首页 > 文章中心 > 直流电源

直流电源

直流电源

直流电源范文第1篇

【关键词】交直流一体化;电源;系统智能化

1 传统变电所站用电源分散设计存在的问题

一直以来,变电站站用电源包括交流电源系统、直流电源系统、UPS不间断电源系统、通信电源系统等,每个系统采用分散设计,独立组屏,不同设备由不同的供应商生产、安装、调试,各个供电子系统也分配不同的专业人员管理。这种分散设计与管理,存在着诸多问题:

1)站用变电源难以实现网络化系统管理

由于交流系统、直流系统等设备由不同厂家提供,所以通信规约一般不兼容,很难实现网络化系统管理,自动化程度低。由于没有统一的监控设备对整个站用电源进行管理,不能实现系统数据共享,无法进行站用电源协调联动、状态检修等深层次开发应用。

2)设备管理的可靠性降低

由于占用所有设备的信息不能网络共享,对于一些设备的故障和报警不能够综合分析和管理,不同专业的巡检人员分别管理各个电源子系统,缺乏对系统的综合分析判断,及时发现事故隐患。

3)重复运用、经济性较差

站用变中各系统设备由不同供应商提供,缺乏综合性考虑,造成配置重复使用,一次性投资显著增加。如:直流电源,UPS不间断电源、通讯电源分别配置独立的蓄电池,浪费严重;交流系统配置电源自动切换设备(ATS),充电模块的交流输入侧又重复配置,既浪费又影响设备之间协调运行。

4)设备维护不方便,增加成本

由于供应商之间利益与管理的差异性比较大,当设备出现故障的情况下,各个厂家到现场处理问题的速度不同,缺乏统一性的沟通,使处理问题的效率降低。

站用变的所有设备分配不同专业人员进行管理:交流系统与直流系统由变电人员进行运行维护,UPS由自动化人员进行维护,通信电源由通信人员维护。人力资源不能总体调配,通信电源、UPS等也没有纳入变电严格的巡检范围,可靠性得不到保障。

2 智能一体化电源设计方案及特点

图1 一体化电源一次原理图

通过上述对站用变设备分散设计存在的问题,针对性提出了智能交直流一体化电源的设计思路,来实现:第一,建立站用电源统一网络智能平台;第二,消除站用电源隐患;第三,提高站用电源管理水平;第四,进行深层次开发,提高站用电源安全与智能化水平。

1)智能交直流一体电源的定义

站用交直流一体化电源系统是指:将站用交流电源系统、直流电源系统、逆变电源系统、通信电源系统统一设计、生产、调试、售后服务,通过网络通信、设计优化、系统联动方法,实现站用电源安全化、网络智能化设计,达到效益最大化目标。

智能站用电源交直流一体化系统包括:交流电源子系统、直流电源子系统、逆变电源子系统、通信电源子系统、一体化监控子系统。

2)技术优势

智能交直流一体化电源系并不是对交流、直流等子系统的简单拼装,其主要技术特征表现在:

(1)网络智能化设计:通过一体化监控器对站用交流电源、直流电源、逆变电源、通信电源进行统一监控,建立统一的信息共享平台,实现网络智能化。支持61850通讯规约。

(2)对交流子系统进行安全、智能化设计:①进线采用ATS自动转化开关、实现电气与机械双闭锁;②馈线采用固定式安装技术;③统一监控管理,实现“四遥”功能等。

(3)优化蓄电池配置:①可取消UPS,使用逆变器直接挂于直流母线代替;②取消通信蓄电池组及充电设备,使用DC/DC变换器直接挂于直流母线代替。

3) 智能交直流一体化电源的特点

(1)实现对站用电源网络化、智能化、一体化程度的提高

对站用电源中的交流系统、直流系统、逆变电源系统、通信进行统一监控和管理,能够合理解决原有厂家分散设计造成的通讯规约不兼容等问题,提高系统网络化、智能化程度。

①各个子系统智能监控机通过通信网络连接到一体化总监控,一体化监控器1个通信口、一种规约接入综自/调度系统;

②在一体化电源的总监控就可以查看各子系统的电压、电流、开关量等数据,通过修改系统参数、运行方式、遥控开关,实现站用电源“四遥”功能;

③统一的信息共享平台,可以提高站用电源综合自动化应用水平。

(2)提高站用电源的安全性、可靠性

所有设备均采用成熟可靠技术,其本身不存在任何技术风险,通过一体化设计可以有效避免站用电源的安全隐患。

①蓄电池一体化设计,避免了UPS蓄电池与通信电源蓄电池维护不精细、损坏不能及时发现的问题

②对站用变电源出现的某一处故障进行综合分析,及时发现潜在问题;

(3)提高站用电源管理水平

一体化电源便于集中管理全站电源系统,提高站用电源的整体管理水平。由固定维护人员同时管理、维护全站电源,便于统一调配人力资源;将通信电源、UPS等纳入到整个系统当中,便于对信息的进行综合分析,及时发现事故隐患。

【参考文献】

直流电源范文第2篇

论文关键词: 直流稳压电源 单片机 数字控制

论文摘要:本系统以直流电压源为核心,AT89S52单片机为主控制器,通过键盘来设置直流电源的输出电压,设置步进等级可达0.1V,输出电压范围为0—9.9V,最大电流为330mA,并可由液晶屏显示实际输出电压值。系统有过流保护电路,当输出电流过大时功率管自动截至,而且有红色指示灯发出警报。本系统由单片机程控输出数字信号,经过D/A转换器(AD0832)输出模拟量,再经过运算放大器隔离放大,控制输出功率管的基极,随着功率管基极电压的变化而输出不同的电压。实际测试结果表明,本系统实际应用于需要高稳定度小功率恒压源的领域。

Keywords: regulated power supply of direct current; single2ch ip m icrocomputer, digital control

Abstract:This system to dc voltage source as the core, mainly AT89S52 SCM, through the keyboard controller to install dc power supply output voltage, setting stepping class can reach.01v output voltage, the range of 0-9.9 V, the maximum current 330mA for, and can show the actual pipe by digital output voltage values. This system consists of microcontroller program output digital signal, through D/A converter (AD0832) output analog amplifier, through isolating amplifier output power, control of base, with the power to change the passive tube voltage output of different voltage. Test results show that this system application in need of high stability of small power constant-voltage source fields.

1 引言

几乎所有的电子设备都需要稳定的直流电源,因此直流稳压电源的应用非常的广泛。 直流稳压电源的电路形式有很多种,有串联型、开关型、集成电路、稳压管直流稳压电源等等。在电子设备中,直流稳压电源的故障率是最高的(长期工作在大电流和大电压下,电子元器件很容易损坏)但在直流稳压电源中,通过整流、滤波电路所获得的直流电源的电压往往是不稳定的。输出电压在电网电压波动或负载电流变化时也会随之有所改变。电子设备电源电压的不稳定,将会引起很多问题。设计出质量优良的直流稳压电源,才能满足各种电子线路的要求。因此,直流稳压电源的研究就颇为重要。目前产生直流稳压电源的方法大致分为两种:一种是模拟方法,另一种是数字方法。前者的电路均采用模拟电路控制,而后者则是通过数字电路进行自动控制。直流稳压电源朝着数字化方向发展。因此对于数控恒压源的研究是必要的。随着科学技术飞速发展,对电源可靠性、输出精度和稳定性要求越来越高,利用D/ A 转换器的高分辨率和单片机的自动检测技术设计程控电源就显示出其优越性。程控电源既能方便输入和选择预设电压值又具有较高精度和稳定性,而且可以任意设定输出电压或电流,所有功能由面板上的键盘控制单片机实现,给电路实验带来极大的方便,提高了工作效率。

2 系统方案论证与比较

方案一:采用各类数字电路来组成键盘控制系统,进行信号处理,如选用CPLD等可编程逻辑器件。本方案电路复杂,灵活性不高,效率低,不利于系统的扩展,对信号处理比较困难。

