首页 > 文章中心 > 多目标优化设计

多目标优化设计

多目标优化设计

多目标优化设计范文第1篇

【关键词】实时调度 日前计划 AGC节能调度 滚动调度 经济调度 安全校核

我国风能的储量巨大,可开发利用。我国对开发风能资源非常关心,把利用风能资源作为转变经济能源结构和社会可持续发展的重要举措,风力发电成为对风能开发利用的重点对象。进行大规模发展风力,风电开发的重点是进入“建设大基地,融入大电网”。到2008年底,我国风电总装机容量达12248MW,提早完成了我国2010年预定的风电目标,图1是风电发展趋势的统计图。

1 多目标优化调度彼此关联技术

1.1 传统经济与节能调度的差异性

(1)电网单位买电成本上的差别;经济调度的发电机组的电网价格与市场具有竞争性;节能调度则首先考虑风、水等可再生资源发电,这些新能源机能发电要比火电机组的上网电价高。

(2)减少排放的成效性不同;经济调度以发电成本低为主要目的,而就目前的社会发展中煤的燃烧是成本最小的发电资源,经研究煤的燃烧有大量的污染物排放,对环保十分不利;电力供应充足的时候,节能调度本着经济节能的原则,选择由小到大的污染物排放资源作为发电顺序,这对电源发电是有好处的。

(3)发电的成本不同;节能发电是用降能低耗的方式,排放最少废气污染物;经济调度的成本资源会更低,增加了发电效率和产值。

(4)针对各种不同的机组发电序位也不同;节能调度里的不同发电机组按照排好的顺序找准序位:没有调节能力的可再生资源如太阳能、风能、海洋能等发电机组,具有调节能力的可再生资源如地热能、生物质能、水能等垃圾发电机组,核能发电机组,按照供热量的多少来确定发电量的方法,应用燃煤放热和别的资源结合发电机组,烧油发电机组,烧煤发电机组;经济调度是凭借机组报价,与周边发电机组的成本相比,报价的低的机组先进行发电。

1.2 应用实时调度技术

电网调度智能系统运用实时调度技术;实施调度计划过程中,有AGC机组内存容量不充裕,收效甚微的机组跟踪计划,安全区域与运行点靠近,风能发电功率不好掌控等等因素;实时调度机组必须选择执行计划强,性能比高的机组为调度机组;通过以10分钟为一个超前调整机组的周期出力的超短期发电预测,从而排除不肯定因素的影响;所以,以10分钟周期的超前调度控制方案,这种方案具有按时段编制发电的功能,还可预测下一个时段调度的风电出力情况,影响爬坡的速度效率,机组的额定限值,滚动发电策划,调度系统安稳运行时,我们可按节能减排标准推行发电计划,排除计划误差;因为电场在10分钟内是相对稳定的时段出力,所以实时调度技术是风电接入的调度重点,也是AGC控制及协调调度计划的切入点。

2 特性各异的电源多目标协同优化调度系统设计研究方案

2.1 调度系统的功能设计

2.1.1 滚动系统调度

在短期预y的拓展上,60分钟是启动周期,最大限度的应用最新的信息预测和实时信息,及时修改计划,实现预测发电的调整计划,有效减小日前计划的不准确性,滚动调度系统是下发计划指令,限制调整,改进在线滚动,推测超短期风功率,联络交接线管理计划等组成的。

2.1.2 综合归纳监视系统

监督并把一日内的电网滚动优化,实时调度,超短期推测数据等有关讯息,通过可视的信息平台展现出来,从管理的重点分析涵盖负荷,调度系统业务的组织信息,规划风电,装机规模,发电,电量合同,断面等等方面进行关注与研究。

2.1.3 计划系统

计划由计划数据展现和计划数据透传两大功能来实现。

2.1.4 实时调度系统

实时调度系统是在线调度实时,下发指令的自动性,超短期负荷的推算,安全校核等几部分构成;以电网模型,风电出力推算,超短期预测发电 ,实时数据通信的前提,10分钟是一个启动周期,在综合滚动发电计划,机组出力限制,安排AGC机组发电计划实时,;重新推测下个10分钟的发电计划调整,排除计划数值与推算数值的误差,加强电网的风电接入功能,成为联接协调调度计划和AGC控制安全网络的关键点。

