首页 > 文章中心 > 粉末冶金

粉末冶金

粉末冶金

粉末冶金范文第1篇

关键词:粉末冶金 温压技术 流动温压技术 模壁技术 高速压制技术 动磁压制技术 放电等离子烧结技术 爆炸压制技术

1 温压技术

虽然温压技术只是一项新技术,在近几年才取得了一些发展,但是由于它生产出来的粉末冶金零件具有高密度、高强度的特点,现阶段已经得到了大量的应用。这项技术和传统的粉末冶金工艺不同,它可以采用特制的粉末加温、粉末输送和模具加热系统,将加有特殊剂的预合金粉末和模具等加热至130~150℃,并将温度波动控制在±2.5℃以内,之后的压制和烧结工序和传统工艺是一样的。与传统工艺相比,区别点就集中在温压粉末制备和温压系统两个方面。采用这项技术不管是从压坯密度方面来说,还是从密度方面来说,都比采用传统工艺要好很多。在同样的压制压力下,使用温压材料比采用传统工艺不管是屈服强度、极限拉伸强度,还是冲击韧性都要高。此外,由于温压零件的生坯强度比传统方法下的生坯强度要高很多,可达20~30MPa,如此一来,既降低了搬运过程中生坯的破损率,也保证了生坯的表面光洁度。另外,采用该技术生产出来的零件不仅性能均一,精度高,而且材料的利用率很高。温压工艺的成本不高,而且工艺并不复杂。与传统的工艺相比,温压工艺下的粉末冶金的利用率高,耗能低,经济效益高,是节能、节材的强有力手段。

2 流动温压技术

流动温压粉末冶金技术(Warm Flow Compaction,简称WFC)是一种新型粉末冶金零部件成形技术,目前国外还处于研究的初试阶段,它的核心价值就是能够提高混合粉末的流动性、填充能力和成形性。

WFC技术有效利用了金属粉末注射成形工艺的优点并在粉末压制、温压成形工艺的基础上被发现。这项技术可以将混合粉末的流动性提高,这样就使混合粉末可以在80~130℃温度下,只需要在传统的压机上经过精密成形就可以形成各种各样外形的零件,省掉了二次加工的步骤。WFC技术在成形复杂几何形状方面具有很大的优势,是传统工艺无法比的,而且成本不高,具有非常广阔的应用前景。

综上所述,我们可以归纳出WFC技术具有以下四个优势:一是能够制造出各种各样外形的零件;二是有着很好的材料的适应性;三是工艺简单,成本低;四是压坯密度高、密度均匀。

3 模壁技术

模壁技术是在解决传统工艺面临的一系列难题的基础上应运而生。传统工艺是采用粉末来减少粉末颗粒之间和粉末颗粒与模壁之间的摩擦,然而现实往往是由于加进去的剂因密度低,使得粉末冶金零件的密度也得不到有效的保证。此外,剂的烧结不仅会给环境造成很大的不利影响,还可能会影响到烧结炉的寿命和产品的性能。现阶段,有两个渠道可以进行模壁:一是由于下模冲复位时与阴模及芯杆之间的配合间隙会出现毛细作用,利用这个作用可以把液相剂带到阴模及芯杆表面。二是选择带着静电的固态剂粉末利用喷枪喷射到压模的型腔表面上,就是安装一个剂靴在装粉靴的前部。在开始成形时,压坯会被剂靴推开,此时带有静电的剂会被压缩空气从靴内喷射到模腔内,但是此时得到的极性和阴模的是不一致的,在电场牵引下粉末会撞击在模壁上,同时粘连在上面,之后装靴粉装粉,只需进行常规压制即可。采用该项技术可使粉末材料的生坯密度达到7.4g/cm3,大大提高了粉末材料的生坯密度,并且采用该方法比采用传统的方法还能够大大提高铁粉的生坯强度。有研究结果结果表明,利用温压、模壁与高压制压力,使铁基粉末压坯全致密也是有可能的。

4 高速压制技术

瑞典的Hoaganas公司曾经推出过一项名叫高速压制技术(Hjgh Velocity Compaction)的新技术,简称HVC。虽然这项新技术生产零件的过程和过去的压制过程工序是一样的,但是这项新技术的压制速度比过去的压制速度提高了500-1000倍,同时也大大增加了液压驱动的锤头重量,提高了压机锤头速度,在这种情况下,粉末利用高能量冲击只需0.02s就可以进行压制,在压制的过程中会出现明显的冲击波。要想达到更高的密度,通过附加间隔0.3s的多重冲击就能做到。HVC技术具有很多优势,比如高密度、低成本、可成形大零件、高性能和高生产率等。现阶段该技术已经得到了广泛的应用,很多产品都采用了该项技术,比如制备阀门、气门导筒、轮毂、法兰、简单齿轮、齿轮、主轴承盖等。有了这项技术,未来将会出现更多更复杂的多级部件。

