射之后会将一部分能量以热能的形式进行释放,所以采用热红外遥感技术,这种技术中红外波段包含地物的温度信息,所以能够辨别油层的厚度,较厚油层表现为“热”的特性,中等厚度油层表现为“冷”的特性。经相关研究表明,发生“冷”、“热”的油膜厚度范围大致为50-150um之间,而这种技术的最小探测油层厚度大约为20-70um之间,由于厚度的区间很小,所以SAR传感器的敏感性因此受到限制[3]。

3.3微波雷达遥感技术

由于海洋的海水本身会发射微波辐射,而海上溢油发生以后油膜区域会发射比海水更强的微波信号,水的微波辐射发射率约为0.4,而油的发射率约为0.8,因此在海水背景中,溢油区域呈现亮信号,并且信号强弱与油膜厚度具有一定的比率。通过微波雷达遥感技术监测溢油量,一方面能够监测海上溢油的范围,一方面可以通过被动式的微波辐射大致计算油膜厚度。但是,我国这方面的技术还不是很发达,油膜厚度的微波遥感定量技术受到环境、传感器等多方面因素的影响,其精度仍然有待提高[4]。

4.结语

本文介绍了海上溢油的三大监测指标,海上溢油监测指标分为溢油范围、溢油类型和溢油量。但是,针对溢油类型和溢油量的监测技术仍不成熟,随着我国海上溢油监测系统的不断完善,溢油遥感技术不断发展,为实现全面监测海上溢油指标而不懈努力。

【参考文献】

[1]李栖筠,陈维英,肖乾广,等.老铁山水道溢油事故卫星监测[J].环境遥感,2010,9(4):256-262.

[2]李四海.海上溢油遥感探测技术及其应用进展[J].遥感信息,2012,03(2)::53-56.

高光谱遥感技术现状范文第3篇

遥感技术具有宏观性和现势性强、综合信息丰富等优势,为矿区土壤重金属污染评价提供了可行的方法。本文综述了遥感技术在矿区土壤重金属污染评价方面的研究,并对其进行了展望。

关键词:

遥感;土壤;重金属

1.引言

矿产资源是生产资料和生活资料的重要来源,人类社会的发展进步与矿产的开发利用密不可分。矿产的开采、冶炼、加工过程中大量的铅、锌、铬、镉、钴、铜、镍等重金属以及类金属砷等进入大气、水、土壤引起严重的环境污染。根据2014年4月17日环境保护部、国土资源部的《全国土壤污染调查公报》,“全国土壤环境状况总体不容乐观,部分地区土壤污染较重,总的超标率达16.1%”、“在调查的70个矿区的1672个土壤点位中,超标点位占33.4%,主要污染物为镉、铅、砷和多环芳烃”。资源、环境是制约社会经济发展的两大瓶颈,如何克服这个瓶颈问题同时又能实现矿山开发的可持续发展,是我国社会必须面对和解决的紧迫的社会问题[1]。传统的土壤重金属污染监测方法有实验室监测、现场快速监测等方法。实验室监测方法虽然测量精度高,但是存在劳动强度大、采样分析费时,适用范围小的缺点;现场快速监测法虽然具有大面积、连续、高密度获取信息的特点,但是还大多处于定性或半定量的试验阶段,易受周围因素影响[2]。各种岩石、土壤、植被及水体等均有各自独特的光谱特征。地物光谱特征的差异,是遥感技术识别各类地物的主要依据,也是应用遥感技术开展土壤重金属污染评价的理论基础。遥感技术以其宏观性和现势性强、综合信息丰富等优势,在矿区土壤重金属污染评价中起到了积极的先导作用,并取得了良好的应用效果。一般情况下,土壤中的有机质、水分、铁氧化物、重金属等对土壤光谱反射率有一定影响。国外相关研究起步较早,始自20世纪六十年代土壤光谱研究[3]。国外有研究中表明,当土壤有机质含量超过2%,铁氧化物、重金属等光谱信息有可能被土壤中的有机质的光谱信息所掩盖,进一步加大了光谱信息提取的难度;同时土壤的反射率会因铁氧化物的存在而在整个波谱范围内有明显的下降趋势,土壤的光谱反射率都朝着蓝波方向下降,并且这种下降趋势可以扩展到紫外区域[4],相关研究陆续拓展至矿区重金属污染中来[5];国内自20世纪八十年代在云南腾冲系统地开展土壤光谱与理化性状关系的研究[6~7],并于九十年代末开展遥感技术在矿区重金属污染监测的探索。目前遥感技术对矿区土壤重金属污染评价研究主要有两个方向:一是植被反演。根据地表植被覆盖以及重金属在植被根茎、叶片中富集,植被在重金属胁迫下叶绿素等光谱特征发生变化的特点,通过植被光谱数据反演土壤中的重金属含量,间接评价重金属污染。二是土壤监测。利用重金属对土壤波谱特性的影响,通过土壤光谱数据监测重金属含量[8-10]。