方案二:采用AT89S52单片机作为整机的控制单元,通过改变DAC0832的输入数字量来改变输出电压值,从而使输出功率管的基极电压发生变化,间接地改变输出电压的大小。为了能够使系统具备检测实际输出电压值的大小,可以将输出电压经过ADC0832进行模数转换,间接用单片机实时对电压进行采样,然后进行数据处理及显示。此系统比较灵活,采用软件方法来解决数据的预置以及电压的步进控制,使系统硬件更加简洁,各类功能易于实现,能很好地满足题目的要求。

比较以上两种方案的优缺点,方案二简洁、灵活、可扩展性好,能达到题目的设计要求,因此采用方案二来实现。

3 总体方案框图

系统总体方案框图如图1所示:

图1 系统原理框图

4 系统部分功能设计

4.1 稳压输出部分

4.1.1 稳压输出原理与电路

这部分将数控部分送来的电压控制字转换成稳定电压输出。D/A转换部分的输出电压作为稳压输出电路的参考电压。稳压输出电路的输出与参考电压成比例。稳压输出电路采用的是串联式反馈稳压电路(如图2),在电路中,Q1—TIP122为调整管,U6A—LM358 为比较放大器,R19、R22组成反馈网络。D/A转换电路的输出电压DAOUT接到 U6A 的同向端,稳压电源的输出经R19、R22组成的取样电路分压后送到运放U6A的反向端,经运放比较放大后,驱动调整管Q1。路平衡时,D/A电路的输出电压 与取样后的电压 相等。

稳压输出部分的过流保护电路由R21和Q2组成。设 为保护动作电流,则当电源输出电流I增加到 时,R21上的压降 *R21使得Q2管导通,分掉了Q1上的基极电流,使输出I不再增加,起到了过流保护作用。

图2 稳压输出部分

4.1.2 稳压输出部分仿真图

图3 稳压电路仿真图

一般的直流稳压电源是用可变电阻来实现输出电压的调节,那么要在直流稳压电源的基础上实现数字控制的话,实际上很简单,我们只要将可变电阻换成数字控制部分来代替,就能实现数控恒压源这一课题。所以,首先要做的,就是选择合适的稳压输出电路并对其可行性进行了仿真。如图9,很容易就验证了此稳压输出电路的可靠。

4.2数字控制部分

4.2.1 单片机部分

图4 单片机控制部分

控制部分是系统整机协调工作和智能化管理的核心部分,采用AT89S52单片机实现控制功能是其关键,采用单片机不但方便监控,并且大大减少硬件设计。

4.2.2 D/A转换部分

系统设置D/A转换接口,采用8位模数转换器DAC0832。其电路如图5.

图5 D/A转换部分

D/A转换部分的输出电压作为稳压输出电路的参考电压。稳压输出电路的输出与参考电压成比例。8位字长的D/A转换器具有256种状态。当电压控制字从0,1,2,……到256时,电源输出电压为0.0,0.06,……15.0。

其时序图如图6:

图6 DAC0832数模转换时序图

Clk为时钟端,Data为输入数据,LOAD为输入控制信号。

每路电压输出值的计算:

REF为参考电压,data为输入8位的比特数据;

我们这里用的REF=5v;

4.2.3 A/D转换部分

A/D转换部分我们采用美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片ADC0832。其电路图如图7所示:

图7 A/D转换部分

ADC0832 是美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片。由于它体积小,兼容性,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。学习并使用ADC0832 可是使我们了解A/D转换器的原理,有助于我们单片机技术水平的提高。

4.2.3.1 ADC0832 具有以下特点:

· 8位分辨率;

· 双通道A/D转换;

· 输入输出电平与TTL/CMOS相兼容;

· 5V电源供电时输入电压在0~5V之间;

· 工作频率为250KHZ,转换时间为32μS;

· 一般功耗仅为15mW;

· 8P、14P—DIP(双列直插)、PICC 多种封装;

· 商用级芯片温宽为0°C to +70°C,工业级芯片温宽为−40°C to +85°C;

4.2.3.2 芯片接口说明:

· CS_ 片选使能,低电平芯片使能。

· CH0 模拟输入通道0,或作为IN+/-使用。

· CH1 模拟输入通道1,或作为IN+/-使用。

· GND 芯片参考0 电位(地)。

· DI 数据信号输入,选择通道控制。

· DO 数据信号输出,转换数据输出。

· CLK 芯片时钟输入。

· Vcc/REF 电源输入及参考电压输入(复用)。

ADC0832 为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在0~5V之间。芯片转换时间仅为32μS,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。通过DI 数据输入端,可以轻易的实现通道功能的选择。

4.2.3.3 单片机对ADC0832 的控制原理:

正常情况下ADC0832 与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI。但由于DO端与DI端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO和DI 并联在一根数据线上使用。当ADC0832未工作时其CS输入端应为高电平,此时芯片禁用,CLK 和DO/DI 的电平可任意。当要进行A/D转换时,须先将CS使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK 输入时钟脉冲,DO/DI端则使用DI端输入通道功能选择的数据信号。在第1 个时钟脉冲的下沉之前DI端必须是高电平,表示启始信号。在第2、3个脉冲下沉之前DI端应输入2 位数据用于选择通道功能。其时序图如图8.

图8 ADC0832时序表

如图所示,当此2 位数据为“1”、“0”时,只对CH0 进行单通道转换。当2位数据为“1”、“1”时,只对CH1进行单通道转换。当2 位数据为“0”、“0”时,将CH0作为正输入端IN+,CH1作为负输入端IN-进行输入。当2 位数据为“0”、“1”时,将CH0作为负输入端IN-,CH1 作为正输入端IN+进行输入。到第3 个脉冲的下沉之后DI端的输入电平就失去输入作用,此后DO/DI端则开始利用数据输出DO进行转换数据的读取。从第4个脉冲下沉开始由DO端输出转换数据最高位DATA7,随后每一个脉冲下沉DO端输出下一位数据。直到第11个脉冲时发出最低位数据DATA0,一个字节的数据输出完成。也正是从此位开始输出下一个相反字节的数据,即从第11个字节的下沉输出DATD0。随后输出8位数据,到第19个脉冲时数据输出完成,也标志着一次A/D转换的结束。最后将CS置高电平禁用芯片,直接将转换后的数据进行处理就可以了。

4.2.4 键盘部分

由于要实现人机对话,要显示0—9.9V的电压值,我们自制3*4按键的键盘来完成整个系统控制。电路原理如图9所示。

图9 键盘与显示电路图

按键的具体意义如下:

4.2.5显示部分

本方案采用YM12864型lcd,可直接显示4*8个汉字,界面友好,支持串并行两种连接方式,其电路连接如图10所示:

图10 LCD12864与单片机连接图

YM12864是一种具有4位/8位并行、2线或3线串行多种接口方式,内部含有国标一级、二级简体中文字库的点阵图形液晶显示模块;其显示分辨率为128×64, 内置8192个16*16点汉字,和128个16*8点ASCII字符集.利用该模块灵活的接口方式和简单、方便的操作指令,可构成全中文人机交互图形界面。可以显示8×4行16×16点阵的汉字。 也可完成图形显示。

4.2.5.1 串行接口

*注释1:如在实际应用中仅使用串口通讯模式,可将PSB接固定低电平,也可以将模块上的J8和“GND”用焊锡短接。

*注释2:模块内部接有上电复位电路,因此在不需要经常复位的场合可将该端悬空。

*注释3:如背光和模块共用一个电源,可以将模块上的JA、JK用焊锡短接。

4.2.5.2 并行接口

管脚名称

管脚功能描述

VSS

电源地

VCC

电源正

V0

对比度(亮度)调整

RS(CS)

