首页 > 文章中心 > 烟气在线监测

烟气在线监测

烟气在线监测范文第1篇

关键词CEMS;脱硫;连续监测;SO2

中图分类号:TN931.3 文献标识码:A

我厂一期2×330MW脱硫于2008年底投产,采用石灰石-石膏干法脱硫工艺,无烟气旁路,烟气连续检测系统采用的是北京雪迪龙公司的SCS-900型系统,测量采用直接抽取法。

1 我厂脱硫CEMS烟气在线监测系统概述

脱硫在线监测系统测量的主要参数:SO2、NOX、O2、流量、烟尘、温度、压力等,其中SO2、NOX采用NRIR不分光红外法、O2采用电化学法用分析仪检测,粉尘浓度(激光后散射法)、流量(皮托管差压法)、温度、压力等通过安装在现场平台上的仪表进行检测,这些数据经过信号处理传至PLC,上位机与PLC进行通讯(RS485)采集到环保要求数据。通过DAS站对环保数据进行存储、打印、统计和传输,并分别传至DCS和环保局。

2 系统原理

2.1 系统原理

CEMS烟气连续排放监测系统(Continuous emission monitoring systems for flue gas) 简称CEMS,主要用来连续监测烟气中烟尘及二氧化硫及氮氧化物的排放浓度及排放总量。系统主要包括:烟气颗粒物监测子系统(烟尘CEMS)、气态污染物监测子系统(烟尘CEMS)、气态污染物监测子系统(烟气CEMS)、排气参数子系统等三部分。

2.2 系统结构

CEMS系统采取了模块化的结构,系统功能单元大致分为室内和室外两部分。室内部分主要有主机柜(样气处理、分析仪、数据采集处理等)、供电电源、净化压缩空气源。室外部分主要有采样监测点电源箱、红外测尘仪、流速监测仪、烟气采样探头、空气过滤器以及伴热采样管线和信号控制电缆等组成。

2.3 气体监测

烟气的分析(SO2、NOX、O2)采样方法采用直接抽取加热法,分析仪表选用德国西门子多组分红外分析仪ULTTRAMAT23。SO2、NOX红外分析原理,O2采用电化学法。

我厂采用直接抽取法进行烟气分析,标准状态下的干烟气是指在温度273K,压力为101325Pa条件下不含水汽的烟气。系统主要由保温取样探头、保温输气管路和制冷除湿预处理系统组成,测量较准确,表计不准时可以随时用标气标定。

2.4 粉尘监测

我厂采用RBV粉尘仪,基于激光散射原理,基于烟尘粒子的背向散射,镜头要经常擦拭、污染严重时要用酒精棉对其清洗。特别是当法兰焊接在烟囱上后,如果为负压,需要连接保护过滤器;如果测点在正压,需要加反吹,含尘量应小于200毫克/方米。如果烟气中含水量太大会影响测量效果,水汽太大,水滴会被当成颗粒物测量。

2.5 流量测量

利用皮托管差压法,皮托管有两个测压孔,一个对准气体流动方向,测的是总压,另一个垂直于流动方向,测的是静压。流速与动压的平方根成正比,为了保证测量准确,增加了反吹管路和电磁阀,定时进行吹扫。

2.6 辅助参数

温度采用一体化温度变送器测量,压力采用西门子扩散硅微压变送器。

2.7 数据采集处理系统

由计算机、打印机、485-232转换器、相关软件。

2.8 气体预处理系统

2.8.1 气体采样

烟气经采样探头和烟气加热管线由取样泵抽到分析柜,气体伴热管路为避免从取样点及分析柜传输过程中不出现样气冷凝现象,避免SO2损失及样气畅通,取样管线及取样探头均采用加热方式,其温度要求控制在120-140度。采样流程为:样气-采样探头-采样管-分水器-制冷器冷枪A-过滤器FP1-两位一通电磁阀Y1-制冷器冷枪B-抽气泵-样气、标气切换阀-分析仪表-排气管路到室外。