2.植被反演方法

植被在生长发育的过程中,矿区土壤中的重金属被吸收和富集,对植物的产生的影响主要体现在长势方面产生了生物地球化学效应,如色素含量、水含量、叶面温度的变化,进而影响植被的光谱反射率,植被光谱的变化能够在遥感光谱信息中有所体现。基于以上认识,可以通过植被光谱信息、波谱曲线变化的分析提取污染信息[11]。不同植物对重金属敏感性不同,重金属胁迫导致植物体内生物化学成分发生改变,使电磁波谱反射特性不同。植被反演方法的原理是,运用遥感技术研究重金属污染条件下植被光谱特征变化,建立植被光谱特征与重金属污染条件下植被生长状态参数变化之间的关系[7];研究叶绿素含量与重金属污染之间的关系,分析叶绿素变化敏感的光谱指数及其响应规律,并进行了区域应用与验证[11-13]。研究表明,随着土壤中重金属含量增加,植被近红外、可见光反射光谱特征发生显著变化,表现为可见光光谱反射增强,近红外光谱减少,红边移动范围减少[14-15]。此方法适用于矿区植被覆盖较茂密的区域。王杰等(2005年)以江西德兴铜矿去为实验区,采用美国陆地卫星(Landsat)ETM+数据,采用比值分析、彩色合成、影像融合等方法增强影像视觉效果,对污染区的植被的波谱曲线与正常区的同种植被的光谱特征作对比,总结出受毒化植物叶冠的波谱形态与正常植物叶冠的波谱形态相比发生的形态变异的特征,总结对照区和污染区植被的波谱特征差异和各污染区的受污染程度,分析出不同污染区植物的受毒害程度[16]。雷国静等(2006年)在南方植被茂密区离子型稀土矿区采用高分辨率QuickBird遥感数据采取坐标换的方式,消除土壤信息干扰,获取了较真实的植被受污染影响程度的信息,运用了归一化植被指数密度分割方法和通过旋转二维散点图获得植被绿度方法来提取植被污染信息,取得了较好的效果[17]。李新芝等(2010年)以肥城煤矿区为实验区,将SPOT-5数据2.5米分辨率的全色波段进行小波变换、主成分分析等融合方法提高图像的空间信息量,综合运用缨帽变换、植被与土壤相关性分析、支持向量机分类等方法提取矿区植被信息,并制作了植被等级分布图,确定了不同污染程度的植被覆盖面积,与矿区污染分布的规律具有较好的一致性[11]。黄铁兰等(2014年)以广东大宝山矿区及周边10公里范围作为研究区,分别以ASTER及QuickBird为数据源,采用植被指数法和植被绿度法对植被污染信息进行识别,对获取的植被绿度信息图像进行密度分割,获得植被污染程度及分布情况。同时建议大范围的矿山植被污染信息的识别,考虑到项目综合成本等因素,采用ASTER等低分辨率的数据源,选择植被绿度指数法进行识别。对于小范围的典型矿区,可选用QuickBird等高分辨率的数据源,用植被指数法进行识别[18]。由于混合像元、大气效应的存在,植被信息提取过程中容易出现错分、漏分现象;相关系数的设置易受经验的影响。同时信息提取易受云层、山体阴影和人类生产活动的影响,均存在一定的误提现象。未来应加强信息提取技术、多源遥感数据在植被反演中的应用研究,以解决上述问题。

