首页 > 文章中心 > 电压比较器

电压比较器

电压比较器范文第1篇

【关键词】电压比较器 高增益 低功耗 失调电压

模拟集成电路中比较器是一个基本模块,广泛应用于模拟信号到数字信号的转换。在A/D转换器中,电压比较器的增益,带宽,功耗,失调电压的特性严重影响整个转换器的转换速度和精度,传统的电压比较器采用多级结构,使用输入失调存储技术(IOS)和输出失调存储技术(OOS)对失调电压进行消除,增加了电路结构的复杂度和功耗,芯片面积也越来越大。但随着应用速度越来越高,功耗要求越来越低,IOS和OOS要求放大器有足够高的增益和带宽,这些因素对于其发展有一定的制约作用。

本文设计的电压比较器电路结构简单,采用了两级放大结构,前级放大采用差分放大电路,利用差分电路抑制共模信号的干扰,提高了共模抑制比,减少了信号中噪声的干扰,第二级放大采用共源共栅电路对失调电压进行了很好的控制,使电路的失调电压达到150μV,输出级采用推挽输出电路提升了输出的驱动能力,整个比较器的功耗非常低,芯片整个面积仅为29.56μm×25.68μm。该比较器设计主要用于高精度时间测量芯片中,通过比较器产生一个低延时的门控信号,对于整个时间测量电路达到一个精准的控制。通过仿真结果得知,该电压比较器满足应用需求。

1 电压比较器结构

如图1所示为CMOS电压比较器原理图,该比较器由偏置电路、差分放大器、共源放大器和推挽级输出电路组成。其中,M1管和M2管组成偏置电压电路,为差分放大器和共源放大器提供偏置电压。通过调节M1管和M2管的宽长比,让差分放大器和共源放大器得到合适的工作电流,合理设计差分放大器和共源放大器,主要考虑输入失调电压、输入共模范围、输出信号的增益和带宽的影响,设计出一个性能最优的比较器电路。M10管和M11管组成一个推挽输出级电路,提升输出信号的驱动能力,为了能更好的和其它电路进行协同工作。

该电压比较器的工作原理如下:是同相输入端,是反相输入端。当输入电压高于时,M3管导通,,M3管和M7管的电流相同,M8管又与M7管为镜像电流关系,M8管导通,使,b点为高电平,c点为低电平,Vo输出高电平。当输入电压低于Vb时,,因此,M4管导通阻抗低,b点为低电平,导致M9管导通,c点为高电平,Vo输出为低电平。

1.1 偏置电压电路设计

M1管和M2管组成偏置电路提供M5管和M6管的栅极电位。偏置电路采用PMOS管和NMOS管栅漏极相连,两管子均工作于饱和区,为差分放大器和共源放大器提供恒定的电流源。因此,

1.2 差分放大器的设计

差分放大电路的作用有两个:首先对输入信号进行放大,这样就可以对比较级电路的比较时间进行降低,同时把总体延时降到最低;其次是对输入信号差值进行放大,这样就可以把失调电压对整个电路的影响降到最低。高带宽在高速比较器中是一个重要影响因素,高的带宽可以使整个电路的比较时间减少,从而对于比较器的速度进行提高。

负向共模输入电压决定了差分输入对管。负向共模输入电压取决于M5管进入饱和区的条件。负向共模输入电压为。

M3管、M4管和M5都工作在饱和区,三个管子的阈值电压相等。

考虑到负向共模范围低和电压增益高的要求,取=1.2V ,由式(7)可以得到M3管的宽长比。

M3管和M4管是完全对称的输入对管,所以可以得到。

有源负载对管M7和M8由正向共模输入电压决定,正向共模输入电压取决于M3管进入饱和区的条件,则得到:

设计共模输入电压=3V,。I0为差分放大器的工作电流。由式(8)可以得到M7管的宽长比。M8管和M7为对称有源负载对管,所以得到。

差分放大器的放大倍数为:

1.3 共源放大器的设计

共源放大器由M6管和M9管组成,M6管为有源负载,M6管与M2管为镜像电流关系,已经确定M6管的宽长比,M9的设计主要考虑共源放大器的放大倍数和输入失调电压的影响。为了减少输入失调电压对共源放大器的影响。差分放大器和共源放大器应满足式(10)比例关系:

由式(11)知共源放大器的放大倍数与工作电流成反比,由于M6管和M9管的输出阻抗与成反比。放大倍数还与沟道长度调制效应有很大关系,沟道长度越大,沟道调制效应越小,和越小,MOS管的输出阻抗越大,放大倍数就越大。还可以通过调节输入管M9的宽长比提高电压增益。