2.1.5 安全校核系统

安全校核系统的职能是对实时调度产生的发电机组出力数据调动,输出计划方案的校核成果,滚动调度系统模块等的功能调整;对一日这中的最新设备状态信息,预测能力信息,电网模型,有计划的实时静态安全分析,分析计划多种发电机对功率转移的线路潮流分布因子,电网各个网点的联接形式,整理分析系统阻塞形势,并做相应的阻塞管理;内置功能主要有潮流分析,灵敏度分析,校核断面自动生成,静态安全分析等,做出系统的静态安全校核算法。

2.1.6 系统管理部分

系统管理功能主要有用户管理,日志管理,基础数据维护,权限管理等。

2.1.7 效果系统评估

用先进的可视化设备对特性各异的电源协同优化进行时段调度协调的工作效果展现;效果评估方面有节能减排的情况分析,经济性,开机方式,利用的清洁能源,风电,机组影响等多个方面。

2.1.8 接口的通信功能

协同优化调度系统和日前计划系统,OMS系统,EMS系统等各系统的接口通信。

2.2 系统设计方案

2.2.1 总体结构框架

特性各异电源的多目标协同优化调度系统的总体结构框架设计要求有:

(1)要求的标准化;系统的研究开发与设计准则和自己开发创新的原则相结合,遵守国内外和各个行业的通行法则,总结各国胜利成果的经验和先进技术,做好了智能电网的长远发展目标,保证电网的运用安全稳定;

(2)要求的一体化;系统设计调控的详细划分,实现调度运行控制,分析计算能力进行界面设计及系统的设计功能,电网的调度管理,电网的编制计划等一人体化的管理;

(3)要求的集成化;集成化设计是实现现代化管理及电网的调度信息,也这完成智能化调度做铺路;调度系统研究,依照数据集成的应用观点,建立起统一的数据应用服务平台,完成数据的共享性,整合性,一致性及应用增值,集成环境给电网调度的协同优化设计开发了强大的功能支撑。

2.2.2 集成和应用系统接口

(1)应用系统接口和其它系统接口的有机结合要从几个系统中读取数据;日前计划系统:读出计划约束讯息,第二天计划信息,负荷推测讯息;风功率预测系统:取得10分钟更新接下来的3个时段的风功率预测讯息;输出的数据传到OMS系统和AGC系统,OMS系统:传输风的功率推测讯息,抽水蓄能曲线,火电机组单机曲线,水电计划曲线等;AGC系统:发送机组计划指令新信息传到数据整合平台,在转发指令给AGC系统。

(2)和d5000智能电网接口及集成;d5000系统编制日内计划的规范功能,优化购电成本低廉,三公调度系统,发电消耗能源最少的目的,火,水电机组的发电机组制定要有针对性,个别地方的大比例风电机组,供热机组等机组功能和目标都很难实现。

3 结果论述

调度系统的实时研发,和AGC系统组成闭合控制,引进控制理论预测模板MPC,完成多时间尺度的多级协调调度形式,研制出实时调度模型及算法;增强了有功算法的可控制性;

研发设计热电联产机组,风力发电机组的调度应用机理作用及应用特点性质,实现优化调度模型;

建立特性各异电源的优化调度,火电机组,水电机组及风电机组进行举例分析,风力发电的使用要尽可能的保护环境,节约能源,经济调度遵循更好更低的火电成本为目的,在电网安全约束的运行中通过AGC系统完成优化调度的控制。

4 结语

由于风电模型预测困难,必须连接MPC系统来进行调度控制;电力系统的运用有很大的不稳定因素,电力系统的有功调度控制效果明显;社会的进步对电力的需要更是急不可待,这与发电造成环境污染和能源供应方面相互矛盾,我们要在现有的条件下学会节能环保,提高能源利用效率,节能减排改善能源的枯竭危机,我们寻找清洁的新能源是发展电力的大好光景,针对多种电源的环境污染大小,运行的条件限制,生产成本的预算等因素影响,合理的选择协调调度设计与多种发电机组的分配密不可分;多电源电力系统的多目标优化调度设计仍有巨大的发展空间,系统设计发电机组不稳定,在这方面的工作我们还就加大力度研发,对可再生清洁新能源在电力系统发电的稳定性进一步加强,能预测更长的时间,解决多电源优化调度的矛盾关系。

参考文献

[1]张明力,沈文宣,吴中华,等.消纳大规模风电的热电联产机组滚动调度策略[J].电力系统自动化,2014,35(26):20-26.