3.土壤监测方法

土壤是由多种物理化学特性不同的物质的组成的混合体,例如有机质、重金属、水、其他矿物质等。各种物质均有发射、反射、吸收光谱的特性,都会对土壤光谱特征产生影响,同时植被覆盖也对土壤光谱的监测有较大影响,因此对于通过土壤光谱数据直接监测土壤重金属含量的研究,尚处于探索阶段。土壤监测方法的原理是,利用光谱分析方法室内测定土壤发射光谱数据,经线性回归分析或指数回归分析、标准化比值计算、特征光谱宽化处理后,利用回归分析方法建立重金属元素含量与发射率变量之间的土壤重金属反演模型,定量反演出矿区土壤重金属含量[19-23]。此类方法适用于植被覆盖率较低的地区。ThomasKemper等(1998年)在西班牙Aznalcóllar尾矿库溃坝事件土壤重金属污染监测中,基于多元线性回归分析(MLR)和人工神经网络(ANN)方法分别通过化学分析、特征光谱--近红外反射光谱(0.35−0.35μm)手段监测土壤重金属含量,两种手段对As、Fe、Hg、Pb、S、Sb等六种元素监测有较高的相似度。为相似矿区环境的监测提供了较好的借鉴意义[13]。李淑敏等(2010年)以北京为研究区,研究土壤中8种重金属(Cr、Ni、Cu、Zn、As、Cd、Pb、Hg)的含量与热红外发射率的关系,分析了土壤重金属的特征光谱,并模拟预测了重金属含量的回归模型,为基于遥感光谱的土壤重金属含量监测奠定了基础[24]。宋练等(2014年)以重庆市万盛采矿区为研究区,通过光谱特征物质之间的自相关性来分析土壤中光谱特征物质,在回归分析的基础上建立As、Cd、Zn重金属含量的遥感定量反演模型,监测三种重金属含量,结果表明土壤在近红外波段和可见光波段的反射值比值与土壤中As、Cd、Zn含量存在较好相关性[25]。部分研究对波段选择和光谱分辨率的重要性认识不高,影响了重金属元素光谱信息识别、重金属污染预测精度;土壤中绝大部分重金属,如铅、锌、铬、砷等在可见光—近红外波段区间的光谱特征较弱,易被植被、土壤波谱信息掩盖,对直接利用土壤重金属光谱特征来提取污染信息带来了难度。研究发现,铁氧化物的波谱特征较明显,今后需加强土壤中重金属与铁氧化物相关性的研究,以提高污染信息提取的准确性。

4.未来展望

近年来,遥感技术用于矿区土壤重金属评价取得了一定进展,今后要在以下几个方面寻求突破:

(1)研究遥感信息提取新技术新方法。地物波谱特性易受土壤成分、大气效应、植被等环境噪音的影响,需进一步加强波谱信息提取技术的研究,以提高遥感信息提取的准确性。

(2)加强田间光谱测量研究。目前对土壤重金属监测仅局限于实验室级别的光谱监测,需要进一步探讨其他因素对重金属吸附的影响以建立准确的土壤重金属含量光谱估算模型,并进行大量而精确的实验室与田间的光谱测量工作。

(3)由定性监测向定量监测转变。遥感技术在矿区土壤重金属污染评价方面的研究大多是定性或半定量评价,尚达不到定量评价。需在遥感反演土壤污染信息模型与理论方法、土壤重金属含量与光谱变量的相关关系等方面加强研究,以接近或达到定量评价污染的水平,进而利用遥感技术评价大面积土壤污染及修复。

(4)研制高性能的卫星,提高遥感信息获取能力。作为中国16个重大科技专项(2006年~2020年)之一的高分辨率对地观测系统已进入全面建设阶段,其中2014年8月发射升空的高分二号卫星空间分辨优于1m,这必将改变遥感数据普遍采用国外遥感数据(SPOT、Landsat、QuickBrid等)的局面。

参考文献:

[1]贾志强.甘肃省白银市矿山环境遥感调查与评价研究[D].桂林:桂林工学院,2009.

[2]龚海明,马瑞峻,等.农田土壤重金属污染监测技术发展趋势[J].中国农学通报,2013,29(2):140-147.

[4]张甘霖,赵玉国,杨金玲,等.城市土壤的环境问题及其研究进展[J].土壤学报,2006,44(55):925-933.

[6]戴昌达.中国主要土壤光谱反射特性分类与数据处理的初步研究[M].见:遥感文选,北京:科学出版社,1981.

[7]丰茂森.遥感图像数字处理[M].北京:地质出版社,1992:3~3.

[8]甘甫平,刘圣伟,等.德兴铜矿矿山污染高光谱遥感直接识别研究[J].地球科学—中国地质大学学报,2004,29(1):119-126.

[9]朱叶青,屈永华,刘素红,等.重金属铜污染植被光谱响应特征研究[J].遥感学报,2014,18(2):335-352.