5 动磁压制技术

动力磁性压制技术(dynamic magnetic cornpaction)是一种新型的压制技术,简称DMC,它能够使高性能粉末最终成形,这项技术固结粉末的方式主要是通过利用脉冲调制电磁场施加的压力。虽然这项技术和传统的压制技术一样都是两维压制工艺,但是不同的是传统的压制技术是轴向压制,而这项技术是径向压制。利用该项技术进行压制只需1ms,整个过程非常的迅速,只需把粉末放入一个具有磁场的导电的容器(护套)内,护套就会产生感应电流。利用磁场和感应电流之间的相互作用,就可以完成粉末的压制工作。DMC具有成本低廉、不受温度和气氛的影响、适合所有材料、工作条件灵活、环保等优点。DMC技术适于制造柱形对称的零件,薄壁管,高纵横比部件和内部形状复杂的部件。现可以生产直径×长度:12.7mm×76.2mm到127.0mm×25.4mm的部件。

6 放电等离子烧结技术

早在1930年美国科学家就提出了这项放电等离子烧结技术(Spark Plasma Sintering),简称SPS,然而该技术直到近几年才得到世人的关注。SPS技术独到之处就在于无需预先成形,也不需要任何添加剂和粘结剂,是集粉末成形和烧结于一体的新技术。这项技术主要是通过先把粉末颗粒周围的各种物质清除干净,如此一来粉末表面的扩散能力会得到提高,然后再利用强电流短时加热粉末就可以达到致密的目的,注意加热时应在较低机械压力情况下。有研究结果显示,采用该项技术由于场活化等作用的影响,不仅有效降低了粉体的烧结温度,也大大缩短了烧结时间,再加上粉体自身可以发热的影响,不仅热效率很高,加热也很均匀,所以采用该技术只需一次成形就可以得到质量上乘的、符合要求的零件。现阶段,该技术大范围应用的主要是在陶瓷、金属间化合物、纳米材料、金属陶瓷、功能材料及复合材料等。另外,该技术在金刚石、制备和成形非晶合金等领域也得到了不错的发展。

7 爆炸压制技术

爆炸压制(Explosive Compaction)是一种利用化学能的高能成形方法,也被叫做冲击波压制。一般情况下,它都是通过在一定结构的模具内对金属粉末材料施加爆炸压力,在爆炸过程中产生的化学能可以转化为四周介质中的高压冲击波,然后利用脉冲波就可以实现粉末致密。整个过程只需10-100us,其中粉末成形时间只有大约1ms。这种压制方式最大的优势是可以解决传统的压制方式一直无法解决的难题,即可以使松散材料达到理论密度,比如金属陶瓷材料、低延性金属等采用传统的压制方法无法使其致密,一直是一个未解的难题,随着爆炸压制技术的出现,我们发现采用这项技术就可以把其压制成复合材料,并制造成零件。

我国的粉末冶金技术带来的前景是非常广阔的,作为一种新工艺、新技术,与国外先进水平相比,它还有很多地方需要改进、需要提高。

参考文献:

[1]张建国,冯湘.粉末冶金成形新技术综述[J].济源职业技术学院学报,2006-03-30.

[2]郭峰.火电厂等离子点火装置中高性能阴极材料的制备与实验研究[D].华北电力大学,2006-03-01.

[3]刘双宇.高强度铁基粉末冶金材料复合制备方法及组织性能研究[D].吉林大学,2007-10-25.

粉末冶金范文第2篇

关键词:粉末冶金 组合模具 压制成形 改进

0 引言

在粉末冶金工艺中,对于模具的应用范围非常广泛。而组合模具是综合了多种结构特征而形成的综合性模具。它克服了普通模具和单一压制方式的缺陷,解决了以往在粉末冶金工业中存在的难题,是粉末冶金工艺的一项突破。但是,随着技术水平的不断发展,组合模具存在的问题也随着暴露出来,成为我们当下需要解决的难题。

1 粉末冶金概述

1.1 粉末冶金工艺 粉末冶金,是通过制取金属粉末或金属粉末与非金属粉末的混合物作为生产原材料,通过过压制成形、烧结等工艺过程,制造出各种粉末冶金制品的工艺技术。现在,这种工艺已经成为我们在新材料研制领域内的重要工艺技术。

1.2 粉末冶金组合模具 在粉末冶金过程中,在压制成形、烧结以及后处理等制作工序中都会用到模具。在复杂零件的压制成形工序中,常会将模具设计成多种形状的组合模具,这样便可以在压制过程中综合运用多种压制方式,以保障压坯的质量。