[2]郑原太,钱明光,姜术峰,等.消纳大规模风电的多时间尺度协调的有功调度系统设计[J].电力系统自动化,2015,35(02):2-7.

[3]沈文宣,郑原太,张明力等.风电受限态下的大电网有功实时控制模型与策略 [J].中国电机工程学报,2015,33(27):3-8.

作者简介

金元(1973-),男,朝鲜族,韩国庆安北道人。硕士学位。现为国家电网东北电力调控分中心高级工程师。研究方向为电网管理。

金明成(1975-),男,黑龙江省尚志市人。硕士学位。现为国家电网东北电力调控分中心高级工程师。研究方向为电网管理。

刘洋(1985-),山东省德州市人。硕士学位。现为国家电网东北电力调控分中心中级工程师。研究方向为系统安全分析。

吴珂鸣(1983-),辽宁省沈阳市人。硕士学位。现为国家电网东北电力调控分中心高级工程师。研究方向为调控运行。

刘少午(1979-),辽宁省凌海是人。硕士学位。现为国家电网|北电力调控分中心高级工程师。研究方向为调控运行。

杨巍巍(1981-),男,河南省南阳市人。硕士学位。现为国家电网东北电力调控分中心高级工程师。研究方向为调度计划。

多目标优化设计范文第2篇

关键词:遗传算法 平面叶栅 多目标 优化设计

目前,遗传算法[1]在许多领域都得到了广泛的应用,取得了很好的效果,充分说明了遗传算法的有效性。与一般算法相比,遗传算法更适合优化复杂的非线性问题。本文将遗传算法应用于平面叶栅优化设计。一方面,奇点分布设计平面叶栅原理简单,易于实现,但由于骨线是按照无厚翼型设计的,加厚以后流道变窄,流速加大,因此正反问题计算得到的环量相差较大,因此骨线需要调整;另一方面,充分利用遗传算法的全局搜索特性来搜索最优的骨线形状。将二者的特点结合起来用于设计轴流平面叶栅。这样既可以使得到的叶栅满足给定的环量要求,又可以提高其效率、减小气蚀系数,不失为一种新的尝试。

1 数学模型

奇点法[2]的基本出发点是用一系列分布在翼型骨线上的奇点来代替叶栅中的翼型对水流的作用,将叶栅绕流的计算转化为基本势流的叠加计算,利用绕流无分离的条件来绘制翼型的形状。其前提是假定来流为无旋有势流动、叶片无限薄。在设计过程中,所求的骨 线可先假设一个翼型的骨线形状,计算出骨线上各点的合成速度W,由于骨线 是假定的,W并不能和骨线相切。根据骨线和速度W相切的条件修改第一次假设的骨 线形状,得到第二次近似骨线。重复上述计算,直至逼近为止。

多目标优化设计范文第3篇

[关键词] 多目标优化; 目标规划; 向量数学规划; 分层多目标优化

中图分类:O226 文献标识:A

0 引言

生活中,许多问题都是由相互冲突和影响的多个目标组成。人们会经常遇到使多个目标在给定区域同时尽可能最佳的优化问题,也就是多目标优化问题。优化问题存在的目标超过一个并需要同时处理,就成为多目标优化问题。

多目标优化问题在工程应用等现实生活中非常普遍并且处于非常重要的地位,这些实际问题通常非常复杂、困难,是主要研究领域之一。自20世纪60年代早期以来,多目标优化问题吸收了越来越多不同背景研究人员的注意力,因此,解决多目标优化问题具有非常重要的科研价值和实际意义

1 普通多目标优化问题

普通多目标优化问题也称为向量数学规划。对设计者或决策者而言,普通多目标优化问题几个设计目标可能存在重要性的差别,但是不存在优先权的差别。

比如,欲把直径为d的圆木加工成矩形截面的梁,如何设计其截面尺寸,使其强度大且重量轻?

分析研究:设截面的宽和高分别为 。由于其强度取决于截面的惯性矩 ,其重量取决于截面面积 ,因此该问题可看作是两个设计目标的优化问题:

该数学模型就可归结为一个普通多目标优化问题:

在这个问题中,梁的强度大可能与重量轻同等重要,也可能比重量轻更重要。但是在把它作为普通多目标优化问题求解的时候,并不因强度大比重量轻更重要,而先考虑强度指标后考虑重量指标。 的极小化将同时进行。

2 目标规划问题

目标规划问题与普通多目标优化问题的不同之处在于:它虽然有多个设计目标,但是每个设计目标并不是使目标函数极小化,而是使每个目标函数同时逼近各自的预定目标值。

比如,某工厂生产n种产品,第i种产品的生产能力为ai吨/小时,其利润为ci元/吨,预测第i种产品下月的最大销售量为bi吨。该工厂下月的工时能力为t小时。在避免开工不足的条件下,如何安排下月计划才能使:1)工厂所获利润最大;2)员工加班时间尽量少;3)尽可能多地满足市场对第1种产品的需求?