RS=“H”,表示DB7——DB0为显示数据

RS=“L”,表示DB7——DB0为显示指令数据

R/W(SID)

R/W=“H”,E=“H”,数据被读到DB7——DB0

R/W=“L”,E=“HL”, DB7——DB0的数据被写到IR或DR

E(SCLK)

使能信号

DB0

三态数据线

DB1

三态数据线

DB2

三态数据线

DB3

三态数据线

DB4

三态数据线

DB5

三态数据线

DB6

三态数据线

DB7

三态数据线

PSB

H:8位或4位并口方式,L:串口方式(见注释1)

NC

空脚

/RESET

复位端,低电平有效(见注释2)

VOUT

LCD驱动电压输出端

A

背光源正端(+5V)(见注释3)

K

背光源负端(见注释3)

*注释1:如在实际应用中仅使用并口通讯模式,可将PSB接固定高电平,也可以将模块上的J8和“VCC”用焊锡短接。

*注释2:模块内部接有上电复位电路,因此在不需要经常复位的场合可将该端悬空。

*注释3:如背光和模块共用一个电源,可以将模块上的JA、JK用焊锡短接。

5 总电路软件实现流程图

图10 总流程图

程序见后面附录。

6 电源测试结果

6.1电压测试

预置电压(V)

显示电压(V)

测量电压(V)

1

1.05

1.05

1.2

1.10

1.17

1.4

1.35

1.38

1.6

1.55

1.61

1.8

1.75

1.78

2

1.95

2.00

2.6

2.55

2.60

3

3.00

3.03

3.7

3.70

3.68

5

5.00

5.01

7

7.00

6.97

8

8.10

8.06

9

8.75

8.75

9.7

9.65

9.63

6.2 性能测试

性能指标

测量条件

测量结果

测量仪表

全程输出电压

0-9.9V

DM-311型数字万用表

负载电流

=5V, =25

206mA

过流保护

330mA

用单片机控制电源时,输出直流0-9.9V,液晶屏显示清晰正确,误差较小,完美的实现了数控恒压源这一课题。

但在功能上还不够强大,没有显示预置电压等等,还可以进一步得到提高。

参考文献

[1]康华光

电子技术基础 高等教育出版社

[2]串联型直流稳压电源的仿真分析

广西师范学院学报 第21卷第2期

[3]用单片机制作的直流稳压可调电源 电子世界 2005年第11期

[4]刘华毅,李霞,徐景德 电力电子技术 第35卷第六期2001年12月

[5]陈小忠、黄宁、赵小侠 单片机接口技术实用子程序 人民邮电出版社

附录

附录1:系统总体电路图

附录2:系统总程序

;***************************************************

;

项目名称:数控恒压源

;

设计者:谢明亮,马学强,苏向阳

;本程序是设计的一个数控恒压源,先用一个3*4的键盘输入

;所用的电压,再通过DAC0832输出电压。再采用一个ADC08

;32将电压读回单片机,单片机再采用一片LCD串口显示出来。

;***************************************************

;以下接口定义根据硬件连线更改

ADCS

BIT P2.5

;使能接口

ADCLK

BIT P2.4

;时钟接口

ADDO

BIT P2.3

;数据输出接口(复用)

ADDI

BIT P2.3

;数据输入接口

CS

BIT P3.0

;H=DATA,L=COM

SID

BIT P3.1

;H=READ,L=WRITE

SCLK

BIT P3.6

;

KEYBUF EQU 30H

COM

EQU 41H

;控制字暂存单元

DAT

EQU 42H

;显示数据暂存单元

CODER

EQU 43H

;字符代码暂存单元

ADDR

EQU 44H

;地址暂存单元

ORG 0

LJMP

START

ORG 3

LJMP

KEYSCAN

ORG 30H

START:MOV SP,#90H

LCALL DEL_40MS

LCALL INI

MOV 70H,#00H

MOV 71H,#00H

MOV 34H,#02

;装入通道功能选择数据值

SETB IT0

SETB EX0

MOV P1,#0FH

;将P1口低4位设为输入,高4位清零

SETB EA

MOV KEYBUF,#00H

;起初输出0V电压

MOV R2,#01H

;置送数时送数空间不同的标志位。

CLR A

MOV 24H,A

;清零24h,25h,31H,32H,33H。

MOV 25H,A

MOV 31H,A

MOV 32H,#05H

MOV 33H,#00H

MOV ADDR,#80H

MOV DPTR,#WEL_1

MOV 40H,#16

LCALL W_LINE

MOV ADDR,#90H

MOV DPTR,#WEL_2

MOV 40H,#9

LCALL W_LINE

MOV ADDR,#95H

MOV DPTR,#WEL_3

LCALL W_LINE1

MOV ADDR,#88H

MOV DPTR,#WEL_4

MOV 40H,#16

LCALL W_LINE

MOV ADDR,#98H

MOV DPTR,#WEL_5

MOV 40H,#16

LCALL W_LINE

LCALL DEL_1500MS

LOOP: LCALL LIGHT

;调显读数与示子程序

SJMP LOOP

;****************************************************

;键盘扫描程序

;键码存在KEYBUF单元,格式为数字0-9和.号,还有enter键

;****************************************************

KEYSCAN:PUSH

PSW

PUSH ACC

PUSH DPH

PUSH DPL

CLR RS1

SETB RS0

;选择1区工作寄存器

LCALL DELAY

MOV A,P1

CPL A

ANL A,#0FH

JZ

FINISH

MOV DPTR,#TAB1

MOV P1,#0EFH

;扫描第一行

LCALL DELAY

MOV P1,#0EFH

MOV A,P1

CPL

A

ANL A,#0FH

JZ

K1

;第一行没键按下,则扫描第二行

SJMP KEND

K1: MOV P1,#0DFH

;扫描第二行

LCALL DELAY

MOV P1,#0DFH

MOV A,P1

CPL A

ANL A,#0FH

JZ K2

;第二行没键按下,则扫描第三行

ADD A,#5

SJMP

KEND

K2: MOV P1,#0BFH

;扫描第三行

LCALL DELAY

MOV P1,#0BFH

MOV A,P1

CPL A

ANL A,#0FH

JZ K3

;第三行没键按下,则扫描第四行

ADD A,#10

SJMP

KEND

K3: MOV P1,#7FH

;扫描第四行

LCALL DELAY

MOV P1,#7FH

MOV A,P1

CPL A

ANL A,#0FH

JZ FINISH

;第四行没键按下,则返回

ADD A,#15

KEND:MOVC A,@A+DPTR

MOV KEYBUF,A;

MOV

33H,#01H

;置有中断标志

SJMP

FINISH

FINISH:MOV P1,#0FH

;为下一次扫描作准备

POP DPL

POP DPH

POP ACC

POP PSW

RETI

TAB1:DB 00H,01H,02H,00H,03H;,00H,00H,00H,33H

DB 00H,04H,05H,00H,06H;,00H,00H,00H,00H

DB 00H,07H,08H,00H,09H;,00H,00H,00H,0AH

DB 00H,0AH,00H,00H,0BH;,00H,00H,00H,46H

;**************************

;LCD的初始化子程序

;************************** INI:

MOV COM,#30H

;功能设定,基本指令

LCALL WCOM

MOV COM,#30H

;基本指令,8-bit模式,基本指令

LCALL WCOM

MOV COM,#0CH

;显示开,游标关,反白关

LCALL WCOM

MOV COM,#01H

;清除显示

LCALL WCOM

MOV COM,#06H

;进入设定点,游标7右移,画面不移动

LCALL WCOM

RET

W_LINE:

MOV COM,ADDR

LCALL WCOM

MOV R4,40H

;连续写入N/2个中文或者N个西文字符

W_L1:

MOV A,#00H

MOVC A,@A+DPTR

MOV CODER,A

LCALL WCODE

INC DPTR

DJNZ R4,W_L1

RET

W_LINE1:

MOV COM,ADDR

LCALL WCOM

W_L11:

MOV A,70H

ANL A,#0FH

MOVC A,@A+DPTR

MOV CODER,A

LCALL WCODE

MOV A,#0BH

MOVC A,@A+DPTR

MOV CODER,A

LCALL WCODE

MOV A,71H

SWAP A

ANL A,#0FH

MOVC A,@A+DPTR

MOV CODER,A

LCALL WCODE

MOV A,71H

ANL A,#0FH

MOVC A,@A+DPTR

MOV CODER,A

LCALL WCODE

MOV A,#0AH

MOVC A,@A+DPTR

MOV CODER,A

LCALL WCODE

;DJNZ R4,W_L1

RET

WCOM:

LCALL STWC

MOV A,COM

LCALL W4_D

;送入高四位指令

LCALL W4_0

;连续送入四个0

LCALL W4_D

;送入高四位指令

LCALL W4_0

;连续送入四个0

CLR CS

LCALL DEL_2MS

RET

WCODE:

LCALL STWD

MOV A,CODER

LCALL W4_D

LCALL W4_0

LCALL W4_D

LCALL W4_0

CLR CS

LCALL DEL_2MS

RET

STWC:

SETB CS

SETB SID

MOV R3,#5

;连续送入5个"1",起始

STWC1: SETB SCLK

CLR SCLK

DJNZ R3,STWC1

CLR SID

MOV R3,#3

STWC2:

SETB SCLK

;RW=0,RS=0,第八位"0"

CLR SCLK

DJNZ R3,STWC2

RET

STWD:

SETB CS

SETB SID

MOV R3,#5

;连续送入5个"1",起始

STWD1:

SETB SCLK

CLR SCLK

DJNZ R3,STWD1

CLR SID

;RW=0

SETB SCLK

CLR SCLK

SETB SID

;RS=1

SETB SCLK

CLR SCLK

CLR SID

;第八位"0"

SETB SCLK

CLR SCLK

RET

W4_D:

MOV R3,#4

W4_D1:

RLC A

MOV SID,C

SETB SCLK

CLR SCLK

DJNZ R3,W4_D1

RET

W4_0:

MOV R3,#4

W4_01:

CLR SID

SETB SCLK

CLR SCLK

DJNZ R3,W4_01

RET

;********************

;2MS延时

;********************

DEL_2MS:

MOV R0,#2

D1:

MOV R1,#200

D2:

NOP

NOP

NOP

DJNZ R1,D2

DJNZ R0,D1

RET

;********************

;40MS延时

;********************

DEL_40MS:

MOV

R5,#20

D3:

LCALL DEL_2MS

DJNZ R5,D3

RET

;********************

;200MS延时

;********************

DEL_200MS:

MOV

R5,#100

D4:

LCALL DEL_2MS

DJNZ R5,D4

RET

;********************

;500MS延时

;********************

DEL_500MS:

MOV

R5,#250

D5:

LCALL DEL_2MS

DJNZ R5,D5

RET

;********************

;1500MS延时

;********************

DEL_1500MS:

LCALL DEL_500MS

LCALL DEL_500MS

LCALL DEL_500MS

RET

;*************************************

;用adc0832读数并送数给显示的子程序,

;并将键盘的按键数送给dac0832让其输出。

;*************************************

;==== ADC0832读数据子程序====

LIGHT:SETB

ADDI

;初始化通道选择

NOP

NOP

CLR

ADCS

;拉低/CS端

NOP

NOP

SETB

ADCLK

;拉高CLK端

NOP

NOP

CLR

ADCLK

;拉低CLK端,形成下降沿

MOV

A,34H

MOV

C,ACC.1

;确定取值通道选择

MOV

ADDI,C

NOP

NOP

SETB

ADCLK

;拉高CLK端

NOP

NOP

CLR

ADCLK

;拉低CLK端,形成下降沿2

MOV

A,34H

MOV

C,ACC.0

;确定取值通道选择

MOV

ADDI,C

NOP

NOP

SETB

ADCLK

;拉高CLK端

NOP

NOP

CLR

ADCLK

;拉低CLK端,形成下降沿3

SETB

ADDI

NOP

NOP

MOV

R7,#8

;准备送下后8个时钟脉冲

AD_1:

MOV

C,ADDO

;接收数据

MOV

ACC.0,C

RL

A

;左移一次

SETB

ADCLK

NOP

NOP

CLR

ADCLK

;形成一次时钟脉冲

NOP

NOP

DJNZ

R7,AD_1

;循环8次

MOV

C,ADDO

;接收数据

MOV

ACC.0,C

MOV

B,A

MOV

R7,#8

AD_13:

MOV

C,ADDO

;接收数据

MOV

ACC.0,C

RR

A

;右移一次

SETB

ADCLK

NOP

NOP

CLR

ADCLK

;形成一次时钟脉冲

NOP

NOP

DJNZ

R7,AD_13

;循环8次

MOV

R7,#8

CJNE

A,B,LIGHT ;数据校验

MOV A,B

MOV DPTR,#TAB5

;

MOVC A,@A+DPTR

;

MOV 72H,A

;将高位送72H单元

MOV A,B

MOV DPTR,#TAB6

;

MOVC A,@A+DPTR

;

MOV 73H,A

;降低为送73H单元

SETB

ADCS

;拉高/CS端

CLR

ADCLK

;拉低CLK端

SETB

ADDO

;拉高数据端,回到初始状态

;========送数给显示子程序段========

MOV 70H,72H

MOV 71H,73H

MOV ADDR,#95H

MOV DPTR,#WEL_3

LCALL W_LINE1

;=======送数给ADC0832的子程序========

MOV A,33H

;判断有没有中断,

JZ L7

;没有中断就转。

MOV 33H,#00H

;清中断标志

L2: MOV A,30H

;

CJNE A,#0AH,L3

;判断是否为点号,不为点号就转。

JMP L7

;为点好就保持原来送数。

L3:CJNE A,#0BH,L4

;判断是否为Enter键,不为就转。

MOV 32H,24H

MOV 31H,25H

;

L9:MOV 24H,#00H

;

MOV 25H,#00H

;

MOV R2,#01H

;置送数时送数空间不同的标志位。

L7: MOV A,32H

;将键盘的两数相与,查表,然后送数。

SWAP A

;

ORL A, 31H

;

MOV DPTR,#TAB4

;

MOVC A,@A+DPTR

;

CLR P2.0

MOV P0,A

LJMP L6

;

L4:CJNE R2,#01H,L5

;将键盘的第一位数送给24H

MOV A,30H

;

MOV 24H,A

;

DEC R2

;清零送数时送数空间不同的标志位。

JMP L7

;

L5:MOV A,30H

;将键盘的第二位数送给25H

MOV 25H,A

;

MOV R2,#01H

;置送数时送数空间不同的标志位。

JMP L7

;

L6:RET

;十六进制数转换成为2进制BCD码的码表。

;