[10]李婷,刘湘南,刘美玲.水稻重金属污染胁迫光谱分析模型的区域应用与验证[J].农业工程学报,2012,28(12):176-182.

[11]李新芝.基于多源遥感数据的矿区植被信息监测方法研究[D].济南:山东科技大学,2010.

[12]王秀珍,王人潮,黄敬峰.微分光谱遥感及其在水稻农学参数测定上的应用研究[J].农业工程学报,2002,18(1):9-13.

[14]徐加宽,杨连新,王余龙,等.水稻对重金属元素的吸收与分配机理的研究进展[J].植物学通报,2005,22(5):614-622.

[16]王杰,等.遥感技术在江西德兴铜矿矿区污染研究中的应用[J].山东科技大学学报(自然科学版)2005,24(4):66-69.

[17]雷国静等.遥感在稀土矿区植被污染信息提取中的应用[J].江西有色金属,2006,20(2):1-5.

[18]黄铁兰,等.广东大宝山矿区植被污染信息的遥感识别方法研[J].地质学刊,2014,38(02):284-288.

[24]李淑敏,李红,孙丹峰,等.基于热红外特征光谱的土壤重金属含量估算模型研究[J].2010,31(7):33-38.

高光谱遥感技术现状范文第4篇

关键词遥感估产;类型;现状;展望

遥感起源于20世纪60年代,这是一种在一定距离上,应用探测仪器不直接接触目标物体,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术[1]。随着遥感技术的发展,宏观大尺度的估产越来越多地使用遥感方法,并结合地理信息系统和全球定位系统等技术,可以构建出不同条件下植被的生长模型和估产模型[2]。遥感技术估产与传统的估产方式相比,前者的工作量少,精准性更强,在实际应用中显示出了独有的优越性。前人做了大量有关运用遥感技术对作物、草地、森林及海洋生态系统的植被估产的研究。遥感估产已从试验研究阶段逐步进入到实际业务使用阶段。现探讨有关遥感估产的原理及估产模型的基本类型。

1遥感估产的原理及建模基础

任何物体都具有吸收和反射不同波长电磁波的特性,这是物体的基本特性。相同的物体具有相同的波谱特征,不同的物体,其波谱特征也不同,遥感技术就是基于该原理,利用搭载在各种遥感平台上的传感器接收电磁波,根据地面上物体的波谱反射和辐射特性,识别地物的类型和状态[1]。卫星遥感数据具有高度的概括性,卫星获取的光谱植被指数反映了植物叶绿素和形体的变化[3]。大量的研究也表明,植物的叶面积系数、生物量、干物重与光谱植被指数间存在着较好的相关关系[4]。wWW.133229.COM因此,利用从卫星获取的植被光谱信息估测产量成为了可能。用于区域植物生物量估测的遥感模型基础是从光合作用即植被生产力形成的生理过程出发,在建立模型的过程中,根据植物对太阳辐射的吸收、反射、透射及其辐射在植被冠层内及大气中的传输,结合植被生产力的生态影响因子,最后在卫星接收到的信息之间建立完整的数学模型及其解析式[5]。

2遥感估产模型的类型

20世纪70年代后期估产模型将遥感信息作为变量加入到模型中,建立了大量的遥感估产模型。理论上探讨植物光合作用与植物光谱特征间的内在联系以及植物的生物学特性与产量形成的复杂关系等,方法上从单纯建立光谱参数与产量间的统计关系,发展到考虑植物生长的全过程,将光谱的遥感物理机理与植物生理过程统一起来,建立基于成分分析的遥感估测模型,使估算精度不断提高[6]。由于研究对象的不同,选用的估产参数也不尽相同,模型种类也较多,基本上可以分为2类[7-8],即统计模型和综合模型。

2.1遥感统计模型

目前,基于统计的遥感估产有3种技术路线:一是遥感光谱绿度值(植被指数)-生物量关系模式。在对作物、草原、森林的估产中,这是一种常用的思路,但是该方法得到的遥感估产等级图只反映卫星摄影时的植物长势和生物量的空间分布状况;二是遥感光谱绿度值-地物光谱绿度值-生物量关系模式,即先分析实测地物光谱绿度值与生物量之间的关系,建立相应模型,再分析卫星遥感植被指数与地物光谱绿度值的关系,建立卫星遥感植被指数与生物量之间的关系模型,最后利用光谱监测模型和卫星遥感监测模型进行监测与估产;三是遥感-地学综合模式。该方法将气温、降水等环境因子引入模型,与遥感-生物量模型互相补充,克服各自存在的缺陷,可进一步提高估产精度。建立的统计模型有线性、幂函数、指数、对数等,回归的方法也有一元回归、多元回归、逐步回归等,得到的系数差别较大,并且应用也局限于建模的时间和地点,在很多情况下地面资料的数也影响模型的精度。