分析研究:设下月计划用xi小时生产第i种产品,并用 三个函数分别表示工厂所获利润、员工的加班时间以及第1种产品的产量,该问题就可看作是三个设计目标的优化问题:

假设此例的问题对工厂利润、加班时间以及第一种产品的产量分别有预定的目标值 ,该问题就归结为下列目标规划问题:

目标规划问题与普通多目标优化问题也有相同之处,它们都有多个设计目标,各个设计目标可能存在重要性的差别,但是不存在优先的差别。

3 分层多目标优化问题

分层多目标优化问题与上述两种多目标优化问题的不同之处在于:它的几个设计目标不仅可能存在重要性的差别,而且存在优先权的差别。也就是说,设计者优先考虑某些设计目标,在这些设计目标已经达到的前提下,才考虑其它设计目标。这类问题的设计目标被分成不同的优先层次,在对它求解的时候,先对优先层次较高的设计目标求解,后对优先层次较低的设计目标求解。

假设m个设计目标被分成L个优先层次,各层次的目标函数个数依次为 。如果以各层次的目标函数作为该层次的向量目标函数

的分量,即

第一优先层次:

第二优先层次:

……

第L优先层次:

那么分层多目标优化问题的数学模型可表示为

式(3)可被缩写为更简洁的形式:

在第二个问题中,假设计划制定者在首先考虑工厂如何获得最大利润之后,才去考虑减少加班时间和增加第一种产品产量,该问题就是一个具有两个优先层次的分层多目标优化问题:

4 多目标优化问题的最优解

求解优化问题的目的是为了获得最优解,然而多目标优化问题有多个不同的设计目标,设计目标之间可能发生冲突,这时一个可行解对某一个设计目标是最优的,对另外的设计目标却不是最优的,这就造成多目标优化问题的最优解概念的复杂化。

比如,对多目标优化问题

实际上,多个目标函数具有相同最优点的情形是极为少见的。对大多数多目标优化问题来说,绝对最优解并不存在,或者说多目标优化问题的绝对最优解集大多数是空集。由于各分量目标函数的最优解集的交集通常是空集,所以要找到多目标优化问题的绝对最优解一般是不可能的。因此对于多目标优化问题,如果想在它的可行解中进行比较,找到其中的最优解,就不能把最优解局限在绝对最优解集当中。换言之,如果想在求解多目标优化问题时获得有意义的结果,就需要对最优解的概念作出不同于绝对最优解的定义。

[参考文献]

[1] 严升明. 机械优化设计[M]. 徐州:中国矿业大学出版社, 2003

[2] 孙靖民.机械优化设计[M]. 北京: 机械工业出版社, 1999

[3] 钟海燕. 线性代数与最优化方法[M]. 广州: 广东高等教育出版社, 2001

多目标优化设计范文第4篇

关键词: 供热管网 优化 模拟退火法

1.概述 要设计和建造一个可靠的供热系统,可以采用双重备用、多热源共网运行、环形管网等措施,但是,系统可靠性的提高总要导致材料消耗的增加,所以,对供热管网进行可靠性和经济性的双目标优化就显得很有必要。

供热管网的优化问题同时具有连续和离散变量的混合规划问题,而且其目标函数、约束函数都是非线形程度很高的数值函数。同时,目标函数的选择要综合考虑供热站的建造成本和用户的使用成本(包括维修、维护等费用),或是综合考虑几个性能指标,目标函数会包含若干个相互矛盾的因素,导致管网的优化设计成为含有多个局部极小点的多峰函数的非线形规划问题。

通常管网优化设计中所采用的算法是依据数学极值论的原理[1],并没有充分利用优化过程中模型性态变化的规律,及其物理意义的知识,导致算法的收敛速度慢,经常陷入局部最优解中。随着热网系统越来越大,设计计算模型愈加趋于复杂,计算量增大,优化设计过程中绝大部分的时间用于分析计算目标函数以及性能约束函数。因此,改进管网的优化算法,使其能充分利用优化过程中模型性态变化的规律极其物理意义的知识,这对于提高收敛速度、减少计算时间、实现全局最优非常重要。