0 1 2 3 4 5 6 7 8 9

TAB5:DB 00H,00H,00H,00H,00H,00H,00H,00H,00H,00H;0

DB 00H,00H,00H,00H,00H,00H,00H,00H,00H,00H

DB 01H,01H,01H,01H,01H,01H,01H,01H,01H,01H;1

DB 01H,01H,01H,01H,01H,01H,01H,01H,01H,01H

DB 02H,02H,02H,02H,02H,02H,02H,02H,02H,02H;2

DB 02H,02H,02H,02H,02H,02H,02H,02H,02H,02H

DB 03H,03H,03H,03H,03H,03H,03H,03H,03H,03H;3

DB 03H,03H,03H,03H,03H,03H,03H,03H,03H,03H

DB 04H,04H,04H,04H,04H,04H,04H,04H,04H,04H;4

DB 04H,04H,04H,04H,04H,04H,04H,04H,04H,04H

DB 05H,05H,05H,05H,05H,05H,05H,05H,05H,05H;5

DB 05H,05H,05H,05H,05H,05H,05H,05H,05H,05H

DB 06H,06H,06H,06H,06H,06H,06H,06H,06H,06H;6

DB 06H,06H,06H,06H,06H,06H,06H,06H,06H,06H

DB 07H,07H,07H,07H,07H,07H,07H,07H,07H,07H;7

DB 07H,07H,07H,07H,07H,07H,07H,07H,07H,07H

DB 08H,08H,08H,08H,08H,08H,08H,08H,08H,08H;8

DB 08H,08H,08H,08H,08H,08H,08H,08H,08H,08H

DB 09H,09H,09H,09H,09H,09H,09H,09H,09H,09H;9

DB 09H,09H,09H,09H,09H,09H,09H,09H,09H,09H

DB 10H,10H,10H,10H,10H,10H,10H,10H,10H,10H;10

DB 10H,10H,10H,10H,10H,10H,10H,10H,10H,10H

DB 11H,11H,11H,11H,11H,11H,11H,11H,11H,11H;11

DB 11H,11H,11H,11H,11H,11H,11H,11H,11H,11H

DB 12H,12H,12H,12H,12H,12H,12H,12H,12H,12H;12

DB 12H,12H,12H,12H,12H,12H,12H,12H,12H,12H

TAB6:DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;0

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;1

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;2

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;3

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;4

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;5

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;6

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;7

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;8

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;9

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;1, , 0

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;11

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

DB 00H,05H,10H,15H,20H,25H,30H,35H,40H,45H;12

DB 50H,55H,60H,65H,70H,75H,80H,85H,90H,95H

; 数模转换的代码

;0

1

2

3 4

5

6

7 8

9

A

B

C

D

E

F

TAB4:DB 00H, 02H, 04H, 06H, 08H, 0AH, 0CH, 0EH, 10H, 12H, 00H, 00H, 00H, 00H, 00H, 00H ;

DB 14H, 16H, 18H, 1AH, 1CH, 1EH, 20H, 22H, 24H, 26H, 00H, 00H, 00H, 00H, 00H, 00H

DB 28H, 2AH, 2CH, 2EH, 30H, 32H, 34H, 36H, 38H, 3AH, 00H, 00H, 00H, 00H, 00H, 00H

DB 3CH, 3EH, 40H, 42H, 44H, 46H, 48H, 4AH, 4CH, 4EH, 00H, 00H, 00H, 00H, 00H, 00H

DB 50H, 52H, 54H, 56H, 58H, 5AH, 5CH, 5EH, 60H, 62H, 00H, 00H, 00H, 00H, 00H, 00H

DB 64H, 66H, 68H, 6AH, 6CH, 6EH, 70H, 72H, 74H, 76H, 00H, 00H, 00H, 00H, 00H, 00H

DB 78H, 7AH, 7CH, 7EH, 80H, 82H, 84H, 86H, 88H, 8AH, 00H, 00H, 00H, 00H, 00H, 00H

DB 8CH, 8EH, 90H, 92H, 94H, 96H, 98H, 9AH, 9CH, 9EH, 00H, 00H, 00H, 00H, 00H, 00H

DB 0A0H, 0A2H, 0A4H, 0A6H, 0A8H, 0AAH, 0ACH, 0AEH, 0B0H, 0B2H, 00H, 00H, 00H, 00H, 00H, 00H

DB 0B5H, 0B6H, 0B8H, 0BAH, 0BCH, 0BEH, 0C0H, 0C2H, 0C4H, 0C6H, 00H, 00H, 00H, 00H, 00H, 00H

DB 0C8H, 0CAH, 0CCH, 0CEH, 0D0H, 0D2H, 0D4H, 0D6H, 0D8H, 0DAH, 00H, 00H, 00H, 00H, 00H, 00H

DB 0DCH, 0DEH, 0E0H, 0E2H, 0E4H, 0E6H, 0E8H, 0EAH, 0ECH, 0EEH, 00H, 00H, 00H, 00H, 00H, 00H

DB 0F0H, 0F2H, 0F4H, 0F6H, 0F8H, 0FAH, 0FCH, 0FEH

;********************

;10ms延时子程序

;********************

DELAY:MOV 50H,#10

LOOP1:MOV R6,#250

LOOP2:NOP

NOP

DJNZ R6,LOOP2

DEC 50H

DJNZ 50H,LOOP1

RET

WEL_1:

DB "作品:",0CAH,0FDH,"控恒压源"

WEL_2:

DB "输出电压:"

WEL_3:

DB "0123456789V."

WEL_4:

DB "制作者:谢明亮,"

WEL_5:

直流电源范文第3篇

1电力通信直流电源的组成

通信直流电源是一个复杂的系统,目前电力通信直流电源均采用-48V的高频开关直流电源,电力系统中典型的电力通信直流电源结构组成如下图所示,从图中可知电力通信直流电源由交流部分、整流器、直流分配部分、蓄电池组和监控模块等按照要求组合而成。

①交流部分。交流部分的市电输入一般为2路380V三相四线交流输入,在电源容量较小时有时也使用2路220V单相交流输入,以保证电源可靠供电。为防止雷击和过电压破坏,在市电输入端应加装避雷器,常用的有普通氧化锌避雷器和OBO防雷模块等;由于此处的防雷主要是对非直击的感应雷击的浪涌电压的防护,因此避雷器的通流量一般选择在15-20KA,残压在1.5KV左右,就可有效的保护电源设备。为实现两路输入的交流电的通断互锁,自动切换,还需装设交流切换装置,采用机械互锁或电气互锁方式,但是应注意任何时候都不允许出现两路交流电源同时接通或者同时断开的现象。经过切换装置后,交流输入分为整流器模块输入和交流分路输出,交流分路输出为机房其他交流用电设备提供电源,如计算机、UPS等。

②整流器部分。整流器是通信直流电源的最重要的组成部分,通信直流电源的供电质量主要取决于整流器的电气指标,它完成AC-DC变换并以并联均流方式为通信设备供电,同时对蓄电池组进行恒流限压充电和监控模块的供电。现在所有的通信直流电源均采用模块化高频开关整流器,它具有其体积小、效率高、模块化、功率因素高、输入电压范围宽、噪声低、可靠性高以及可带电热插拔等优点;电力通信直流电源所使用的高频开关整流器模块一般为单相220V交流输入,功率因素可达0.99以上,模块容量一般为每块20A/-48V~50A/-48V;在实际使用中,如果输入的是380V三相四线交流电源,则应注意将所有整流模块平均分配到每一相;同时为了提高整流器工作的可靠性,在设计时应考虑多余备用容量,模块配置采用N+1冗余。高频开关整流器模块有内控式和外控式两种类型,内控式整流器内部设有独立的监控单元,可对整流器模块参数进行设置、检测和显示,与系统的监控模块采用RS-485总线相连;外控式整流器在内部不设独立的监控单元,完全由系统监控模块控制,若监控模块故障,整流器模块转为自主工作状态,其输出电压电流服从初始的设定值。

③直流分配部分。直流分配部分将整流器输出的直流电压进行分配,一路给蓄电池组充电,其它分配给通信设备和其它直流用户供电。直流分配部分决定了设备的最终分配容量,因此要求在设计时应充分考虑直流分路输出的用户数和容量,满足日后通信设备接入的需要。在给蓄电池组充电的分路开关之前应加装欠压保护继电器,当蓄电池组放电达到欠压告警值时发出告警,放电到欠压关断值时控制自动断开蓄电池组,保护蓄电池组不会因为过放电而导致损坏。现在直流分路输出开关多采用空气开关,应注意配置使用直流空气开关,因为直流空气开关的灭弧能力很强,而不应使用普通交流空气开关。