1.4 推挽输出级的设计

输出缓冲级是CMOS倒相器,它是为提升输出的驱动能力、降低输出的上升时间和下降时间而设立的,因此,该级的驱动电流设置较大,输出的上升时间和下降时间对称。推挽输出级由M10管和M11管构成,两管均工作在线性区。

2 电路仿真

该电路是在TSMC 0.18μm CMOS工艺下,电源电压为3.3V,利用Cadence公司的Spectre仿真器进行仿真。仿真条件为tt工艺角,温度为27℃。如2所示为电压比较器的瞬态仿真,同相输入端加入一个频率为10MHZ,幅度为800mV的正弦信号,反相输入端加入一个2.1V的直流信号,输出端得到一个方波信号。电压比较器的下降沿时间为754ps,上升沿时间为913ps。

图3为电压比较器的交流仿真结果,由图中可以看出比较器的增益为92.123dB,带宽为10MHz,相位浴度为53deg。

在同向输入端设置输入电压为变量Vin,反向输入端输入电压2.1V,Vin的输入变化范围为0―3.3V,通过直流仿真得到输出信号与Vin的变化关系,得到了电压比较器的传输特性曲线如图4所示,从图中可以看出,实际电压跳变转换点和理论转换点电压值有一定的误差,输出电压跳变需要一个过渡区间。

功耗在电压比较器的电路设计中是一个重要因素,近几年集成电路的工艺尺寸向纳米级的不断发展,电源供电电压越来越小,对于电路的功耗要求越来越高。整个电路功耗主要包括静态功耗和动态功耗。动态功耗不仅取决于负载还与工作频率,电源电压,集成度和输出电平有关。静态功耗等于电源电压和工作电流的乘积。图5为比较器工作电流仿真曲线图,可以看出,电压比较器工作时平均电流为87.5μA,电源电压为3.3V,得到比较器的功耗为0.289mW。

表1为本文和别人设计的电压比较器进行的一些性能对比,从表中可以看出在带宽、功耗和失调电压与文献(8)和(9)差不多的情况下,其增益明显高于对方,对于在时间测量系统中,其开始和结束信号的判断有很大的作用,满足了预期的设计目标。

3 版图设计

版图设计如图6所示,比较器中有差分电路,为了保证差分对的完全匹配,采用了共质心对称结构,图3中的差分对管M3、M4版图对应左下角部分,差分对管M7、M8版图对应左上角部分,偏置电路和输出缓冲级电路利用了叉指结构匹配。版图的总共面积为29.56μm×25.68μm。Vin+和Vin-为比较器的同向和反向输入,out为输出端。

4 结论

本文基于TSMC 0.18μm CMOS工艺设计的电压比较器具有高的增益,低失调电压,低功耗,结构简单等特点。该比较器采用两级放大,第一级采用差分放大器减少了输入的失调电压,提高了输入的共模范围,第二级采用共源放大器得到了高的电压增益,输出级采用CMOS倒相器结构简单,提高了输出的驱动能力、减少了输出波形的上升沿和下降沿的时间。从仿真结果看,该电压比较器达到了预期的效果,可用于A/D转换器、编译码器、高精度测时电路中。

参考文献

[1]ALLEN P E,DOUGLAS R H. CMOS analog circuit design [M].2nd Ed.Beijing: Publishing House of Electronics Industry,2005.

[2]谢晶,张文杰,谢亮,金湘亮.一种嵌入式动态锁存比较器的设计与实现[J].微电子学,2013,43(6):802-806.

[3]周启才,张勇,郭良权.用于16位流水线ADC的高速动态比较器设计[J].固体电子学研究与进展,2013,32(6):583-589.

[4]LU J,Holleman J.A low-power high-precision comparator with time-domain bulk-tuned offset cancellation [J].IEEE Circ and System,2013,60(5):1158-1167.

[5]Allen Philip E.CMOS Analog Circuit Design,Second Edition[M].北京:电子工业出版社,2003.

[6]李桂宏,谢世健.集成电路设计宝典[M]. 北京:电子工业出版社,2006.

[7]邱伶俐,刘章发.轨到轨电压比较器的设计[J].半导体集成电路,2015,40(1):12-18.

[8]李现坤.低功耗模数转换器的研究与设计[D].南京:南京邮电大学,2014.

[9]王雅君,陆定红,张国俊.一种用于峰值电流模式的锁存比较器设计[J].微电子学,2014,44(4):442-446.

[10]游恒果.高速低功耗比较器设计[D].西安:西安电子科技大学,2011.