2.改进的模拟退火算法(IAP) 模拟退火(Simulated Annealing,简称SA)算法是一种通用启发式优化方法,是基于Monte-Carlo迭代求精法的一种随机搜索算法。在搜索过程中,既能向目标函数优化的方向迭代,又以一定的概率接受目标函数劣化的情况,从而避免陷入局部最优点,保证获得全局最优解的可靠性。在求解组合优化问题时,模拟退火法将每种组合状态xi看成某一物质体系的微观状态,而E(xi)看成该物质体系在状态xi下的内能,并用控制参数T类比温度。

整个模拟退火算法主要包括两个部分:Metropolis抽样算法和缓慢的退火过程。

2.1 Metropolis 抽样算法

对于每个温度T,用Metropolis 抽样法模拟该体系的热平衡态,即选择一个初始起点x(0),给定随机步长Dx,在每一步中,计算出目标函数中的能量变化:

(1)

如果为负,则Dx被接受;如果为正值,则Dx以概率

(2)

被接受。因此,在某一给定温度T下,当前解x(k)随k增加的取值序列:x(0), x(1), x(2), …, x(i), …, x(k)所对应的准则值序列E(x(k))不是单调减的,即

E(x(k+1))> E(x(k)),E(x(k+1))= E(x(k)),E(x(k+1))< E(x(k))

三种情况都有可能发生,只不过前两种情况出现的概率较小而已。

在整个模拟退火过程中,随着温度T的不断减少,最优解随时间的更新序列(即搜索轨迹)是由多个这样的序列串接而成,这样,使得算法在陷于局部极小值时有机会逃出,从而达到真正的全局最优解。但也正是由于这一点,使得当前解x(k)有可能会比序列中的某些中间解要差。

要防止这种情况发生,只要令:

xx(0)=x(0)

(3)

这样,可在不改变控制过程和轨迹序列的条件下,重新构造其准则值为单调减的最优解更新序列xx(k),最后得到的最优解必定是搜索过程中所经历的所有状态下的最优解。并且,在某一个温度T下,若从某一个i起,有

xx(i) = xx(i+1)= … = xx(i+q) (4)

成立,则表明连续搜索过的q个解都不比xx(i)好。因此,可以设定一个阈值q0,当q>q0时,令Metropolis抽样算法在该T下停止,于是得到该温度T时的最优解xx(T)。

2.2 退火过程:

选择足够高的初始温度T0,温度降低系数χT可以通过试凑法来选择:

0<χT<1 (5)

如果χT 太小,系统将会陷入到局部最小值;而χT太大,就会增加不必要的计算时间。

当温度逐渐降低时,对于一组给定的M个步长,可以进行下一次迭代过程:

; (6)

式中:——增长因子;一般选取>1,典型情况,=3,。

在退火过程中,设在某个Ti时最后得到的最优解xx(k)为xx(Ti),并且有:

xx(Ti) = xx(Ti+1)= … = xx(Ti+p) (7)

成立,则表明温度连续下降p次后,对解的最优性没有改善,这样,可通过设定一个阈值p0,当p>p0时,退火过程停止。这时得到的当前解即为系统的全局最优解。

3.供热管网优化设计的数学模型 一般来说,供热管网优化设计的数学模型是一个具有不等式约束的非线性规划问题,其设计变量、目标函数和约束条件的选择是多种多样的,不存在统一的模式。用于解决约束非线性优化问题的算法有多种,但它们的基本功能与作用是一致的,都是为了使得目标函数达到最小,而有步骤地控制与调整各个设计变量,使设计方案在该目标下最优。

因此,优化设计的一般模型可归纳为:在满足约束条件gj(X)≤0的情况下,求解各个优化设计变量xi(i=1, 2, ..., n)的值,使得目标函数F(X)的值最大(小),其中,X=[x1, x2, ..., xn]T。其数学表示式为:

(8)

式中,目标函数F(X)由一项或多项指标组成;gj(X)——不等式约束条件,由技术条件及其他要求决定;X——独立设计变量集合,在管网设计中,一般包括离散变量、整型变量和连续实数变量的混合变量;m——约束条件的个数;n——独立设计变量的个数。