2.2遥感综合模型

综合模型借助遥感信息和植被信息、气象因子等来建立,其包含了更多的信息量,可以更加精确地反映植被的生物物理参数。尽管这类方法前景广阔,但受到模型中大量的参数和变量获取的限制(例如呼吸、衰老、光合作用、碳分配、凋落物的分解等),以及当物种的组成在时空上变化较大时出现复杂的、异质性的、冠层的描述问题的影响,部分模型只适用于当时的研究区域,如何通过“尺度扩大”来改进模式中的区域限制,更好地适应遥感信息的同化需要,也是亟需解决的一个关键问题。

3展望

遥感技术经过几十年的发展,已经日趋成熟,遥感估产的优点是可以得到长时间尺度和大空间尺度的生产力资料,因而它仍是未来生产力探测方法的发展方向。目前国际上对各类生态系统的估产模型有很多,建立的模型和所选择的数据源并不是任何时期、任何区域都适用,应该根据研究区域的实际情况来改进生物量模型和选择合适的遥感数据源。基于遥感技术的生物量估算需要运用多种技术,综合多种方法,使估算模型达到最优。新的数学方法的不断探索和试验是充分发挥遥感信息作用的前提和途径,数量化理论、神经网络方法、cwsi理论、灰色系统理论、数值模拟等

理论的尝试将可能实现高精度定量估测。

4参考文献

[1] 梅安新,彭望琭,秦其明,等.遥感导论[m].北京:高等教育出版社,2001.

[2] 李海亮,赵军.草地遥感估产的原理与方法[j].草业科学,2009,26(3):34-38.

[3] 冯奇,吴胜辉.我国农作物遥感估产研究进展[j].世界科技研究与发展,2006,28(3):32-36,6.

[4] 申广荣,王人潮.植被光遥感数据的研究现状及其展望[j].浙江大学学报,2001,27(6):682-690.

[5] 张佳华.生物量估测模型中遥感信息与植被光合参数的关系研究[j].测绘学报,1999,28(2):128-132.

[6] 赵英时.遥感应用分析原理与方法[m].北京:科学出版社,2003.

[7] 陶伟国,徐斌,杨秀春.草原产草量遥感估算方法发展趋势及影响因素[j].草业学报,2007,16(2):1-8.

高光谱遥感技术现状范文第5篇

一、遥感的基本原理

(一)基本概念

遥感一词来源于英语“Remote Sensing”,其直译为“遥远的感知”,时间长了人们将它简译为遥感。遥感是20世纪60年展起来的一门对地观测综合性技术。自20世纪80年代以来,遥感技术得到了长足的发展,遥感技术的应用也日趋广泛。随着遥感技术的不断进步和遥感技术应用的不断深入,未来的遥感技术将在我国国民经济建设中发挥越来越重要的作用。 关于遥感的科学含义通常有广义和狭义两种解释: 广义的解释: 一切与目标物不接触的远距离探测。 狭义的解释: 运用现代光学、电子学探测仪器,不与目标物相接触,从远距离把目标物的电磁波特性记录下来,通过分析、解译揭示出目标物本身的特征、性质及其变化规律。

(二)系统的组成

遥感是一门对地观测综合性技术,它的实现既需要一整套的技术装备,又需要多种学科的参与和配合,因此实施遥感是一项复杂的系统工程。根据遥感的定义,遥感系统主要由以下四大部分组成(参见下图): 1、信息源 信息源是遥感需要对其进行探测的目标物。任何目标物都具有反射、吸收、透射及辐射电磁波的特性,当目标物与电磁波发生相互作用时会形成目标物的电磁波特性,这就为遥感探测提供了获取信息的依据。 2、信息获取 信息获取是指运用遥感技术装备接受、记录目标物电磁波特性的探测过程。信息获取所采用的遥感技术装备主要包括遥感平台和传感器。其中遥感平台是用来搭载传感器的运载工具,常用的有气球、飞机和人造卫星等; 传感器是用来探测目标物电磁波特性的仪器设备,常用的有照相机、扫描仪和成像雷达等。 3、信息处理 信息处理是指运用光学仪器和计算机设备对所获取的遥感信息进行校正、分析和解译处理的技术过程。信息处理的作用是通过对遥感信息的校正、分析和解译处理,掌握或清除遥感原始信息的误差,梳理、归纳出被探测目标物的影像特征,然后依据特征从遥感信息中识别并提取所需的有用信息。 4、信息应用 信息应用是指专业人员按不同的目的将遥感信息应用于各业务领域的使用过程。信息应用的基本方法是将遥感信息作为地理信息系统的数据源,供人们对其进行查询、统计和分析利用。遥感的应用领域十分广泛,最主要的应用有: 军事、地质矿产勘探、自然资源调查、地图测绘、环境监测以及城市建设和管理等。