2 粉末冶金压制成形过程中存在的问题

在粉末冶金整个制造工艺中,模具的使用在很多工序中都常常会看到。例如,在粉末冶金的压制成形阶段、烧结阶段、复压阶段、精整阶段都会用到粉末冶金模具。而其中最常用且应用最广泛的还是压制成形阶段。在粉末冶金的压制成形阶段,组合模具是形式最多且应用最广泛的模具。目前,组合模具还存在着一些不足之处,其对于粉末冶金工业具有较大的危害。

2.1 压坯密度分布不均匀 在粉末冶金压制成形过程中,常会出现压坯密度分布不均匀的现象。在压制过程中,在垂直方向上,上层粉末的密度比下层粉末密度大;在水平面上,接近上模冲的断面密度分布是两边大,中间小;远离上模冲的段面密度分别是中间大,两边小。造成这一问题主要是由于组合模具的内壁摩擦力较大、组合模具设计的高径比较大、以及压制方式不当等原因造成的。

2.2 粉末粘结组合模具盖板内壁 在粉末冶金压制成形过程中,会出现粉末粘结组合模具盖板内壁的现象。这主要是由于模具内压制密度较低和盖板内壁摩擦力较大等原因造成的。粉末粘结于盖板内壁,一方面,会造成原料的浪费,并对组合模具形成污染;另一方面,会对粉末冶金制品的质量造成严重影响。另外,由于组合模具设计上存在的一些不足之处,还会使粉末冶金制品出现制品的形状偏斜、产品对角开裂等问题,这些问题严重影响了粉末冶金工业的生产效率和产品质量,同时也造成了严重的经济损失。

3 粉末冶金中组合模具的改进办法

3.1 增强组合模具内壁的光洁度 在组合模具制造过程中,提高与粉末存在直接接触的压板内壁、盖板内壁等的光洁度,降低其与粉末之间的摩擦力,将在一定程度上有效的避免模具内壁对粉末压制造成不良影响。其具体改进办法如下:①在模具内壁打磨过程中要提高内壁的光洁度;②对于某些与粉末接触处,可酌情采取局部打磨的方式增加其光洁程度,以提高模具的性能;③在使用过程中,为了提高模具内壁的光洁度,还可以采用向模具内壁涂抹油的方法达到所需的效果。

3.2 在组合模具的设计上加设脱模弹簧 在组合模具的侧板与盖板的连接面上,以及模具侧板和压机的侧缸之间增加一个脱模弹簧。这样的设计改进看似简单,但会解决粉末冶金压制成形过程中存在的很多问题。由于脱模弹簧的存在,在压制和脱模时便会存在一定的缓冲力,这样压制成形的制品外表形状就会比较规则,而且也会有效避免制品对角开裂的问题发生。另外,这一设计上的改进对于减少压制成形过程中的加粉量、加工量也具有明显的效果。

3.3 在外模冲上安装保护套 在粉末冶金压制成形过程中,组合模具的外模冲由于受到的压力复杂,再加之对于热处理硬度难以把握,因此,外模冲易于受损、开裂,使用寿命较短,同时也增加了粉末冶金的压制成本。经过设计实验后发现,在外模冲上安装一个保护套将有效改善外模冲的使用环境,克服其受到直接磨损等威胁,这样就可有效的延长外模冲的使用寿命,降低压制成本。另外,由于保护套易于安装、替换,且生产成本低,因此,增加保护套是解决外模冲受损最为合适的办法。

4 结语

在粉末冶金工艺中,组合模具的应用非常广泛,对于粉末冶金制品的质量也起到一定的决定作用,于是,对于组合模具的设计、制造具有较高的要求。目前,对于组合模具的设计、制造仍然具有很大的发展空间,有时对于组合模具一点小小的改进,就可能为粉末冶金工业带来巨大的收获。因此,我们仍需不断对组合模具乃至整个粉末冶金工艺进行发展、改进,逐渐缩小我国粉末冶金工业与发达国家的差距。

参考文献:

[1]孙国勋.粉末冶金多台面零件压制组合模具探讨[J].粉末冶金工业,1998(2).

[2]耿锁俊.粉末冶金中组合模具的改进[J].内蒙古石油化工,2006(2).