供热管网优化设计的数学模型包括三方面:目标函数、优化设计变量和约束条件。

3.1 目标函数的选择

供热管网优化设计的目的是使起经济技术指标最佳,可靠性最高。这样,供热管网优化设计的目标函数为双目标函数,我们选F(X)作为双目标函数的评价函数:

F(X)=F1(X)/F2(X) (9)

式中, F1(X)——可靠性指标;F1(X)——经济技术指标。

管网的经济技术指标以单位管网年费用NF表示,

(10)

式中:i——利率,%;K——管道保温层、保护层和管道造价;C ——管道造价[5];M——管道年维修和动力费用;Ry——管网允许可靠度;P——管道总压降;PD——管道最大允许压降;U——考虑散热因素的保温运行费用。

可靠性指标采用供热系统的可靠性评价指标RY来表示[2]:

(11)

3.2 优化设计变量的选取

供热系统的可靠度反映了系统所有可能发生的事故概率以及供热系统在事故下将被切断或减少的用热量,主要与元部件的故障率、所采取的热网系统结构、热负荷分布及分段阀布置等因素有关,管网分段可以减少管段事故工况下被切断的热负荷数值,提高热网可靠性。

对于故障元部件的修复时间,供热管网中热力管道的修复时间最长,其最长故障管段修复时间与分段阀间距l和管径d有关:

(12)

由于优化设计变量愈多,设计的自由度愈大,可供调整的方法也愈多,也就愈容易达到较好的优化目标;但是同时也会带来优化设计目标函数维数的增多。通常设计变量的选择原则是:一般选取对管网性能、目标函数和约束函数影响大,而且比较容易确定其变化范围,并且能相应地唯一确定其它有关参量的独立设计变量作为优化设计变量[3]。

对于区域供热管网,优化设计变量选取为:

(11)

3.3 约束条件的选取

本文区域供热管网的优化设计模型中,除计算经济性指标所必需的一般约束条件[4]如:管径、保温层厚度等参数外,还增加了可靠性指标的约束:

可靠性指标: (12)

3.4 双目标函数的优化

对于管网的优化设计,一般是在性能指标最优的情况下,力求管网成本最低。从这个角度出发,管网优化设计就成为复杂的多目标优化问题,常规的优化算法难以解决。目前求解的方法主要是将实际的多目标优化问题转化为单目标优化问题,常用方法有:降维法、综合评价函数法和最小二乘法等几种,其中降维法应用最为普遍。降维法是从多个目标中选择一个最主要的目标来寻优,其它目标只要满足一定的要求即可,也就是将其它目标函数转化为约束条件来求解。

对于双目标函数,可以采用赏罚函数法将其转化为单目标问题。先给出相应的增广目标函数:

(13)

式中, R——罚因子;——与约束相对应的罚函数。

罚函数的表示式为:

(14)

从上式可以看出:当可靠性指标达不到规定时给以惩罚,使得变大;在的可行域内,罚函数取负值,成为“赏”函数。若可靠性指标违反约束愈严重,罚的愈厉害,则增广目标函数愈大;性能指标愈好,赏的愈多,则增广目标函数愈小。

本文供热管网的优化目标函数选择为双目标函数,将式(9)的双目标函数转化为单目标函数,对评价函数F(X)进行求解,并且将其解作为双目标函数的非劣解。而管网可靠度指标不再作为目标函数,而是通过构造适当的赏罚函数将可靠性指标作为约束条件处理,这样就只需要按“有效成本最低”这个单目标函数进行优化计算,但却取得“有效成本低而可靠度高”的双目标优化结果。这是因为,当可靠性超过原定指标愈多,“赏”的也愈多,优化计算中就会自动地将这个方向作为有利方向,沿此方向继续前进,使得可靠度比原定指标更大些,起到了按预定要求合理地移动约束边界的作用,使约束边界变成“浮动”的。当某个约束边界在优化过程中自动地朝着最优方向“浮动”时,无疑,又增加了一个新的优化目标,因而取得了双目标优化的效果。

4 结束语 供热管网的局部优化已经取得了很多成果,但是,牵涉到可靠性的一个城市供热管网的全局优化问题还未有太多的研究,本文对一个实际项目(如图2)按照所归纳的方法进行了寻优,现有的供热站A如果和供热站B两者的管网联合供暖,可靠度可以提高10%,而运行成本仅增加不到1%,如果再增加供热站C,在用户不增加的情况下,可靠度只能提高2%,而运行成本增加30%左右。