作者简介

苟欣(1991-),男,陕西省汉中市人。现为宁波大学信息科学与工程学院硕士研究生在读。研究方向为集成电路设计。

杨鸣(1963-),男,浙江省宁波市人。现为宁波大学信息科学与工程学院研究员,主要从事光机电一体化和高分辨率自动显微镜方面的研究。

电压比较器范文第2篇

关键词:高压断路器 电气联动 机械联动 可靠性

中图分类号:O521 文献标识码:A 文章编号:

引言:在正常操作中,断路器是用来连接或断开电路的保护装置。在故障条件下,断路器能够迅速切断电路,以防事故扩大。在特殊情况下,断路器可以接通可靠的短路电流。因此可以看出高压断路器是至关重要的,有必要对高压断路器的相关可靠性进行综合比较。

高压断路器

高压断路器具有相当完善的灭弧结构和足够的断流能力。它不仅可以闭合或切断高压电路中的负荷电流和空载电流,而且可以通过继电器保护装置的作用在系统发生故障时,切断过负荷电流和短路电流。

二,高压断路器设备常见的故障

2.1 绝缘故障

绝缘故障的主要原因有两方面,一方面是高压断路器的绝缘件设计和制造质量不符合技术标准的要求,有拉杆拉脱的现象,以至于造成运动部分操作不当。另一方面是高压断路器在安装、调试、检修过程中,由于人为等各种原因使工装工艺不到位,造成绝缘故障。

2.2 拒动、误动故障

拒动和误动事故是指高压断路器拒绝断开、拒绝闭合和不该动作时而乱动造成的故障。其中拒分事故是主要事故,约占同类型事故的50%以上。在正常情况下,高压断路器可以通过分合来控制电流,一旦发生该故障,高压断路器就不会按规范进行分合动作,从而发生越级跳闸,造成更大范围的故障,通常情况下是由机械或电气等原因导致的此故障。

2.3 外力和其他故障

外力和其他故障主要为泄露故障和部件损坏,主要包括:气动部分漏气、液压部分漏油、断路器本体漏油等。

2.3.1泄露故障。

泄漏故障主要由液压部分漏油和气动部分漏气引发。泄露一般由密封圈(垫)老化损坏、阀系统密封不严密、压力表接口部分不严导致泄露、压力泵接头质量不符合技术标准和清洁度不够检修不彻底造成的,此外安全阀动作值不当、环境温度升高导致安全阀错误动作以及安全阀动作后不复位也都会造成泄压。

2.3.2 部件损坏

易损坏的部件主要有阀体及拉杆、传动机构部件、密封部件等。在断路器运行过程中,由于安装、检修中技术水平低或是部件质量不符合标准等原因会引发断路器的部件发生损坏,这些损坏的部件若不能及时地被处理检修,则会加剧损坏部件的损坏程度,最终造成断路器无法按规范进行动作和运行。

三,电气联动与机械联动机构故障率分析

3.1 电气及机械联动。

三相电气联动的高压断路器通常使用三个独立操动机构,而三相机械联动的高压断路器通常使用一个操动机构,三相电气联动的高压断路器在汇控箱的作用下,机构之间通过电气联接实现三相联动,各相机构传动输出轴与极柱直接相连,三相机械联动的高压断路器的三个极柱与操动机构之间通过操作杆联接,三相电气联动的高压断路器在保护装置上,采用三相位置不一致继电器来启动跳闸。

3.2 电气联动与机械联动机构发生对应故障的可能性分析

3.2.1 电气联动与机械联动机构发生绝缘故障的可能性分析

高压断路器发生的故障中最为常见最为频繁的是绝缘故障,由于爆炸、闪络、过电压击穿等绝缘因素引发的故障较多,其中内、外绝缘及瓷套闪络故障更甚。对于这种故障,电气或机械联动机构发生故障的机率应是相同的。

3.2.2 电气联动与机械联动机构发生拒动、误动故障的可能性分析

发生拒动、误动故障的原因有五个,1)机械原因。生产制造、安装调试、检修等环节都会造成机械故障;2)电气原因。主要是由辅助回路和电气控制故障引发;3)二次回路。二次回路故障主要由因接线端子排受潮引发绝缘性降低,合闸回路和分闸回路接线端子间发生放电而产生的二次回路短路导致的;4)液压机构。断路器出厂时因装配不合格、阀体不紧固、清洁度不够而导致密封圈损坏,从而促使机械机构泄压或液压油泄露,最终引发断路器强跳或闭锁;5)弹簧操动机构。在检修断路器时,因调整操动机构分(合)闸挚子使弹簧的预压缩量错误,导致弹簧机构不能正常保持而造成断路器自合或自分。同发生绝缘故障的几率一样,电气或机械联动机构发生故障的可能性应是相同的。