2.8.2 真空泵为法国产KNF耐腐隔膜真空泵。

2.8.3 样气过滤器主要通过探头过滤器和过滤器组成。

2.8.4 样气除水:样气进入分析柜后,通过制冷器来对样气进行快速冷凝,经过制冷后的样气将满足分析仪要求。蠕动泵用于冷凝水的排放,制冷器的温度一般控制在+5±2℃,其中包括气体冷凝、过滤器和气流调节装置组成,使烟气中夹带的液态汽溶胶体、水分等冷凝液体,在经过汽水分离器的气膜时被捕集,集成液滴沿器壁下落,由出水口排入排水器内,从而达到气液分离的目的,并使样气得到进一步净化,并调节气流到一个合适的流量送入分析仪内。

2.8.5 净化器源:为仪器的气路提供清扫气,经过除水干燥,出游净化处理后的洁净空气。主要有:测尘仪的在线强制吹扫气路,防止光学镜头污染;用洁净的压缩空气吹扫采样气路和采样探头。双管伴热和吹扫气路,保证采样探头和管路的畅通。

3 分析仪故障分析

3.1 分析仪常见故障代码有M维护请求、F有故障、“!”是故障已被记录在日志中而且不错在。

3.2 烟气分析仪SO2数值显示偏小或不变

(1)当现场锅炉工况偏低或者停炉时,对SO2影响很大,当负荷高时,燃煤量大,SO2含量高;负荷波动大时,SO2变化也会大。

(2)当采样气体流量偏低时对SO2有很大影响,一般要求采样气体流量保持在0.8-1.2mg/min之间,流量偏低会使进入分析仪的气量过小而使得测量数值偏低。一般为采样探头、管路、控制电磁阀、冷凝器堵塞或冰冻现象,应使流量在正常范围。排气管、排水管冻管,导致管路堵,分析仪不能正常工作,SO2和O2浓度不准,要尽量提高环境温度,避免类似现象发生。

(3)当管路存在泄漏现象时,首先会是氧量偏大,SO2偏低,可能原因是采样管路、连接接头、过滤器、冷凝器、蠕动泵管等密封不严;从玻璃瓶进气口取下进气管,堵住进气口,如果浮子流量计小球到最低,且仪表出现报警说明柜内各装置密封良好。精密过滤器堵导致分析仪没进气,导致SO2和氧量浓度不变;蠕动泵坏导致系统漏入空气使分析仪数据测量不准确。

3.3 采样气体流量偏高或偏低

管路漏气时,流量显示偏高,SO2偏高,此时应检查密封。

管路有堵塞时,流量计显示偏低且调整螺钉无效、SO2偏高,此时应检查真空泵处理及管路堵塞情况。

4 系统维护

4.1 在线监测SO2数据异常的处理方法

在CEMS小间检查在线分析仪的流量是否保持在1.0mg/min左右,如果不能调节,拔下初级过滤器前取样管,观察分析仪流量是否能升高到2.0mg/min以上,若不能则重点检查初级过滤器、真空泵、气管、各接头、冷凝器、气体排出管是否顺畅等。若能,则重点检查烟气取样装置是否堵塞,重点检查采样滤芯、探头、电磁阀、伴热管线等;检查排水蠕动泵运转及排水、泵的严密性、查看有无漏气,最后用标准气对分析仪进行标定

4.2 SO2标定步骤

零点标定时按CAL键,拔下真空泵入口软管,自动校准零点,要求分析仪流量计保持在1.0ml/min左右,校准完后自动进入测量状态。量程标定时要求通入符合条件的标准气体。标气浓度单位换算系数:

SO2浓度单位:1μmol/mol=64/22.4mg/m3=2.86 mg/m3

NO浓度单位:1μmol/mol=30/22.4mg/m3=1.34 mg/m3

NO2浓度单位:1μmol/mol=46/22.4mg/m3=2.05 mg/m3

4.3 日常维护与保养

维护内容包括系统检查与部件更换,一般包括日常检查和定期检查。日常检查包括对ULTRAMAT23、保护过滤器、制冷器后管路、制冷器、蠕动泵、储液罐、采样管线、采样探头、粉尘仪风机、DAS系统进行检查;定期检查包括测尘仪零点及跨度校准15-30天,流量计校准零点、更换机柜风扇滤网、U23量程校准周期是3-6个月,更换取样探头过滤器滤芯、蠕动泵管及粉尘仪风机滤芯周期为6个月,更换取样泵膜片要1-2年,更换电磁阀周期为3年。还要每3个月对分析仪进行零漂、跨漂校准并填写校准记录。