粉末冶金范文第3篇

关键词:粉末冶金 配料系统 自动化

中图分类号:TF37 文献标识码:A 文章编号:1672-3791(2014)02(c)-0077-01

长期以来我国粉末冶金企业在配料方面存在工艺水平落后、生产效率低、自动化程度不高等问题。随着我国经济社会的发展,用工成本和原材料价格也在不断上涨,依靠传统的人工称量配料或一般的配料设备已不能适应当前的发展。本文提出的快速高精度全自动配料系统,就是有针对性的为粉末冶金配料开发设计的。

1 粉末冶金行业在配料方面存在的问题

1.1 传统配料方式危害工人健康

传统配料方式为工人领到配料单后,按配比将各种原料分别在电子台秤上称量后投入混料机。所用原料多为200目以上的铁粉、铜粉、铅粉、石墨、树脂、硬脂酸锌等。由于颗粒微小极易产生扬尘,加上工人佩戴的口罩或防毒面罩过滤效果有限,工人长期在此环境下工作对皮肤和肺部危害极大。

1.2 配料的用工成本不断增加

据统计近几年粉末冶金行业薪酬以年均10%的速度增长,然而年轻一代的新增就业人群宁愿选择工资低些环境好些的岗位,也不愿意选择像粉末冶金配料这样“脏、累、差”的岗位。再加上老员工的流失,企业不得不开出更高的薪酬留人,即便这样配料工的用工缺口仍在扩大。

1.3 人工配料方式效率低下

由于传统配料过程都是由人工完成,会产生工作繁重、出错率高、无数据纪录、无法保证生产工艺,且无法实现技术档案的信息化管理,不能完成数据的调用与核对。粗放的配料模式已不能满足行业的发展要求。

1.4 一般的配料设备应用性差

针对以上问题,部分粉末冶金企业采购了一些自动化配料设备。如若干原料仓下接螺旋输送机,根据配比将原料输送至一个或几个计量仓,计量完毕后下料至混料机。这种简单的配料设备虽然部分替代了人工,但是这种系统配料精度低,整体稳定性差,不能记录数据,自动化程度低。

2 快速高精度自动化配料系统

这是一种集合了微电脑技术、变频技术、破拱技术、精细喂料技术、实时检测技术和集尘除尘技术的配料系统;集解包、输送、计量、配料、记录、监测、收尘等功能于一体。

2.1 电气控制部分

(1)上位计算机,安装了由组态软件编好的程序放置于控制室内,主要用于对配方的选择和设定、对配料过程的监测、对报警信号的处理、对配料数据的调取。

(2)可编程控制器,安装于电控柜内,用于配料系统的流程控制。

(3)称量仪表,作为工业控制终端以及专门的配料控制器安装在控制柜内,是用来控制一种或多种物料的配制的微电脑系统。

(4)变频器与电位器,安装于电控柜或现场控制箱内,分别用于控制螺旋输送机和电磁振动给料机的无极调速给料。

(5)触摸屏,可作为备选辅助设备安装在控制柜或现场操作箱内,用于现场控制和实时监测。

2.2 上料破拱部分

(1)粉末冶金所用原料上料时易形成扬尘,因此解包器要与集尘机配合使用。主要模块:①自动检测装置,即在开关门上安装行程开关,开门集尘机工作反之则停止;②滤芯反吹装置,储气包内的正压气体通过膜片阀,定期对滤芯上附着的原料粉尘进行反吹回收;③解包器下料口下方带有不锈钢过滤网,网孔大小10*10以上以易于落料并挡住误操作而落入的杂物。

(2)粉末冶金所用原料流动性较差易于起拱,因此破拱装置必不可少。主要有:①电磁振动器,适用于流动性相对好的原料;②气吹破拱装置,适用于密度小流动性差的原料。根据起拱特点决定气吹头的个数、排列方式和气吹频率;③搅拌破拱装置,适用于密度大流动性差的原料。根据起拱特点选择搅拌点的位置和搅拌叶片的形状;④振动料斗,适用于流动性极差的原料。

2.3 喂料计量部分

(1)精密喂料是配料成功的关键,适用于粉末冶金配料的喂料机主要有螺旋输送机和电磁振动给料机。主要应用方式有:①单独螺旋输送机或电磁振动给料机,适用于精度要求不高的原料;②大螺旋输送机配微量螺旋输送机,适用于量大、精度要求高和密度大的原料;③大螺旋输送机配微量电磁振动给料机,适用于量大、精度要求高和密度小的原料。

(2)计量部分一般采用圆形或方形计量仓,仓上配有称重传感器、排料阀和振动器。注意设计:①在规定量程内,尽量选用小量程的传感器,以提高系统的计量精度;②尽量减少喂料机出料口与计量仓之间的落差,以减小原料的提前量而提高计量精度;③在喂料机与计量仓之间配挡料阀,以挡住计量完毕而意外落下的原料,从而提高计量的可靠性。

2.4 监测校核部分

(1)监测部分:①阻旋料位计对原料仓的料位监测。低料位报警则需上料,高料位报警则停止上料;②控制仪表对计量仓的物料检测。启动喂料机后如发生起拱,计量仓持续无物料落入时,控制仪表反馈信号给破拱装置以启动破拱。