3.2.3 电气联动与机械联动机构发生外力和其他故障的可能性分析

3.2.3.1 电气联动与机械联动机构发生机械本身故障可能性分析

由于不同品牌和不同制造商,在产品性能与制造质量,工艺水平上会有很大差异,用户可以通过比较衡量选用年平均故障率低,质量较为可靠的产品以降低故障率,但是三相联动机构与电气联动机构相比,各极上传递的力和能量是不一样的,离机构最近的一极将承受比较大的机械应力,各极之间的振动也不一样,同样离机构最近的一极其振动程度最严重。同时机械连杆内部的应力也会随着相间距离的变化而发生相应的增大,一般与DA成正比(1小于等于A小于等于2) ,当相同距离超过2.5M时,应力和变形就会在一定程度上影响断路器的可靠性和稳定性。因此,总的来说在这一方面三相联动机构故障率远大于电气联动机构故障率。

3.2.3.2 电气联动与机械联动机构发生机构与本体之间故障可能性分析

现场施工条件的简陋,断路器基础及支架尺寸的偏差,施工人员技术素质的不达标,这些问题的存在影响着机械联动断路器的正常安装(机械联动断路器需要在三级之间进行准确的调整,才能确保三极之间的机械联接在允许误差范围之内并保证其同期性)。电气联动操动机构由机械与断路器极柱直接连接,比较简单,因此出现该故障的机率就少多了。

结合上述分析,在通常情况下三相机械联动的故障率比三相电气联动机构的要大,因此在没有特殊要求的情况下应尽可能选用电气联动机构的断路器,这样才能保证高压断路器的正常运行,确保系统的安全。

参考文献:

电压比较器范文第3篇

关键词:电压比较器;运算放大器;阈值比较

1 前言

比较器是一种带有反相和同相两个输入端以及一个输出端的器件,该输出端的输出电压范围一般在供电的轨到轨之间,运算放大器亦是如此。

比较器具有低偏置电压、高增益和高共模抑制的特点。运算放大器亦是如此。

运算放大器有如此多相似之处,但我们却不能忽略他们的细微差别。

比较器拥有逻辑输出端,可显示两个输入端中哪个电位更高。如果其输出端可兼容TTL或CMOS,则比较器的输出始终为正负电源的轨之一,或者在两轨间进行快速变迁。比较器设计用于开环系统,用于驱动逻辑电路,用于高速工作,即使过载亦是如此。

运算放大器有一个模拟输出端,但输出电压不靠近两个供电轨,而是位于两者之间。这种器件设计用于各种闭环应用,来自输出端的反馈进入输入端。其偏置电流通常低于比较器,而且成本更低。运算放大器设计用于闭环系统,用于驱动简单的电阻性或电抗性负载,而且不能过载至饱和状态。

正是这些细微差别,比较器和运算放大器大多数时候会被区别对待,分别实现不同的功能。但若稍作改变,利用他们的相似之处,又可以解决一些实际问题。文章就运放OPA699同时作为运算放大器和电压比较器进行接收电路设计,讨论,并通过试验结果进行现象分析。

2 光电探测电路原理

如图1所示为光电探测电路原理图,光电探测器通过偏置电路将接收到的光脉冲信号转换为电压脉冲信号,输入到放大电路,经过一级放大和整形等操作,输入到信号处理单元。

图1 光电探测电路原理框图

3 电路各部分设计及功能实现

3.1 光电探测器及偏置电路设计

光电探测器将光信号转换为电信号,一般在设计中主要考虑响应度,响应时间,光谱响应范围等参数。此设计中采用普通的硅PIN光电二极管,反向偏置电压为5v,其在反偏电压下工作电路如图2:

图2 光电探测器及偏置电路

3.2 放大电路设计及功能实现

3.2.1 放大电路设计

经光电二极管接收、转换的信号,其幅度和信号比不足以满足信号处理的要求,为了得到足够的放大倍数和更高的信噪比,还需要进行信号的再放大。放大电路如图3所示:

放大电路放大经光电二极管光电转换之后的电信号,考虑到运算放大器的放大倍数基本由电阻决定,受温度影响较小,在放大电路中选取TI生产的电压反馈限幅运算放大器OPA699的组成所需的放大电路。OPA699的-3dB带宽为1000MHz,压摆率为1400v/?滋S,噪声为4.1nV/,是一款高速低噪声运算放大器,满足基本的脉冲信号的放大需求。

运算放大器是一种双电源器件,因而必须通过采用外部元件的某种偏置将运算放大器的输出电压偏置到供电电压的位置,对于给定电源电压,这种方法可实现最大输入和输出电压摆幅。也就是说,为了避免削波现象,需使输出电压偏置到电源电压的一半附近。但是若通过简单的分压器将同相引脚偏置到电源电压的一半,极易引入低频寄生振荡或其他形式的不稳定现象。