④蓄电池组。蓄电池组是通信直流电源的不可缺少的组成部分,蓄电池组一旦发生故障,在市电输入停电时,将造成所有使用该蓄电池组作后备电源的通信设备全部停止工作,造成通信中断。现在使用的蓄电池组都是阀控式密封铅酸蓄电池(简称VRLA),它完全取代了过去使用的普通开口铅酸蓄电池,采用密封结构,基本无酸气泄漏,可与设备同室安装,无需加电解液维护;可采用立式、卧式、单层、多层等各种组合安装方式,安装灵活;适用浮充工作制,使得供电系统电压更稳定;寿命、容量等受温度影响较大。蓄电池组的容量决定了市电停电后通信设备的运行时间,一般可根据负载大小和放电时间来选择蓄电池组的容量,计算方法为:负载容量(A)×放电时间(h)÷放电时间小时率放电容量系数。

⑤监控模块。监控模块对于通信直流电源来说具有智能控制中心的作用,主要有监测功能,包括监测交流输入电压、电流,整流器模块并联输出电压值和每个整流器模块的输出电流,负载电流,蓄电池组充放电电流和电压等;控制功能,包括电源系统的开关机,各整流器模块的开关机,直流输出电压、输出电流极限值的设定,蓄电池组浮充、均衡充电电压和充电电流的极限值设定,电池温度系数的补偿和蓄电池组欠压保护设定等;告警功能,当电源运行过程中某些参数达到或者超过告警的设定值,监控模式将发出声光告警,并显示故障部位和原因。此外,监控模块还应可通过RS232/RS485接口与上级监控中心联系,以实现集中监控。

2电力通信直流电源的维护

由于目前电力通信直流电源均使用了高频开关电源和阀控式密封铅酸蓄电池,这给电源系统的维护带来了许多便利,但是在维护方面还要注意按照使用维护要点做好维护工作,才能真正保证电力通信直流电源可靠、稳定、不间断地为通信设备供电。

①电源的交流输入所采用的避雷器的状态在进行电源的巡视维护时应注意检查,特别是雷雨天气时,更应该注意检查避雷器的状态,发现问题及时更换,如当发现OBO防雷模块的故障显示窗的颜色由绿色变成红色时,就要对防雷模块进行更换,确保发生雷击时能够发挥其防雷作用。这里应注意普通氧化锌避雷器存在有一定的漏电流,长期使用容易老化,造成使用性能下降,所以即使长时间没有雷击发生,也要定期进行更换,确保其防雷效果。

②高频开关电源在正常使用的情况下,整流器主机的维护工作量很少,主要是防尘和定期除尘,否则飞尘加上潮湿会引起主机工作紊乱,同时积尘也会影响器件的散热。一般每季度应对主机彻底清洁一次,在除尘时应检查各连接件和插接件有无松动和接触不牢的情况。

③通信高频开关电源中设置的参数在使用中不能随意改变。

④通信高频开关电源在使用时应注意避免随意增加大功率的额外设备,也不允许在满负载状态下长期运行。由于通信直流电源几乎是在不间断状态下运行的,增加大功率负载或者在基本满载下工作,都将可能造成整流器模块故障,严重时将损坏整个电源系统。⑤作为后备电源的蓄电池组维护工作载电力通信直流电源的维护工作中占有非常重要的地位,这也是电源维护工作的一个难点。由于现在使用的阀控式密封铅酸蓄电池实现了密封,免除了以往开口铅酸电池的测比、配比、添加蒸馏水等工作,大大减少了维护工作量,因此有些维护人员认为其是免维护电池,在使用中不去维护,听之任之,结果造成维护不当,发生问题。在对阀控式密封铅酸蓄电池的维护工作中,应重点注意以下问题:

定期检查整个蓄电池组的浮充电压,如果其浮充电压超出了蓄电池组的要求,应进行调整。浮充电压过高将增加水的损耗,加速电池正板栅的腐蚀,可能严重影响蓄电池的寿命;过低则可能不能使蓄电池充足电。对单只蓄电池每月应记录一次它的浮充电压,若电压超过厂家的指标,观察几个月后无向均一方向发展的趋势,应与厂家联系进行处理。

阀控式密封铅酸蓄电池的日常运行对温度要求较高,它要求的环境温度最好是20~25℃,如不然,应对浮充电压采取温度补偿,每升高1℃,浮充电压应降低3~4mv,但即使对浮充电压进行调整补偿,温度仍对蓄电池的寿命影响较大,如寿命为10年的蓄电池在30℃下运行,无温度补偿寿命仅为5年,有温度补偿寿命也缩短为8年。因此阀控式密封铅酸蓄电池应安装在有空调的房间,安装方式要有利于散热。在日常巡视维护中发现蓄电池有明显发热现象应立即与厂家联系进行处理。

阀控式密封铅酸蓄电池的自放电极低,而且电池内部不会形成电解液分层现象,因此无需定期进行高压均衡充电,定期均衡充电只能增加水的损耗,增大正板栅的腐蚀,在对蓄电池进行维护时应尽量减少或取消均衡充电。

应避免阀控式密封铅酸蓄电池的大电流充电和过放电。大电流充电可能使蓄电池极板膨胀变形,活性物质脱落,电池内阻增大且温度升高,造成电池报废。过放电将使蓄电池的循环寿命变短,放电后应立即充电,否则易引起蓄电池内部硫酸盐化现象,导致容量不能恢复。因此在进行容量试验或放电检修中,通常放电达到蓄电池组容量的30%~50%即可。

检查蓄电池连接部分有无大压降、腐蚀、松动等现象,如有应及时紧固,否则极有可能引起烧毁电池等事故。

当发现蓄电池组内有损坏且无法修复的蓄电池时应及时进行更换,更换时不得把不同容量、不同性能、不同厂家的蓄电池连在一起,否则将对整组蓄电池带来不利的影响。

阀控式密封铅酸蓄电池属于贫液电池,无法进行电解液比重测量,因此它的好坏和容量预测在业界也是一大难题,日常维护中可用电导仪测试电池内阻判断其好坏,但最可靠的方法还是放电法。

要注意阀控式密封铅酸蓄电池的寿命期限,对寿命已过期限的蓄电池组要及时进行更换,这样即保证供电后备电源的可靠,又可避免因蓄电池组影响到整个通信直流电源的运行。

⑥电源系统出现故障时,应先查明原因,分清是负载还是电源本身,是整流器还是蓄电池组。高频开关整流器模块的输入输出主回路由于有输入过压和输出限流保护,因此发生故障的可能性较小,其内部控制电路、显示电路、保护电路等发生的故障相对较多,而且这些电路中只要有一个元器件发生故障,就可能导致整流模块停止工作,处理这些故障时只需更换有故障的电路板便可排除故障。笔者在维护工作中就曾经遇到过高频开关整流器通电后显示正常,测量输出电压正常,就是不能带负载,后经检查发现就是内部控制电路电路板问题造成了该模块无法正常工作。

⑦当高频开关整流器模块出现保险管烧断等故障时,务必不得直接进行更换保险管后通电重新开机,否则会接连发生相同的故障,不但检查不出故障所在,还可能会在开机的瞬间导致故障范围更加扩大。在现场处理紧急故障时,可采取整流器整机更换的方式来排除通信直流电源供电的故障,但在更换整流器时,通信直流电源供电系统不得停止对通信设备的供电。

⑧通信设备在接入直流配电分路输出开关时,要注意通信设备上的电源总输入开关的容量不得大于其接入的直流配电分路输出的开关容量,否则将引起越级跳开关,可能造成通信直流电源系统故障。

直流电源范文第4篇

        关键词:电力通信;直流电源;维护

        电力通信是电力 企业 生产和管理的基础手段,是电网安全运行的重要环节,而电力通信直流电源则是保证通信设备正常运行,通信畅通的基础,是电力通信的“心脏”,一旦通信直流电源发生故障,将造成通信设备供电中断,引起通信电路中断,造成重要信息无法正常传输。近年来,电网规模的不断扩大和现代通信技术的进步,极大地促进了电力通信事业的飞速发展,随着电力通信整体水平的不断提高、通信设备的不断更新,对电力通信直流电源也提出了更高的要求,因此做好对电力通信直流电源的维护具有重要意义,直接影响着电力通信网的安全平稳运行。