过剩空气系数α=21%/(21%-XO2);XO2为实际含氧量

用折算浓度算超标C=C?*(α/αS);C为折算浓度,C'标干污染物浓度,αS锅炉标准的

颗粒物和气态污染物排放率G= C'*Qsn*10-69(Kg/h); Qsn为标干烟气流量,单位m3/h

环保部门的监督考核从验收合格后开始,每季度企业自行开展比对监测,比对监测时,生产设备应正常稳定运行。比对监测项目有烟气温度、烟气流速、氧量和污染物实测浓度(颗粒物、SO2、NOX)。

数据统计方法及判定:

每季度有效数据捕集率=(该季度小时数-缺失数据小时数-无效数据小时数)/(该季度小时数-无效数据小时数)×100%

缺失数据时间段包括:烟气CEMS故障时间、维修时间、失控时段、参比方法替代时段以及有计划地维护保养、校准、校验等烟气CEMS缺失时间段。

无效数据时间段包括:固定污染源起停运(大修、中修、小修等)期间以及闷炉等时间段。

根据环保标准规定烟气CEMS每季度有效数据捕集率应达到75%以上。

参考文献

烟气在线监测范文第2篇

关键词:火电厂;脱硫烟气;在线监测;系统

Abstract: the power plant is both a has the nature of the utility industry, it is also a high pollution emissions of industry, the industry emissions of monitoring, is not only beneficial to the development of the industry itself, and at the same time, the people and the society and the environment has a very important significance. This article mainly from the power plant flue gas desulfurization of on-line monitoring system of the importance of analysis, and then to the power plant flue gas desulfurization operation of on-line monitoring system for the problems to be pay attention to detail the analysis, this paper can let hope that through on-line monitoring system in flue gas desulfurization thermal power plants in the application of more perfect, make its power to the role can more fully play comes out.

Key words: the power plant; Flue gas desulfurization; Online monitoring; system

中图分类号:TN931.3文献标识码:A文章编号:

一、火电厂脱硫烟气在线监测系统的重要性

众所周知,火电厂是一个具有公用事业性质的行业,同时,因其运行方式的缘故,它也是一个高污染的行业,因此,如何控制好火电厂的排污工作已成为业内及社会所共同关注的焦点之一。同时,伴随着我国经济的发展和科技实力的增加,在火电厂中应用现代高科技进行各方面的控制已是越来越多,譬如说,火电厂脱硫烟气在线检测系统,该系统正是结合了火电厂的运营特点及现代的高科技而形成的,用以对火电厂的脱硫烟气进行在线监测,通过火电厂脱硫烟气在线监测系统的应用,可以有效地监测到火电厂脱硫烟气的指数,看其是否与我国有关的排污标准相符,进而对火电厂的排污工作进行控制,是我国环保主管部门对火电厂进行排污监测及控制的有效手段之一。火电厂脱硫烟气在线监测系统的应用不仅对控制火电厂的脱硫烟气的指数有着重要的意义,同时对于环境的保护及社会的发展也有着不可替代的意义。

然而,由于各方面的原因,火电厂脱硫烟气在线监测系统在火电厂中的应用还是不太成熟,有许多问题还是有待解决的,只有在火电厂脱硫烟气在线监测系统的运行过程中,加强对这些问题的注意,才能够充分发挥出火电厂脱硫烟气在线监测系统的作用,为行业、人民及社会做出贡献。

二、火电厂脱硫烟气在线监测系统运行中需要注意的问题

2.1合理安排脱硫烟气取样监测点位置

就我国当前的实际情况而言,火电厂在进行基建时,在设计脱硫系统的过程中,大多数都会提出关于脱硫效率的要求,通常来说,火电厂会要求脱硫系统的脱硫效率不能低于百分之九十五。因此,脱硫厂家在对脱硫系统(FGD)进行设计时,均会对FGD的脱硫效率进行考虑。FGD的脱硫效率会受到各个方面的影响,如旁路门漏烟气,为了消除这一因素对脱硫效率的影响,脱硫厂家在对脱硫系统进行设计时,通常会将净烟气测试取样点设计在脱硫系统的出口净烟道上。然而,这种设计是与某些要求不相符的,主要表现在:①与环保主管部门所要求的,脱硫烟气在线监测装置(CEMS)需装设在烟囱入口或烟囱处,以便于能够实时监控燃煤机组脱硫烟气的排放量的要求不相符;②与电监会的综合脱硫效率监测的要求不相符。