(三)遥感原理

振动的传播称为波。电磁振动的传播是电磁波。电磁波的波段按波长由短至长可依次分为: γ-射线、X-射线、紫外线、可见光、红外线、微波和无线电波。电磁波的波长越短其穿透性越强。遥感探测所使用的电磁波波段是从紫外线、可见光、红外线到微波的光谱段。 太阳作为电磁辐射源,它所发出的光也是一种电磁波。太阳光从宇宙空间到达地球表面须穿过地球的大气层。太阳光在穿过大气层时,会受到大气层对太阳光的吸收和散射影响,因而使透过大气层的太阳光能量受到衰减。但是大气层对太阳光的吸收和散射影响随太阳光的波长而变化。通常把太阳光透过大气层时透过率较高的光谱段称为大气窗口。大气窗口的光谱段主要有: 紫外、可见光和近红外波段。 地面上的任何物体(即目标物),如大气、土地、水体、植被和人工构筑物等,在温度高于绝对零度(即0°k=-273.16℃)的条件下,它们都具有反射、吸收、透射及辐射电磁波的特性。当太阳光从宇宙空间经大气层照射到地球表面时,地面上的物体就会对由太阳光所构成的电磁波产生反射和吸收。由于每一种物体的物理和化学特性以及入射光的波长不同,因此它们对入射光的反射率也不同。各种物体对入射光反射的规律叫做物体的反射光谱。遥感探测正是将遥感仪器所接受到的目标物的电磁波信息与物体的反射光谱相比较,从而可以对地面的物体进行识别和分类。这就是遥感所采用的基本原理。

(四)遥感的分类

为了便于专业人员研究和应用遥感技术,人们从不同的角度对遥感作如下分类: 1、按搭载传感器的遥感平台分类 根据遥感探测所采用的遥感平台不同可以将遥感分类为: 地面遥感,即把传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等;航空遥感,即把传感器设置在航空器上,如气球、航模、飞机及其它航空器等; 航天遥感,即把传感器设置在航天器上,如人造卫星、宇宙飞船、空间实验室等。 2、按遥感探测的工作方式分类 根据遥感探测的工作方式不同可以将遥感分类为: 主动式遥感,即由传感器主动地向被探测的目标物发射一定波长的电磁波,然后接受并记录从目标物反射回来的电磁波; 被动式遥感,即传感器不向被探测的目标物发射电磁波,而是直接接受并记录目标物反射太阳辐射或目标物自身发射的电磁波。 3、按遥感探测的工作波段分类 根据遥感探测的工作波段不同可以将遥感分类为: 紫外遥感,其探测波段在0.3~0.38um之间; 可见光,其探测波段在0.38~0.76um之间; 红外遥感,其探测波段在0.76~14um之间; 微波遥感,其探测波段在1mm~1m之间; 多光谱遥感,其探测波段在可见光与红外波段范围之内,但又将这一波段范围划分成若干个窄波段来进行探测。高光谱遥感是在紫外到中红外波段范围内,并且也将这一波段范围划分成许多非常窄且光谱连续的波段来进行探测。 4、按遥感探测的应用领域分类 根据遥感探测的应用领域,从宏观研究角度可以将遥感分类为: 外层空间遥感、大气层遥感、陆地遥感、海洋遥感等; 从微观应用角度可以将遥感分类为: 军事遥感、地质遥感、资源遥感、环境遥感、测绘遥感、气象遥感、水文遥感、农业遥感、林业遥感、渔业遥感、灾害遥感及城市遥感等。

相关期刊更多

广告主

省级期刊 审核时间1个月内

吉林省新闻出版局

广告导报

部级期刊 审核时间1个月内

中国市场学会

广告大观

省级期刊 审核时间1个月内

江苏省广播电视总台(集团)