(2)校核部分:①仪表对计量仓排料后残余物料量进行核对,如超出允许误差范围则启动声光报警,人工干预后停止报警并继续进行配料流程;②仪表对排至混料机的总物料量与之前所有单个计量仓称量量之和进行对比,如超出允许误差范围则启动声光报警,人工干预后停止报警并启动混料流程。

2.5 集尘除尘部分

(1)集尘部分是用单个带反吹滤芯装置的集尘机,对同一种原料的解包器处、喂料器喂料处和计量仓下料处除尘与回收装置。必须是一种原料配一台集尘机,其出风口接工厂的总除尘系统的负压管道。

(2)除尘部分是相对集尘部分而言的,就是对集尘部分没有涉及到的扬尘处进行收尘的装置。因为其收集的为混合物料或灰尘没有利用价值,所每个收尘单元可直接接工厂的总除尘系统的负压管道。

3 结论

本配料系统通过以上功能模块的协调工作,能很好得完成粉末冶金原料的配料任务。自投入使用以来运行高效稳定可靠,人机界面友好,系统软件易于升级,现场环境干净整洁。为工人创造了高效、舒适的工作环境,为企业提高了效益、降低了成本,为我国粉末冶金行业的转型升级提供了有力支持。

参考文献

[1] 宋建成.PLC控制和应用[M].科学出版社,2002.

粉末冶金范文第4篇

关键词:粉末冶金 温压工艺技术与发展 。

引言:近十年来,粉末冶金工业发展迅速。1989~1999年中国大陆与世界铁基粉末主要生产地区的铁基粉末年发货量比较。铁基粉末的市场需求在总体上有明显的增长,特别是北美市场已保持了连续9年的高速增长。日本虽然受到国内长期经济不景气的拖累,但铁基粉末的产量仍然较高。中国大陆的铁基粉末产量缓慢增长。1994~1998年亚洲部分地区粉末冶金件的年产量。1997年亚洲金融风暴令日本和韩国的粉末冶金工业蒙受挫折,但在中国(包括大陆和台湾省),粉末冶金制品的产量明显增长。

  粉末冶金制品的用途广泛,但主要用于机械零件,其中以铁基材料为主。过去十多年,全球粉末冶金制品大部分用于汽车工业,一直占粉末冶金件的70%左右。目前,每部欧洲汽车中约有7kg重的粉末冶金件。而每部美国汽车中粉末冶金件重达16kg[1],相对于1991年的10kg增幅超过50%。各大汽车制造商预言,未来10年每部汽车中将有重达25kg的粉末冶金件,美国汽车中或许更高。因此,在未来10年,汽车工业仍将是推动粉末冶金工业发展的主要动力。高性能铁基粉末冶金件已普遍用于传动装置、发动机、通用机械和工具等产品,其市场前景非常广阔。

  一温压技术的特点

     基于安全和耐用等理由,对汽车零部件的性能要求很高。近年我国快速发展的汽车工业必然会带动高性能粉末冶金材料特别是铁基材料的发展。因此,开发高性能特别是高力学性能的粉末冶金材料,是粉末冶金的发展方向和研究重点。提高粉末冶金材料的密度,是实现这一目的的最有效途径。

 传统一次压制,一次烧结生产的铁基粉末冶金制品,其密度一般在7 1g/cm3(相对密度约90%)以下,力学性能远低于同类材料的全致密件。生产高密度、高性能粉末冶金件一直是粉末冶金行业追求的目标之一。在众多的高密度粉末冶金生产方法中,温压是最为经济的一种新工艺。温压技术在90年代中期发展成熟并成功用于工业生产。

    温压工艺是在传统粉末冶金工艺的基础上改进而来。工艺过程是将混有温压专用剂(和粘结剂)的粉末加热至130~155℃,然后在加热到上述温度的模具里压制成形。与传统工艺相比,温压成形的压坯密度约有0 15~0 30g/cm3的增幅,对于提高粉末冶金制品的性能特别是力学性能具有重要作用。温压工艺的特色是工艺简单、成本低廉,在传统的粉末冶金设备上稍加改装,经一次温压压制,一次烧结即可生产出高密度、高性能且质量稳定的产品,其密度可达7 45g/cm3[9],经复压复烧更可高达7 65g/cm3 

    在比较了以温压工艺和传统复压复烧工艺生产齿轮的成本。在零件性能相当的情况下,温压生产的成本比复压复烧生产的成本低10%左右。温压能以低于复压复烧的成本生产出性能相当的产品。值得注意的是,其产品在某些方面可以和锻造产品相竞争。温压工艺成本低廉、产品密度高而均匀、力学性能优越,兼有弹性后效小、脱模力低等工艺特点,其生坯强度超过20MPa[10],可在烧结工序前作机加工处理,以节约机加工工时和减少刀具磨损。