参考文献 [1] K.Kondon, Algebraic Method for Manipulation of Dimensional Relationships in Geometric Models, CAD, Vol.24, No.3, 1992, 3

[2] 战泰文,供热系统的可靠性研究,哈尔滨建筑大学1994年硕士论文

[3] 李世武,苏莫明,热水管网布置的优化设计方法,《煤气与热力》,2003,5,P.271-275

多目标优化设计范文第5篇

关键词:污水管网;优化设计

中图分类号:S611文献标识码: A

引言

随着城市进程的加快,城市人口不断增加,城市的污水排放量也不断上升,这给污水管网的建设带来了巨大的挑战。建立一个经济,有效的污水管网处理系统是当前城市发展的重要任务之一。一般来说,城市污水管网工程投资巨大,设计时如何在满足规定的各种约束条件下,进行优化设计,尽量降低污水管网工程投资,是摆在工程设计人员面前的一个难题。

一、污水管网优化设计的意义

对于传统的污水管网优化设计而言,首先,在设计人员掌握了系统、全面、完整的设计基础资料的前提下,遵照系统布置和管道定线的原则,凭借设计人员长期积累的设计经验,参照工程实际确定一种比较合理的管网系统布置图;其次,根据工程实际选择合适的方法,计算污水管道各管段的设计流量和水对管壁的压力,并求出各管段的坡度和管径;最后,组织多位专家及设计人员,根据他们的工作经验,对设计的管径和坡度进行检验和修正,通过不断调整设计方案使之满足设计要求。传统的污水管网优化设计存在很多问题,其一,污水管网优化方案的质量直接受限于设计人员的工作经验和个人能力;其二,传统设计方法的工作效率低,耗费时间长,不利于优化设计方案;其三,传统设计方法可能导致不必要的资金浪费,还可能对污水管道的后期管理与维护带来困难。

随着科学技术的大力发展和计算机技术的不断进步,计算机对各行各业的发展起到了巨大的推动作用,并且提高了工作效率,降低了投入成本。由于计算机技术、最优化理论以及系统分析方法的逐步成熟与完善,为污水管网优化设计研究提供了必要的理论基础,并为污水管网优化设计的实现提供了保证,逐渐使污水管网的优化设计工作向着智能化方向发展。在污水管网的优化设计过程中,通过对各种理论、技术、工具的整合与利用,在一定的条件下使污水管网趋于最优化,最大限度的降低工程造价。污水管网优化设计研究具有明显的经济效益、社会效益、实用效益和现实意义。

二、污水管网优化设计的内容

1、平面布局的优化设计

污水管网平面布置的优化设计原则是使管线短,管道工程量最小,水流通畅且节省能量。正确的定线是合理经济地设计污水管道系统的先决条件,对不同定线方案的优化选择更具实用价值。对于某种平面布置方案是否最优,取决于该平面布置方案管径-坡度(埋深)优化设计计算结果,因此,已定管线下的优化设计计算是平面优化布置的基础。污水管网的平面优化布置与已定管线下的优化设计计算是密不可分的。

2、管径优化设计

管网管径常用的优化方法有线性规划方法、分段线性规划法、广义简约梯度法、二次规划法和分支定界法。但是用这些方法进行优化设计的过程比较复杂,计算值发散,且需要构造恰当的优化模型。除了将管径优化转化为分段管长优化问题得到的优化结果不需再处理外,其它经典优化方法得到的优化管径还需要使用分支定界法圆整到标准管径,而且这仅适用于小型管网。实际中所采用的圆整方法多是根据就近圆整规则进行的,这样得到的最终管径值不再是理论上的最优值。启发式优化方法是以经验构造的算法为依托,根据污水管道经济流速的范围,地形和污水管道定线确定各管段水流动向,从最起端节点开始进行节点流量向排水管段的流量累加,采用就近圆整规则进行管径圆整,在合适的计算时间和计算空间下能寻找最好的解。

3、管道材料优化设计

适用于排除雨水和污水的混凝土管有混凝土管,轻型钢筋混凝土管和重型钢筋混凝土管三种。混凝土管材抗压性强、使用年限久、技术成熟,但是重量重,运输费用较高、承插口加工精度较低,管道易渗漏,管内壁容易滋生水生物,清理困难,影响管道过水能力。随着新材料技术的发展,越来越多的城市排水系统应用了HDPE管等新型材料。常用的高密度聚乙烯(HDPE)塑料管的外壁是环状波纹结构,内壁为平滑的新型塑料管材。这种新型管材重量轻、连接可靠、抗磨损、耐腐蚀、韧性高,但是承载能力差,不宜在高强度的荷载路面下铺设。管材的选择应该注意根据工程的实际情况,综合考虑各种管材的力学性质和维护方便程度,全面对比选择。