该放大电路采用同相比例运算电路,进行单电源固定增益的放大,增益系数由R30/R29决定,本设计中设定放大倍数为5。

本设计中通过电容C34在分压器的抽头点设置旁路,用以处理交流信号。电阻R26为基准电压提供直流回路,同时设定电路(交流)输入阻抗。在本电路中,采用R27和R28组成的分压器,该网络的-3dB带宽由R27、R28和C34构成,如设定R27/R28为2.4kHz/2.4kHz,C34电容值为0.1uF,则:

此设计对于1.33kHz以下的电源上存在的噪声信号可以抑制掉。对于电容C34,若取值足够大,能够对分压器电路通带带宽内所有频率起到旁路的功能。该网络设置有效法则是将极点设为-3dB输入带宽的十分之一。

3.2.2 放大电路功能实现情况

输入脉宽为10ns的激光脉冲信号后,放大电路输入信号和输出信号情况如图4所示。

由图4可以看到,此电路能正常实现信号放大的,完全起到了放大高速微弱信号的作用。

3.3 阈值比较电路及电路实现情况

3.3.1 阈值比较电路

本设计中,阈值比较电路通过电压反馈运算放大器OPA699作为电压比较器实现,具体电路设计如图5所示:

高输入阻抗运算放大器OPA699作为比较器亦通过单电源实现,R33和R35实现将运算放大器的输出电压偏置到供电电压的位置,R34则提供阈值电压参考值,根据实际需要,此处设置阈值为200mV。电阻R32为基准电压提供直流回路,同时设定电路(交流)输入阻抗。

3.3.2 阈值比较电路工作情况

窄脉冲激光信号经放大输出进入比较器,经阈值比较后输出TTL脉冲信号,通过判别前沿获取时间信息,放大电路输出和阈值比较电路输出的输出波形如图6所示:

由图6可以看到,实现阈值比较功能的运算放大器OPA699能够对脉宽为10ns的快速信号进行阈值判别,完全能够满足实际应用需要。

4 结束语

该电路中,单电源供电方式设计的放大电路有效解决了信号放大的问题,方便后续电路的处理;阈值比较电路能进一步得到足够放大倍数的信号,有效地去除噪声,提高信噪比,为后续进行信号处理提供了保证,也就是说,此类应用中,尤其对供电方式要求单一的应用中,将运算放大器用作比较器是一种可行的设计选择。

运算放大器不但有单运放封装,同时提供双运放或四运放型号,这类双核和四核型号比两个或四个独立运算器便宜,而且占用电路板面积更小,进一步节省了成本。另外,比较器专门针对干净快速的切换而设计,因此其直流参数往往赶不上许多运算放大器。因而,在要求低输入失调电压和低输入偏置电流等的应用中,将运算放大器用作比较器可能比较方便。

但是用作比较器的运算放大器没有负反馈,因此其开环增益非常高。跃变期间,哪怕是极少量的正反馈也可能激发振荡。反馈可能来自输出与同相输入之间的杂散电容,也可能来自共地阻抗中存在的输出电流。虽然通过设计布局降低杂散电容等方法进行补偿,但不稳定性的确是隐形存在的“不定时炸弹”。另外,将运算放大器用作比较器时,受饱和影响,其反应速度低于期望水平,如果高速非常重要,将运算放大器用作比较器可能达不到预期效果。

总之,文章提供了一种可行的光电探测电路的设计手段,在实际应用时,必须了解相关知识,以确保所选运算放大器能达到要求的性能。

参考文献

[1]童诗白,华成英.模拟电子技术基础[M].第三版.高等教育出版社,2003.

[2]TEXAS INSTRUMENTS,Inc OPA699 Datasheet[Z].2012

[3]何希才(译).运算放大器应用电路设计[M].科学出版社,2004

电压比较器范文第4篇

1 概述

反激型DC/DC变换器因结构简单、成本低廉而广泛应用于各种辅助电源和小功率电源中。但是,单管反激变换器主开关电压应力大,在输入电压较高的场合使用起来比较困难。另外,反激变换器的变压器漏感一般比较大,导致主开关上产生很高的电压尖峰,使电压应力进一步增加。传统的双管反激变换器如图1所示,其两个主开关的电压应力为输入电压,克服了单管反激开关电压应力大的缺点,并且漏感能量可以回馈到输入侧,不需要吸收电路,但它带来了占空比D不能大于50%的缺点,在宽范围场合应用有局限性。本文提出了一种能工作在占空比大于50%条件下的双管反激变换器,如图2所示,不过它和传统的双管反激相比也并非十全十美,其漏感能量需要外加缓冲电路来吸收。本文详细、客观地分析和比较了这两种双管反激变换器在工作原理和特性上的差异,阐述了一些独特的观点,并且给出了两种双管反激的实验结果比较,旨在为电源设计者选用这两种双管反激变换器时提供理论依据和参考数据。