        1电力通信直流电源的组成

        通信直流电源是一个复杂的系统,目前电力通信直流电源均采用-48v的高频开关直流电源,电力系统中典型的电力通信直流电源结构组成如下图所示,从图中可知电力通信直流电源由交流部分、整流器、直流分配部分、蓄电池组和监控模块等按照要求组合而成。

        ①交流部分。交流部分的市电输入一般为2路380v三相四线交流输入,在电源容量较小时有时也使用2路220v单相交流输入,以保证电源可靠供电。为防止雷击和过电压破坏,在市电输入端应加装避雷器,常用的有普通氧化锌避雷器和obo防雷模块等;由于此处的防雷主要是对非直击的感应雷击的浪涌电压的防护,因此避雷器的通流量一般选择在15-20ka,残压在1.5kv左右,就可有效的保护电源设备。为实现两路输入的交流电的通断互锁,自动切换,还需装设交流切换装置,采用机械互锁或电气互锁方式,但是应注意任何时候都不允许出现两路交流电源同时接通或者同时断开的现象。经过切换装置后,交流输入分为整流器模块输入和交流分路输出,交流分路输出为机房其他交流用电设备提供电源,如 计算 机、ups等。

        ②整流器部分。整流器是通信直流电源的最重要的组成部分,通信直流电源的供电质量主要取决于整流器的电气指标,它完成ac-dc变换并以并联均流方式为通信设备供电,同时对蓄电池组进行恒流限压充电和监控模块的供电。现在所有的通信直流电源均采用模块化高频开关整流器,它具有其体积小、效率高、模块化、功率因素高、输入电压范围宽、噪声低、可靠性高以及可带电热插拔等优点;电力通信直流电源所使用的高频开关整流器模块一般为单相220v交流输入,功率因素可达0.99以上,模块容量一般为每块20a/-48v~50a/-48v;在实际使用中,如果输入的是380v三相四线交流电源,则应注意将所有整流模块平均分配到每一相;同时为了提高整流器工作的可靠性,在设计时应考虑多余备用容量,模块配置采用n+1冗余。高频开关整流器模块有内控式和外控式两种类型,内控式整流器内部设有独立的监控单元,可对整流器模块参数进行设置、检测和显示,与系统的监控模块采用rs-485总线相连;外控式整流器在内部不设独立的监控单元,完全由系统监控模块控制,若监控模块故障,整流器模块转为自主工作状态,其输出电压电流服从初始的设定值。

        ③直流分配部分。直流分配部分将整流器输出的直流电压进行分配,一路给蓄电池组充电,其它分配给通信设备和其它直流用户供电。直流分配部分决定了设备的最终分配容量,因此要求在设计时应充分考虑直流分路输出的用户数和容量,满足日后通信设备接入的需要。在给蓄电池组充电的分路开关之前应加装欠压保护继电器,当蓄电池组放电达到欠压告警值时发出告警,放电到欠压关断值时控制自动断开蓄电池组,保护蓄电池组不会因为过放电而导致损坏。现在直流分路输出开关多采用空气开关,应注意配置使用直流空气开关,因为直流空气开关的灭弧能力很强,而不应使用普通交流空气开关。

        ④蓄电池组。蓄电池组是通信直流电源的不可缺少的组成部分,蓄电池组一旦发生故障,在市电输入停电时,将造成所有使用该蓄电池组作后备电源的通信设备全部停止工作,造成通信中断。现在使用的蓄电池组都是阀控式密封铅酸蓄电池(简称vrla),它完全取代了过去使用的普通开口铅酸蓄电池,采用密封结构,基本无酸气泄漏,可与设备同室安装,无需加电解液维护;可采用立式、卧式、单层、多层等各种组合安装方式,安装灵活;适用浮充工作制,使得供电系统电压更稳定;寿命、容量等受温度影响较大。蓄电池组的容量决定了市电停电后通信设备的运行时间,一般可根据负载大小和放电时间来选择蓄电池组的容量,计算方法为:负载容量(a)×放电时间(h)÷放电时间小时率放电容量系数。

        ⑤监控模块。监控模块对于通信直流电源来说具有智能控制中心的作用,主要有监测功能,包括监测交流输入电压、电流,整流器模块并联输出电压值和每个整流器模块的输出电流,负载电流,蓄电池组充放电电流和电压等;控制功能,包括电源系统的开关机,各整流器模块的开关机,直流输出电压、输出电流极限值的设定,蓄电池组浮充、均衡充电电压和充电电流的极限值设定,电池温度系数的补偿和蓄电池组欠压保护设定等;告警功能,当电源运行过程中某些参数达到或者超过告警的设定值,监控模式将发出声光告警,并显示故障部位和原因。此外,监控模块还应可通过rs232/rs485接口与上级监控中心联系,以实现集中监控。

        2电力通信直流电源的维护

        由于目前电力通信直流电源均使用了高频开关电源和阀控式密封铅酸蓄电池,这给电源系统的维护带来了许多便利,但是在维护方面还要注意按照使用维护要点做好维护工作,才能真正保证电力通信直流电源可靠、稳定、不间断地为通信设备供电。

        ①电源的交流输入所采用的避雷器的状态在进行电源的巡视维护时应注意检查,特别是雷雨天气时,更应该注意检查避雷器的状态,发现问题及时更换,如当发现obo防雷模块的故障显示窗的颜色由绿色变成红色时,就要对防雷模块进行更换,确保发生雷击时能够发挥其防雷作用。这里应注意普通氧化锌避雷器存在有一定的漏电流,长期使用容易老化,造成使用性能下降,所以即使长时间没有雷击发生,也要定期进行更换,确保其防雷效果。

        ②高频开关电源在正常使用的情况下,整流器主机的维护工作量很少,主要是防尘和定期除尘,否则飞尘加上潮湿会引起主机工作紊乱,同时积尘也会影响器件的散热。一般每季度应对主机彻底清洁一次,在除尘时应检查各连接件和插接件有无松动和接触不牢的情况。

        ③通信高频开关电源中设置的参数在使用中不能随意改变。

        ④通信高频开关电源在使用时应注意避免随意增加大功率的额外设备,也不允许在满负载状态下长期运行。由于通信直流电源几乎是在不间断状态下运行的,增加大功率负载或者在基本满载下工作,都将可能造成整流器模块故障,严重时将损坏整个电源系统。

        ⑤作为后备电源的蓄电池组维护工作载电力通信直流电源的维护工作中占有非常重要的地位,这也是电源维护工作的一个难点。由于现在使用的阀控式密封铅酸蓄电池实现了密封,免除了以往开口铅酸电池的测比、配比、添加蒸馏水等工作,大大减少了维护工作量,因此有些维护人员认为其是免维护电池,在使用中不去维护,听之任之,结果造成维护不当,发生问题。在对阀控式密封铅酸蓄电池的维护工作中,应重点注意以下问题:

定期检查整个蓄电池组的浮充电压,如果其浮充电压超出了蓄电池组的要求,应进行调整。浮充电压过高将增加水的损耗,加速电池正板栅的腐蚀,可能严重影响蓄电池的寿命;过低则可能不能使蓄电池充足电。对单只蓄电池每月应记录一次它的浮充电压,若电压超过厂家的指标,观察几个月后无向均一方向 发展 的趋势,应与厂家联系进行处理。