4、管道衔接方式优化设计

管道接口是管道系统给排水的薄弱环节,管道的衔接质量检查是污水管网优化的一个重要内容。检查井内管段衔接要在满足管段在检查井内衔接的约束条件的前提下,根据相衔接两管段的管径与管段中的污水深度情况减小下游管段埋深。当下游管段的管径比上游管段的管径大时使用管顶平接;下游管段的污水深度大于或等于上游管段中的污水深度时应使用水面平接;遇到陡坡情况下产生的下游管段管径反而比上游管段的管径小时使用管底平接。

5、污水管网优化的一般程序

用数值方法解决给水排水系统优化问题,一般需经过下列程序,其基本内容是:

(1)构成问题

大多数给排水工程的实际问题,包含着很多复杂的因素,往往是一个多变量、多目标、多层次的复杂系统。如何把一个实际的给排水系统,科学地简化为一个能反映其关键要素及其基本特征,又便于进行定量表达和模拟优化的替代系统,这是优化过程首要和关键的一步,它将在很大程度上影响优化结果的合理性。构成问题的过程,也可称为“系统的概念化”,简称“系统化”。

(2)确定目标

目标的确定是给排水工程系统化的重要内容,也是系统优化的评价依据。主要是探明该系统所涉及的各种目标和综合目标;识别各目标的重要性,并表达其中值得追求目标的属性指标;建立目标随基本变量(或所考虑的关键因素)变化的函数关系。最常遇到的给排水优化问题,是在给定的技术与社会条件下,寻求系统经济性最佳时的设计、运行方案、总费用现值等。

(3)数学模型的建立

数学建模是将现实问题抽象为数学问题的过程,数学模型通过数学关系反映设计问题中各主要因素间的内在联系。数学模型有三要素,分别是设计变量、约束条件和目标函数。首先,设计变量。通常情况下用一组基本参量的数值来表示一个设计方案。在设计过程中,有些参数可以根据设计要求等预先给定,还有一部分参数需要在设计过程中进行选择,因此这部分参数都可以当作变量来处理,称为设计变量。设计变量分为离散型设计变量和连续型设计变量,但是在现实条件下,利用离散型设计变量进行优化设计难度很大,因此,大多数工程实际问题都是采用连续型设计变量进行处理;其次,约束条件。在优化设计过程中,我们必须根据实际设计要求,限制设计变量的取值。这种限制称为约束条件,约束条件一般用等式约束函数和不等式约束函数来表示;最后,目标函数。选定完设计变量后,设计所要达到的指标可以用设计变量的函数来表示,该设计函数称为目标函数,即G(x)=G(x1,x2,…,xn)。在污水管网优化设计的过程中,被优化的目标函数有两种表述方式:目标函数的极大化,即G(x)MAX;目标函数的极小化,即G(x)MIN。

(4)优化模型的求解与检验

在工程实际中求解污水管网的最优解可能有以下几种情况:首先,只有一个定量指标作为评价目标,该定量指标通常是工程造价,除此而外有很多可变的方案,这时需要通过最优设计方法求得最优解;其次,只有一个定量指标作为评价目标,并且备选方案不多,这时可以对所有方案进行模拟计算,逐一进行比较,择优选择方案;最后,有多个评价目标且评价目标之间有冲突,这时要用多目标最优化方法,通过在各目标函数之间进行协调与权衡,最终选择最优方案。

结束语

综上所述,在满足规定的各种约束条件下,通过优化设计,降低工程的造价是十分有必要的。实践证明。本文所述的优化设计方法和费用函数具有一定的适用性,改善了传统优化设计方法存在的弊端,在实际工程设计中取得了较好的指导作用,具有较高的经济效益。

参考文献

相关期刊更多

中华老年多器官疾病

统计源期刊 审核时间1-3个月

中国人民解放军总医院

动力学与控制学报

统计源期刊 审核时间1-3个月

中华人民共和国教育部

华南理工大学学报·自然科学版

部级期刊 审核时间1个月内

教育部