2 工作原理

为了分析方便,假设各器件具有理想特性,电感、电容足够大,输入电压没有脉动,电路已经进入稳态。

传统双管反激变换器在两个开关管S1及S2导通期间,加在变压器原边的电压为输入电压Vin,原边电流流过S1及S2,并且线性上升。副边二极管反向偏置,副边电流为零。当S1及S2同时关断后,原边电流逐渐下降到零。二极管D1及D2随即导通,由于实际电路中漏感的影响,变压器原边上的电压被钳在-Vin,副边二极管因此导通。储存在原边漏感中的能量全部反馈到输入侧后,D1及D2关断,变压器原边电压降至副边绕组反射电压-nVo(n为变压器原边对副边的变比),副边二极管维持导通,直到下一开关周期开始。

改进的双管反激变换器,如图2(a)及图2(b)所示,有两种结构,是为了克服传统双管反激变换器占空比不能大于50%的缺点而提出的,因此,称之为宽范围双管反激变换器。该变换器与传统双管反激结构上的区别在于分别去掉了一个钳位二极管,这样会有一个主开关的电压应力得不到限制,可能造成过压,所以,要对两个开关的关断次序进行人为的控制。对于图2(a),S2应该比S1先关断;对于图2(b),S1应该比S2先关断。图2(a)及图2(b)所示两种结构的工作原理是类同的,下面就仅对图2(b)的结构进行分析。

同样,在S1和S2导通期间,加在变压器原边上的电压为Vin,原边电流线性上升,同时副边二极管截止。随后,将S1关断,S2继续导通,激磁电感和S1的结电容C1谐振,考虑到实际中激磁电感非常大而结电容非常小,并且这段时间又非常短,所以,可以看成原边电流对C1进行恒流充电,C1上的电压线性上升。一旦C1上的电压到达Vin,D1就导通,变压器上电压为零,原边电流流过S2和D1且保持不变。当S2也关断后,激磁电感和S2的结电容C2谐振,同样可以看成原边电流对C2恒流充电,C2上的电压线性上升。当C2上的电压上升到nVo时,D1关断,原边电流为零。此时,副边二极管开始导通,变压器原边电压被输出电压Vo钳在-nVo,作为复位电压,激磁电流线性下降。S1和S2重新开通后,进入下一开关周期。

图2

3 特性比较

从以上的分析可以看出,传统的双管反激和宽范围双管反激在工作原理上十分类似,但是,两者的特性有比较大的差异。

3.1 开关电压应力

传统的双管反激变换器两个开关管S1及S2的电压应力不会超过输入电压,因为,C1或C2上的电压一旦大于输入电压Vin,D1和D2就相应导通,将C1及C2上的电压峰值钳在Vin。即使是漏感在开关管上引起的电压尖峰也会被D1及D2钳位,不会高于输入电压。因此,传统双管反激变换器主开关的电压应力均为输入电压Vin。

对于图2(b)所示的宽范围双管反激变换器,主开关S1的结电容C1上电压达到Vin时,D1就相应导通,因此,S1上的电压不会超过Vin。而当主开关S2的结电容C2上电压上升至nVo时,D1关断,副边二极管导通,因此,S2上的电压不会超过nVo。可见该变换器主开关S1及S2的电压应力分别为Vin及nVo。如果是图2(a)所示的变换器,则主开关S1及S2的电压应力分别为nVo及Vin。但是,实际电路中漏感的存在,会引起图2(a)中的S1或图2(b)中的S2上产生比较大的电压尖峰,相应的电压应力要增加。所以,宽范围双管反激变换器的其中一个开关管的电压应力要比传统双管反激的开关电压应力大一些。

3.2 整机效率

由于反激型变换器的变压器磁芯要垫气隙,所以,漏感比一般的变换器中变压器要大。漏感大会直接导致主开关上产生很高的电压尖峰,需要另外加缓冲电路吸收。在上面对宽范围双管反激变换器的原理分析中,为简单起见而忽略了漏感的影响,但实际上漏感是不可能为零的,因此,图2(a)中的S1及图2(b)中的S2上都会有漏感引起的电压尖峰,需要加RCD电路加以吸收,则在R上损失比较多的能量。