 二 温压技术发展现状

     自1994年温压技术的成果被正式公布到1996年年底为止,在短短的两年时间就有大约36种温压产品在批量生产或准备批量生产,其中包括重达1 2kg,用在福特卡车变速箱上的转矩涡轮毂。国外多家公司也利用温压技术开发出高密度、高强度的斜齿轮。温压工艺除使齿轮整体密度增大外,齿的密度也大为增加,使齿的强度提高约30%,从而省去了用滚压工艺来局部提高齿部密度的工序。日本日立粉末金属公司采用温压技术生产粉末冶金小节锥半角斜伞齿轮,成功取代过去以机加工锻钢坯的昂贵生产工艺[19]。法国以温压技术为汽车工业制造了使用性能与锻造和粉末锻造相近,但成本较低的连杆,表明了温压技术有了重大突破,该公司计划到2002年生产350~600g重的各种连杆1500万件。瑞典采用温压工艺共同开发出一种用于重型卡车变速器的大型零件。该零件长期以来都是用精密锻造或粉末锻造方法生产的。由此可见,温压工艺具有工艺简单和较高性能价格比的优势是完全可以和锻造工艺竞争的。

     在国内,引进温压工艺的粉末冶金零件生产厂有宁波东睦粉末冶金公司和扬州保来得工业有限公司。两家工厂都是从国外引进技术、生产线与购买专用温压粉末进行生产。 三 温压技术的发展及在我国的应用前景 

    由于长期缺乏数量较大和附加值较高的零件需求,没有机会让粉末冶金行业发挥它特有的优势,因此我国粉末冶金工业基础较为薄弱,一直都未受到重视。1989年粉末冶金轴承占我国粉末冶金零件总产量的60%(质量分数),其中大部分是低附加值的普通轴承。90年代中期,汽车工业发展较快,为高性能铁基粉末冶金件的生产发展提供了良好的机遇,用于汽车和摩托车工业的粉末冶金零件按质量计算在10年间几乎翻了一番。与此同时,用于附加值较低的农机工业粉末冶金零件则几乎减少一半。由此可见,发展高性能粉末冶金零件是大势所趋。目前,国产轿车只维持在年产几十万辆的水平,预期到2010年将会达到年产100万辆左右。届时,对高性能铁基粉末冶金件的需求将会达到万吨以上。这无疑是发展我国粉末冶金工业的一次难得的机遇。根据对我国粉末冶金零件市场的预测,在2000年生产规模的基础上,粉末冶金零件在各行各业的应用都将有所增长。到2005年,摩托车行业和小型制冷压缩机行业将有40%的增幅,而汽车行业的预期增幅更达70%。目前,国产汽车平均每辆使用3~6kg粉末冶金零件,而国外则多达16kg,两者的差距反映出我国粉末冶金工业相对比较落后。但是,随着中国汽车工业迈向大规模生产,这一差距将很快缩小。以桑塔纳轿车为例,每辆用粉末冶金件仅15种,重3kg,而去年投放市场、以美国技术生产的别克轿车则每辆用粉末冶金件35种,重12 5kg。从生产普通粉末冶金件向生产高性能粉末冶金件过渡不是一朝一夕的事,特别是为汽车提供零件不是接了订单就能组织生产这么简单,必须通过一连串的试验、试制、台架试验、装机试验、定型、批量生产等相当长的过程。尽管未来汽车用粉末冶金件大量需求,但在国内推广温压技术的工业化还有不少困难。除少数几家拥有雄厚财力和技术实力的大型粉末冶金厂外,一般生产厂是不太可能投入大量的资金进口昂贵的温压设备和专用粉末。因此,温压技术的国产化非常重要。     性能优良、质量稳定的粉末是高性能粉末冶金工业的基础,我国的铁基粉末生产无论在产量、性能或质量的稳定性等方面都与世界发达地区有着明显的差距。适用于生产高密度、高性能零件的雾化铁粉其产量长期偏低,90年代以前年产量一直徘徊在几百吨,1995年起开始快速增长,目前雾化铁粉的产量已占铁基粉末总产量的1/4左右。雾化铁粉的年产量节节攀升,充分说明我国铁基粉末冶金件的产品结构正向高性能方向发展。目前,温压专用粉末尚未有批量生产。如果完全依赖进口,不但成本高昂,而且还将制约粉末冶金产品的自主开发。因此,大批量生产压缩性能优良和质量稳定的铁粉和预合金粉末,并研制适合我国国情的温压专用粉末加热装置是当务之急,以免过分依赖昂贵的进口产品。可喜的是华南理工大学已成功开发出有自主知识产权的温压专用粉末及其加热装置,为温压原材料及设备的国产化打下了基础。     目前,对粉末冶金结构件的密度要求一般在7 0g/cm3以上,有些甚至高达7 6g/cm3。而温压成形正好是生产密度此范围零件的工艺。我们可以利用温压技术只需较小成形压力等优点开发较大型的零件。我们亦可以利用温压成形的零件具有较高力学性能的优势,在免除诸如热处理等后续工序的基础上生产强度达800MPa以上、精度达IT6~IT5的粉末冶金零件以增强粉末冶金零件的竞争力。     德国在温压工艺的基础上,开发出一种称为“流动温压工艺”的技术。通过加入适量较微细的粉末、加大及调节剂的含量以提高粉末的流动性、填充能力和成形性,可以制造带有垂直于压制方向上的凹槽、孔和螺丝孔等制件。制造此类粉末冶金件过去一直被认为是非常困难甚至是不可能的,利用程控压机复杂和精准的动作也只能生产出较为简单的此类零件[32]。该工艺不但适用于铁基材料,还适用于诸如钛等其他材料。由此可见,温压工艺具有非常广阔的发展前景。目前,温压技术还远远没有发挥出其潜在的和应有的作用,其发展前途是不可低估的。     利用计算机进行温压成形过程的模拟是提高产品开发效率的有效工具,可充分利用温压的优点开发新零件或重新设计零件,扩大粉末冶金件的应用,并突破只凭经验摸索的瓶颈,大量减少试验次数,缩短产品开发周期,使企业能更快速地对市场作出反应。高密度、高性能零件是未来几年的高增长点,掌握此方面的技术对夺取潜在的市场具有积极意义。     利用粉末冶金技术开发无需油脂的耐磨件,以适应某些特殊行业的要求,如纺织机械等行业。在纺织机械和缝纫机上的某些零件,目前是采用复压复烧法生产,其密度达7 5g/cm3,抗拉强度达500MPa[33]。这些产品的性能正好是温压工艺所能达到的范围,问题是产量的大小,因为粉末冶金的低成本是建立于大批量生产的基础上,所以开发非汽车用的粉末冶金零件还要耐心地解决有关问题。所幸我国市场庞大,以缝纫机为例,1995年的产量就达970万台。只要不发生恶性竞争,开发非汽车用零件是大有可为的。     大力发展和推广温压工艺这种低投入、低成本的高密度粉末冶金生产技术,能为我国粉末冶金工业在新世纪里挤身国际市场打下坚实的基础。我国的汽车工业目前还处于初级发展阶段,在未来的十多年里随着汽车工业的发展,一定能提供一个庞大的市场消化我国粉末冶金工业为国产汽车研制的高性能粉末冶金件,形成一个以市场带动新技术,又以新技术开发新产品、开拓新市场的良性循环。