2.2合理布置取样点,开好比对孔

由于一般电厂为了节省基建费用,烟道均较短,特别是旁路烟道与净烟道混合后至烟囱入口的混合烟道,加上管道内部支撑、弯头、变径等因素造成烟道内介质流动状态较为紊乱或层流,而一般烟气取样孔只有一只孔,使此取样点的监测数据不能代表整修烟道变化状况,其后果一是电厂不清楚机组脱硫系统运行的真正运行情况;二是当环保部门到电厂进行比对试验时认为表计不准,偏差大,受到环保处罚。为此,在取样孔的四周附近至少并开各两对比对测试孔,需特别注意的是,取样点在机组运行正常时,需请专业的测试单位对不同负荷工况下对每个比对孔的烟气参数进行测试,并与CMES取样点的参数进行比较,从中找到最能线性反映烟气参数变化的点后,把此点作为取样点。要特别注意的是:取样点要在混合烟道的中心线及上下处开孔,最好稍微偏上一些,此处的中心线是指净烟气和旁路烟道交叉部分的中心线,而不是仅仅是混合烟道的中心线而已,这一点要注意。

烟气在线监测范文第3篇

关键词:超低排放;CEMS监测;设计

引言

近年来,我国雾霾天气频发,大气污染物排放形式日趋严峻。同时,相关环保政策明确新建、在建火电机组必须采用烟气清洁排放技术,达到燃气轮机组排放标准要求(烟尘

1 CEMS概述

火电厂烟气排放连续监测系统(continuous emissions monitoring system,CEMS)是指θ济旱绯а唐排放的气态污染物(SO2、NOX)和颗粒物进行浓度和排放总量连续监测并将信息实时传输到主管部门的装置。CEMS主要由气态污染物监测系统、颗粒物监测系统、烟气参数监测系统和数据采集处理与通讯子系统组成。气态污染物监测子系统主要用于监测气态污染物SO2、NOX等的浓度和排放总量;颗粒物监测子系统主要用来监测烟尘的浓度和排放总量;烟气参数监测子系统主要用来测量烟气流速、烟气温度、烟气压力、烟气含氧量、烟气湿度等;数据采集处理与通讯子系统甲酸污染物浓度和排放量,并将信息实时传输到主管部门。

2 CEMS监测方法

2.1 取样方法

目前国内外烟气取样方法有直接抽取法和稀释法两种。

直接抽取法是通过取样管抽取烟气,取样时通过伴热管对烟气进行保温,使其不结露,并经冷凝器除湿后送至分析仪。

稀释取样法是烟气通过前端填有滤料的“恒流稀释探头”和导气管,经纯净空气稀释的烟气进入分析仪进行测量。

2.2 颗粒物监测方法

光散射法和浊度法均适用于烟尘连续监测。

光散射法是指烟气中的烟尘与激光光束发生作用,使部分光发生散射,通过测量散射光强测量烟尘的浓度。

浊度法是采用光束穿透气流的原理,通过测量光强的强弱程度取得烟尘的浓度值。

2.3 气态污染物监测方法

紫外荧光法和非分散红外吸收法适用于SO2监测,化学发光法和非分散红外吸收法适用于NOX监测。

紫外荧光法原理:烟气在某个波长的紫外光照射下,其中的SO2分子吸收紫外光产生能级跃迁,从基态变为激发态,激发态SO2不稳定,返回低能量状态的过程中发射出特定的荧光,该荧光与烟气中SO2的浓度成正比,通过测量荧光强度,即可得到SO2的浓度值。

化学发光法原理;烟气中的NO与臭氧反应生成激发态的NO2,其返回基态时放出特定的光,该光的强度与烟气中的NO浓度成正比,测量发光强度即可得到NO浓度;同时,烟气中的NO2通过钼催化技术转化为NO与臭氧反应,测量光强即可得到NOX总浓度值。