而对于传统的双管反激变换器,在反激开始时,储存在漏感中的能量通过D1及D2全部反馈到输入侧,系统能量损失相对要小。

图3

因此,在相同规格以及开关条件下,传统的双管反激变换器要比宽范围双管反激变换器整机效率高一些。

3.3 宽范围适应性

传统的双管反激变换器有两个二极管D1和D2在复位阶段对变压器钳位,所以,变压器上的复位电压不能超过输入电压,如图3(a)所示。也就是要满足以下条件:

VinD≤Vreset(1-D)≤in(1-D) (1)

可以推出

D≤50%(2)

可见传统的双管反激变换器不能工作在占空比大于50%,这就使其在宽范围场合应用时遇到了困难。

而本文提出的宽范围双管反激变换器没有这个条件限制,变压器上的复位电压可以大于输入电压,如图3(b)所示,所以,能够工作在占空比大于50%。另外,反激变换器的输入输出电压满足D/(1-D)的关系。通常,变换器的输入输出电压有4种关系,即D,1/(1-D),D/(1-D),D(1-D)。在这4种关系中,D/(1-D)的宽范围适应性要远远优于其它几种关系。宽范围双管反激变换器的增益正好是D/(1-D)的关系,所以,这种变换器的输入或输出电压调节范围很宽,特别适合用于超宽范围场合。

图4

从以上的分析和比较可以看出,改进的双管反激变换器在宽范围适应性上有了很大的提高,但整机效率相对下降,其中的一个开关管电压应力也有所增大。所以,这两种双管反激变换器在性能上各有优劣(见表1),在选用这两种变换器时一般遵循以下原则:在效率要求比较高,但输入或输出电压调节范围不是很宽的场合,可以选用传统的双管反激变换器;而在输入或输出电压范围很宽,但效率要求不是非常高的情况下,可以选用宽范围双管反激变换器。当然,选用这两种变换器的前提是输入电压比较高,不然选用单管反激就可以了。

表1 两种变换器的性能比较

Tab.1 Performance comparison of two converters

传统的双管反激

宽范围双管反激

开关电压应力

整机效率

宽范围适应性

4 实验结果比较

两台分别采

用传统双管反激和宽范围双管反激拓扑的样机验证了以上的分析和比较。为了具有可比性,这两台样机的规格和参数须保持一致,只是传统的双管反激变换器的输入电压范围是250~400V,宽范围双管反激的输入电压范围为100~400V。这两台样机的其他规格和参数如下:输出电压Vo 24V;

输出电流Io 0~4A;

工作频率f 108kHz;

主开关S1及S2 IRF840;

整流二极管DR1 Halfof30CPQ100;

变压器T n=160∶20,Lm=7.2mH,

Ls=180μH;

钳位二极管D1(D2)BYV26C。

图4(a)、(b)、(c)是300V输入2.5A输出时传统双管反激变换器的主要实验波形。图4(a)是变压器原边的电压波形,正向电压为300V,反向复位电压大约为200V。图4(b)是开关管S1漏源间的电压波形,其峰值为300V,然后经过一个振荡降至275V左右。图4(c)是开关管S2漏源间的电压波形,其峰值为300V,经过振荡降至225V左右。两个开关管S1及S2的峰值电压均未超过输入电压。

图4(d)、(e)、(f)是150V输入4A输出时宽范围双管反激变换器的主要实验波形。图4(d)是变压器原边的电压波形,正向电压为输入电压150V,反向复位电压大约为200V,已经超过输入电压,占空比大约为57%,说明该变换器占空比可以大于50%。图4(e)是开关管S1漏源间的电压波形,其峰值为150V,然后经过一个振荡降至130V左右。图4(f)是下管S2漏源间的电压波形,其峰值为280V,然后经过一个振荡降至220V左右。

两个主开关上的漏源电压值和理论分析的有一定偏差(理论上S1平台电压应该为输入电压,S2平台电压应该是输出电压折算到原边的值,约为200V),这是因为在实际工作中变压器漏感的影响。当S1关断,S1的漏源电压上升到输入电压,但是,等到S2关断后,由于漏感的影响,S2的漏源电压会有一个振荡,期间会使得S1的漏源电压有所下降,而使S2的漏源电压略高于理论值。

图5给出了两种变换器在满载(4A)时不同输入电压下的效率曲线。效率2是传统双管反激变换器的满载效率曲线,输入电压为350V时效率最高,为92%。效率1是宽范围双管反激变换器的满载效率曲线,输入电压为350V时效率最高,为89.3%。通过比较可以看到,传统双管反激变换器的整机效率要高于宽范围双管反激变换器,但是后者的输入电压范围有4倍的变化范围,有很强的宽范围适应性。这也进一步验证了前面的分析。