四 结束语:

国外温压技术从实验室到产业化大致用了5年左右的时间。与其它先进技术相比,温压技术产业化的速度是快的。其中一条成功的经验是,该技术从一开始就是以“研究―企业集合”的面貌出现的。粉末冶金工艺人员、压机制造商、化工、化学研究人员,组成一个集合体来突破技术的各个环节。在这方面行业协会或学会应当发挥更大的作用。 温压技术产业化的根本出路在于,真正理解和掌握温压―烧结工艺系统的各个环节,在有可能持续发展的骨干粉末冶金企业的牵头和带动下,组成一个各方均可受益的粉末、制件、压机、化工厂商和研究团体的“研究―企业集合”体,以典型的温压系列产品开拓钢铁粉末内冶金高密度、高强度零件的新市场。

参考文献:

粉末冶金范文第5篇

【关键词】 SVM; 图像分类; 粉末冶金零件;多类分类器;

中国分类号:TP-92

0.引言

支持向量机(Support Vector Machine,SVM)是一种新的机器学习技术。该技术已经成为当前国际机器学习界的研究热点,有许多学者已将它引入到图像分类中来,并取得了较好的效果。粉末冶金(PM)也称为钢铁粉末。它和普通的机械零件的最大区别是用模具加工而成的,由于具有节能、省材、环保、经济、高效等诸多优点,所以被称为典型的近净型制造技术。随着我国粉末冶金零件制造技术的飞速发展,尤其是汽车工业的飞速发展,粉末冶金零件的品种越来越繁多,样式各异,因此对粉末冶金零件的自动检测分类也提出了更高的要求。但是由于传统SVM对于多类分类总是将其转化为多个两类分类问题,相应地需要构造多个两类子分类器,这样不但使得分类器结构复杂,而且分类速度很慢,无法满足生产线上实时分类的需求。本文正是针对粉末冶金零件的特点,研究适合该产品的多类分类器,提高产品分类的快速性和准确性。

1. SVM多类分类器

支持向量机最基本的理论是针对二分类问题。但是在实际应用中涉及的一般是多分类问题,就需要将原始的两类SVM转化为多类分类器。近年提出许多多类SVM分类算法,大多数方法的思路是:构建一系列SVM分类器,每个分类器用于识别其中两个类别,并将它们判别结果以某种方法组合起来实现多类分类[1].