非分散红外吸收法是指红外光源发出的红外辐射经过一定浓度待测的气体吸收之后,与气体浓度成正比的光谱强度会发生变化,通过测量光谱强度的变化量得到气体的浓度。

3 CEMS设计方案

3.1 原CEMS系统

原CEMS系统采用直接抽取法,烟气先经过采样探头内的初级过滤器对烟气中的粉尘进行过滤,然后通过已加热至150℃的探头和伴热管线,经过冷凝器二级冷凝除湿,最后进入烟气分析仪。烟气分析仪采用非分散红外法对SO2、NOX进行分析测量。由于原CEMS在湿法脱硫后,烟气中含水量较大,影响颗粒物的测量。故颗粒物采样系统安装在脱硫装置之前,通过参比方法取得脱硫出口的颗粒物浓度。原CEMS装置如表1。

3.2 CEMS选型

随着环保要求的升级,烟囱入口SO2、NOX和烟尘浓度较低,对烟气分析仪的精度、灵敏度要求更高。对于SO2分析,紫外荧光法的灵敏度比非分散红外法要高几个数量级,常用于大气微量监测,故超低改造后的SO2采用紫外荧光法检测。对于NOX分析法,化学发光法线性范围宽,特别在低浓度和微量检测中应用较多,故NOX采用化学发光法检测。对于分析烟尘,超低排放改造后增加了管式GGH,将进入烟囱的烟气加热至露点以上,排除了含水量较大对烟尘测量的影响,可在烟囱入口增加烟尘测量装置。烟尘测量的光散射法安装容易,灵敏度高,测量范围广,故选择光散射法进行烟尘检测。对于取样方法,考虑到直接抽取法会因为烟气中的水汽凝结造成溶解性污染物的成分损失,故选择稀释法进行取样。由于稀释法取样为湿法测量,需增加湿度测量进行测量结果修正,故需增加湿度测量仪。同时,采用氧化锆方法测量氧量。新CEMS装置如表2。

4 投运效果

新CEMS投运后,运行稳定,特别是在低浓度测量时,消除了测量不准确、数值晃动大的现象。通过第三方检测机构对CEMS测量结果比对显示,测量结果满足超低排放的要求。

5 结束语

新CEMS运行后测量准确,系统稳定,满足超低排放后烟气在线监测及环保局的要求。随着CEMS技术的法发展,CEMS在测量原理、构成和特点方面也将不断进步,更能适应超低排放后在线监测的要求,也将为改善空气质量做出更大的贡献。

参考文献

[1]HJ/75-2007.固定污染源烟气排放连续精测技术规范[S].

烟气在线监测范文第4篇

【关键字】工业;废气;在线监测;

众所周知,目前,环境是摆在人类面前的大难题,全球气候变暖,臭氧层空洞,这些环境问题时刻威胁着人类的可持续发展。保护环境已经不仅只是现今人类急需履行的责任,而且还是关乎千秋万代生存的头等大事。保护环境要从一点一滴做起,当前情况下,工业每年的废气排放量得不到合理的控制,只首先采用一套先进的工业废气在线监测系统用于监控气体的排放情况,然后再采取相应的措施来控制气体的排放量。只有这样,才能合理的控制工业废气的排放,从而达到保护环境的目的。

1工业废气的组成及危害

1.1工业废气的组成

工业废气主要是指工厂在生产和加工环节,由于燃烧燃料而向空气中排放的所有含有污染物气体的总称。这些气体不仅包括CO2,H2S,CO,HCL,氟化物,氮氧化物等有害气体,还包括雾状硫酸,铅,汞,铍化物,烟尘及生产性粉尘。

1.2工业废气的危害

工业废气的危害主要表现在以下两个方面:

1.2.1对环境的危害:首先,因为废气中含有大量微粒,这些微粒在上升过程中逐渐变得浑浊,到达顶层,遮住了阳光,减少了太阳对大地的辐射。时间久了,动植物因为长时间接收不到太阳光而影响发育生长。其次,工业废气中大量含有硫元素,还有硫酸这种化合物,这些成分会形成酸雨,酸雨对植物的危害可想而知,他连金属都能够腐蚀,更不用提动植物了。此外,工业废气还能增高大气的温度,因为工厂燃料在燃烧时产生废气,所以这些废气一般都是热的,与大气融合后,会导致大气温度增高,从而形成温室效应。

1.2.2对动植物的危害:对于植物来说,工业废气中含有氟元素和硫元素,这些元素具有腐蚀性,有的会直接使植物出现伤斑,有的虽然表面不会有什么影响,但会直接作用于植物内部,使植物死亡或变坏。对于人和动物来说,都需要呼吸新鲜的空气,这些有毒气体长期被身体吸收,会对呼吸系统和粘膜组织造成一定的影响和危害。