        阀控式密封铅酸蓄电池的日常运行对温度要求较高,它要求的环境温度最好是20~25℃,如不然,应对浮充电压采取温度补偿,每升高1℃,浮充电压应降低3~4mv,但即使对浮充电压进行调整补偿,温度仍对蓄电池的寿命影响较大,如寿命为10年的蓄电池在30℃下运行,无温度补偿寿命仅为5年,有温度补偿寿命也缩短为8年。因此阀控式密封铅酸蓄电池应安装在有空调的房间,安装方式要有利于散热。在日常巡视维护中发现蓄电池有明显发热现象应立即与厂家联系进行处理。

        阀控式密封铅酸蓄电池的自放电极低,而且电池内部不会形成电解液分层现象,因此无需定期进行高压均衡充电,定期均衡充电只能增加水的损耗,增大正板栅的腐蚀,在对蓄电池进行维护时应尽量减少或取消均衡充电。

        应避免阀控式密封铅酸蓄电池的大电流充电和过放电。大电流充电可能使蓄电池极板膨胀变形,活性物质脱落,电池内阻增大且温度升高,造成电池报废。过放电将使蓄电池的循环寿命变短,放电后应立即充电,否则易引起蓄电池内部硫酸盐化现象,导致容量不能恢复。因此在进行容量试验或放电检修中,通常放电达到蓄电池组容量的30%~50%即可。

        检查蓄电池连接部分有无大压降、腐蚀、松动等现象,如有应及时紧固,否则极有可能引起烧毁电池等事故。

        当发现蓄电池组内有损坏且无法修复的蓄电池时应及时进行更换,更换时不得把不同容量、不同性能、不同厂家的蓄电池连在一起,否则将对整组蓄电池带来不利的影响。

        阀控式密封铅酸蓄电池属于贫液电池,无法进行电解液比重测量,因此它的好坏和容量预测在业界也是一大难题,日常维护中可用电导仪测试电池内阻判断其好坏,但最可靠的方法还是放电法。

        要注意阀控式密封铅酸蓄电池的寿命期限,对寿命已过期限的蓄电池组要及时进行更换,这样即保证供电后备电源的可靠,又可避免因蓄电池组影响到整个通信直流电源的运行。

        ⑥电源系统出现故障时,应先查明原因,分清是负载还是电源本身,是整流器还是蓄电池组。高频开关整流器模块的输入输出主回路由于有输入过压和输出限流保护,因此发生故障的可能性较小,其内部控制电路、显示电路、保护电路等发生的故障相对较多,而且这些电路中只要有一个元器件发生故障,就可能导致整流模块停止工作,处理这些故障时只需更换有故障的电路板便可排除故障。笔者在维护工作中就曾经遇到过高频开关整流器通电后显示正常,测量输出电压正常,就是不能带负载,后经检查发现就是内部控制电路电路板问题造成了该模块无法正常工作。

        ⑦当高频开关整流器模块出现保险管烧断等故障时,务必不得直接进行更换保险管后通电重新开机,否则会接连发生相同的故障,不但检查不出故障所在,还可能会在开机的瞬间导致故障范围更加扩大。在现场处理紧急故障时,可采取整流器整机更换的方式来排除通信直流电源供电的故障,但在更换整流器时,通信直流电源供电系统不得停止对通信设备的供电。

        ⑧通信设备在接入直流配电分路输出开关时,要注意通信设备上的电源总输入开关的容量不得大于其接入的直流配电分路输出的开关容量,否则将引起越级跳开关,可能造成通信直流电源系统故障。

        3结语

        面对电力通信发展的日新月异,做好电力通信直流电源的维护显得尤为重要,相信在全体电力通信人员的努力下,不断 总结 和提高电力通信直流电源的运行维护经验和水平,使电力通信电源能够为电力通信的快速发展提供更优质可靠电源保障。

参考 文献 :

直流电源范文第5篇

关键词: 变电站 直流电源屏 电源设备

目前我国电力所使用的直流分合闸电源大部分采用相控电源,但相控电源在纹波、效率、体积等方面不尽人意,监控系统不完善,主从各分,用户使用不便,对电力系统新的要求达不到标准。另外由于充电设备与蓄电池并联运行,当纹波系统较大、浮充电压波动或偏低时,会出现蓄电池脉冲充电放电,对电池不利。

90年代以来,美国、德国等西方国家新建电厂和变电站已全部采用开关电源,其蓄电池也由原来的镉镍电池改用铅酸免维护蓄电池,由于新的断路器(真空开关或弹簧储能式)的采用,合闸电流大幅减少,双母线也逐步用单母线取代。

高频开关电源以其体积小、重量轻、效率高、输出纹波小、模块叠加、N+1热备份设计,及便于计算机管理等优点,迎合了现代电源的潮流。在计算机、航天、通信、仪器仪表方面,开关电源已得到广泛应用。近年来,国内用的电源已逐步由开关电源取代相控电源,可以预计,在电力操作电源方面,开关电源逐步取代相控电源会成为趋势。

随着高频开关电源在我国电力系统的日益普及,越来越多的变电站(所)发电厂的常规直流电源屏被高频开关电源所取代。原电力部、水利部也明确下文推广(变)电站小型化、无人值班化模式。这一发展趋势使直流电源设备市场上出现了众多厂家。那么,如何选择你所需要的直流电源屏?笔者就多年从事相关工作的体会,谈谈如下看法。

1.所选设备是否适用

许多人在选择高频直流电源装置时,常有这样的认识,即技术等级越高越好,价格越贵越好,其实并非如此。任何产品从试制到完善成熟都有一个过程,这其中需要用户对实际运行中出现的问题反馈给厂家以不断地改进,并且高频开关电源原理已经很成熟,大部分厂家都采用经典电路。因此你选择的装置最好是该厂家有一年以上稳定运行经验的产品。另一方面要考虑自己(变)电站的技术要求适配性,如我国大部分农村(变)电站不具备无人值班的条件,就没有必要选择四遥功能齐全的装置,如考虑以后可能的联网,实现通讯的要求,则订货时可要求保留通讯接口,以便于今后的改造。其次电池选择也很重要,电池分为防酸式、密封式、全密封式,现一般选择全密封式。

2.设备的抗干扰性及可靠性

电力系统最首要、最根本的要求乃是设备的安全性、可靠性。为此,在选择直流电源装置时,应特别注意其抗干扰性的主要措施。

高频开关电源都采用微机控制,如有的厂家采用工控机,有的采用可编程控制器,有的采用单片机,而计算机技术发展很快,因此常常出现的情况是:代表当年最先进技术生产的产品却缺少必要的运行时间,其可靠性如何就是一个疑问。一般来说,用可编程控制器可靠性高,但价格贵。

3.操作维护是否简单方便

用户在采用高频开关电源肯定其先进性能时,还应重点考虑其操作是否简单易学,维护是否方便,因此中央控制器的控制软件不论如何先进如何复杂,都应使其界面直观,操作简单、方便。在出现故障时其显示屏能自动显示故障性质、发生时间、发生位置等主要参数,有较强的自检功能,以便于用户进行维护。所以在选择直流电源屏时要注意观察厂家的软件显示,并结合自身今后运行维护的实际情况,考察其中中央控制器的操作、显示否简单、直观。

4.价格是否合理

合理的价格是大多数用户必须要考虑的因素之一。很多用户在考虑直流电源屏时,常对同一类型设备不同厂家价格差异过大感到不解,其实这是由几个原因造成的:其一,高频开关模块的造价不同,有的厂家的高频开关模块是采用进口元件,其模块的成本较高,而有的厂家的高频开关模块是采用国产元件,其成本较低。其二,中央控制器的造价不同,有的厂家的中央控制器是采用可编程控制器(PLC),这是现在大多数厂家所采用的,而可编程控制器的生产厂家也不同,其中国产的品牌价格较低,原装进口的价格较。其三,不同厂所用的模块输出电流大小不一样,如模块的输出电流小,配的模块数多,可靠性高,但增加成本。对于以上种种因素,用户在订购设备时,要综合考虑。