常见的方法有一对一和一对多两种[2]。本文要实现3类不同粉末冶金零件的分类,因为类别不多,故采取一对一的方法。设训练集为T,待分类的零件共有3个类别,在其中找出3种类别的两两组和,共有 个,分别用这两个类别样本点组成两类问题训练集 ,然后用求解两类问题的SVM分别求得3个判别函数 。算法如下图所示:

2. SVM分类过程

本文在设计分类器的时候,所采用的软件就是LIBSVM 2.86[3]。LIBSVM属于SVM模式识别以及回归的一个软件包,它的特点是既简单、易于使用又快速有效。该软件不仅提供编译好的可在Windows 系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用。

目前,LibSVM已经成为国内应用最多的SVM的库,原因是它不但程序小,运用灵活,输入参数少,而且是开源的,易于扩展。

为了得到适合粉末冶金零件的分类器,本文在整个实验过程是按照以下流程进行的。如图2所示。

SVM分类器的输入是图像特征提取的输出文件,也就是图像的边缘方向直方图所包含的数据信息。本文选取3种零件各90幅样本图像进行训练,每幅图像对应一个40维的向量,用它作为分类器的输入。如图3所示:

图中第一列是训练样本的数量,第二列是零件类别的编号,每一行是任何一个训练零件图像的维数。

通过训练得到的SVM模型保存为文件*.model,用记事本打开其内容如图4所示:

下面对模型里面的内容作如下解释:

3.多类分类器的验证

为了更好的判断SVM模型效果,下面我们用以下8幅图片进行测试,如图5所示:

经过对以上8幅图进行测试,每幅图像分别用本文得到的SVM分类器进行分类测试,图像的相似度是由libsvm的置信度统计出来的,其结果如表1所示:

从表格中不难看出,a图和b图属于类型1,c图和d图属于类型2,e图和f图属于类型3,g图和h图看不出来属于哪一类。也就是说只要是粉末冶金零件图的话,它的分类概率就悬殊很大,直接可以分出属于哪一类了;但是如果是非零件图的话,它分类结果相差都不会太大,也就是说,很难分出属于哪一类。

4.结束语

通过测试可以看出明,本文得到的SVM多分类器的准确率是相当高的。经过试验验证,该分类器的识别率可以达到98%以上。所以,将此分类器用在生产线上对粉末冶金零件进行分类识别有一定的实用价值和相当深远的意义。

参考文献:

[1]李雪花; 许姜涤宇; 于安军; 杜宇人;. 基于SVM多类分类器的字符识别 [J].成都:信息技术,2016[1].

[2] WANG Zhe ,MENG Yun,ZHU Yujin.et al McMatMHKS:A direct multi-class matrixized learning machine[J].Knoeledge-Based Systems,2015,88:184-194.

[3] CHANG Chih-Chung,LIN Chih-Jen.LIBSVM: a library for support vector machines [EB/OL].(2008-04-08)[2008-12-22].http://csie.ntu.edu.tw/~cjlin /libsvm.

[4]孟芸,王. 矩阵型多类代价敏感分器模型[J].华东理工大学学报(自然科学版),2016 (2):119- 122.

[5]薛宁静. 多类支持向量机分类器对比研究[J]. 计算机工程与设计, 2011, Vol.32, 1792-1795.

[6]⒔啵贺振动,吴彰良,巩晓S.基于机器视觉技术的油封缺陷在线检测系统研究[J].仪表技术与传感器, 2016 (5): 47-50.

[7]邵刚,屈保平,曹鹏,等.基于Hough变换的摄像机跟踪系统设计[J].测控技术,2013,32(8):32-35.

[8]吴彰良,孙长库.基于图像处理的油封缺陷自动检测与分类识别方法[J].仪器仪表学报,2013,34(5):1093-1099.

[9]杨金凤.机器视觉技术在空瓶检验系统中的研究与应用[D]. 硕士学位论文,山东大学,2008.

作者简介:张小洁(1978--),女,副教授,主要研究领域智能化制造与检测。E-mail:,电话:15619569155。

陕西工业职业技术学院科研基金项目,项目编号:ZK16-05。

相关期刊更多

粉末冶金技术

北大期刊 审核时间1-3个月

中国科学技术协会

粉末冶金工业

北大期刊 审核时间1-3个月

中国钢铁工业协会

粉末冶金材料科学与工程

部级期刊 审核时间1个月内

教育部