5 结语

不管是传统的双管反激DC/DC变换器还是宽范围双管DC/DC反激变换器,和单管反激相比都具有主开关电压应力低的优点。

电压比较器范文第5篇

关键词:电源模块 保护电路 应用

中图分类号:TN4 文献标识码:A 文章编号:1672-3791(2017)04(a)-0045-02

随着微电子技术的发展,要求计算机的性能更加安全可靠,而计算机电源系统是否稳定,关系到整个计算机的工作状态及性能,为了确保计算机电源系统输出电压稳定和计算机电源自身的安全,计算机电源设计中保护电路的应用设计日趋重要。

1 保护电路介绍

1.1 保护电路构成

保护电路一般由故障检测电路、电压翻转电路、保护执行电路三部分组成,有的包含有保护显示电路[1]。故障检测电路对保护电路的电压或者电流进行检测,并将检测结果送到翻转电路,当检测到的电压或者电流超过设定值时,故障检测电路将检测到的故障信息送到翻转电路。产生保护控制电压,驱使保护执行电路动作,使保护电路退出工作状态或进入相应的保护状态,达到保护目的。常用保护电路构成如图1所示。

1.2 保护电路种类

保护电路种类划分方法较多,根据故障检测电路的检测方式分为过流检测保护电路、过压检测保护电路、失压检测保护电路及IC内部检测保护电路;根据保护电压翻转电路的类型可分为三极管电压翻转保护电路、可控硅电压翻转保护电路、模拟可控硅翻转保护电路和IC内部电压翻转保护电路;根据保护执行方式可分为待机处理保护电路、小信号处理保护电路、电源震荡驱动保护电路、稳压处理保护电路和保护电路直接执行保护的保护电路。

2 电源模块保护电路设计

某计算机电源设计可利用空间较小,在230 mm×200 mm的印制板上需要将220 V交流电转换成+5 V、+12 V、-12 V等多种稳压直流电源。为了避免因电源故障造成对其他部件损坏,需要电源保护电路设计。(如图2)

2.1 输入电源检测电路设计

输入~220 V的保护电路分三种,选用压敏电阻并接输入电源零火线两端,当输入电压超出压敏电阻的耐压值时,压敏电阻击穿短路,导致保险丝烧断而起到保护作用,选用热敏电阻串入输入电源火线上,因短接等原因导致电流过大超出热敏电阻指标时,热敏电阻烧断而切断电源,起到保护其他组件的作用;采集交流整流滤波后的直流300 V,将300 V分压后送人比较器MAX973输入断,和比较器MAX973另一输入端的基准电源进行比较,在电压要求范围之外时,比较器翻转,最终使DC/DC模块的输入电源断开而起到过压和欠压保护作用。

2.2 输出电源检测电路设计

采集+5 V输出直流电源,分压后送人比较器输入端,和比较器输入的基准电源进行比较,+5 V电源在要求范围之外时,比较器翻转,最终使DC/DC模块的输入电源断开而起到过压和欠压保护作用。

采集+12 V输出直流电源,分压后送人比较器输入端,和比较器输入的基准电源进行比较,+12 V电源在要求范围之外时,比较器翻转,最终使DC/DC模块的输入电源断开而起到过压和欠压保护作用。

采集-12 V输出直流电源,分压后送人比较器输入端,和比较器输入的基准电源进行比较,-12 V电源在要求范围之外时,比较器翻转,最终使DC/DC模块的输入电源断开而起到过压和欠压保护作用。

2.3 翻转电路设计

将MAX973输出端接入光电耦合器一端,光电耦合器输出端和+5 V、+12 V、-12 V检测比较器电路的输出端并接到比较器负端,和接在比较器正端的基准电源进行再次比较,输入电源和三路输出电源检测电路中任何一个电源电压值超出预定范围,则翻转电路输出电压开始翻转,将翻转后的电平送到执行电路输入端。

2.4 执行电路设计

该电源模块借用DC/DC直流稳压模块自身具有的软启动保护功能,当输入端保护端管脚为低时,DC/DC直流稳压模块停止工作。翻转电路送出电平为0~5 V,而DC/DC直流稳压模块输入电源为300 V,为了防止模块损坏对翻转电路造成逆向损坏,在翻转电路输出端和DC/DC直流稳压模块输入保护端之间增加光电耦合器进行隔离。

3 应用效果

该计算机电源模块完成设计、生产、调试后,对其保护电路的各项保护功能进行测试,均达到预定目标,满足了使用要求。

参考文献

[1] 孙铁强.进口彩电保护电路原理与维修[M].中国水利水电出版社,2010.