2工业废气在线监测技术的必要性

2.1国家法律规定

《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》已经颁布执行,这些法律都规定了废气中各种气体的排放指标。当工厂的排放量超过标准时,工厂的负责人就会面临法律处罚。从此点上看,工厂应该对废气进行监测,并有效的控制气体的排放量。

2.2企业发展需要

国家对于工厂工业废气的排污费一般是根据物料守恒原则来征收的,但在物料的燃烧过程中,由于元素间的互相作用,有时会减少某种气体的排放量。如对于SO2的排放量来说,由于燃料中含有一定的Ca,Ca有脱硫作用,这样就会有一部分的硫不以SO2形式排出。如果没有工业废气在线监测技术,国家就会多征收SO2排放费,久而久之,企业就会蒙受很多不必要的损失。对于安装了工业废气在线监测系统的企业则不然,企业可以依据准确的排放量来计算费用,减小了企业的开支,避免了资金浪费,有利于企业发展。

2.3工业废气在线监测技术的应用

主要介绍工业废气在线监测系统,本系统主要分为三层结构:环境保护局监视决定层,工厂检测和管理层,现场数据采集层。主要工作流程为:通过现场的监控设备得到监控结果,再通过网络将检测结果传给企业的管理人员,企业管理人员通过数据算出企业应该缴纳的排污费,并根据结果分析工业废气的排放量是否超标,制定控制和调整排污量的方案。然后,再通过网络将结果反馈给环境保护局,再由环保局监测企业的排放量,并最终起决策作用。

线程数据采集系统主要分为以下几个系统:(1)烟气采样系统:主要是安装采样探头,通过探头可以采集到烟气样品;(2)烟气分析系统:采样探头在完成采样后会将样品通过专业渠道输送到烟气分析系统,烟气分析系统主要由各种烟气分析仪器组成,可以准确的分析样品的浓度;(3)烟气流量测量系统:先是测量出工业废气的流量,再根据各个组成气体的浓度算出各个污染物的流量;(4)数据接收系统:主要负责接收数据,并存储打印数据,还要通过网络将这些数据传输出去;(5)后备辅助设备系统:包括各种后备设备和辅助设备,以提高烟气排放在线监测系统运行的可靠性。

3工业废气在线监测系统的分类

按照废气的采样方式可将工业废气在线监测系统如下:

3.1内置式工业废气在线监测系统

内置式工业废气在线监测系统将烟气分析系统直接安装在烟道上,废气样品不用经过烟气分析系统。这样避免了样品的滞后,保证废气样品能够在第一时间传输出来,提高了准确性,且节约了成本。但它存在以下缺点:其一,因为烟道内的环境及其不好,这杯一旦损坏,很不好维修,且维修需要专业素质高的人才能完成。其次,内置式烟气采样系统通常一同测量烟气中所有成分的浓度,一旦监测仪损坏作或需要进行维护时,就会影响所有的测量工作。

3.2稀释法式工业废气在线监测系统

全抽取式工业废气在线监测系统首先将废气取出,然后通过专业渠道传送到分析仪进行分析。且全抽取式工业废气在线监测系统所采用的采样探头比其他系统的探头简单,且不需要高质量的压缩空气,成本也比稀释法低,但没有稀释法式工业废气在线监测系统得出的结果准确。

结束语:

综上所述,工业废气在线监测系统能够准确的统计出工厂每时每刻的气体排放量,利于工厂对于气体排放量核算,也能帮助国家有关部门准确的掌握各个工厂的气体排放情况,并可以此为依据制定合理的气体排放规划。保护环境是每个公民应尽的责任,让我们携起手来,共同控制工业废气的排放量,保护我们赖以生存的自然环境。

在环境保护中其生命线就是环境监测质量,所以,只有把环境监测质量管理的工作加强起来,才能使环境监测质量管理体系得到保证,才能顺利的运行,把环境监测水平全面的提升起来,使环境监测数据及信息更加准确、及时、真实与可靠,同时,为政府的决策与环境的管理提供更加科学的依据。

参考文献 :

[1]许佩瑶.赵毅.宋立民.张艳.化工环保[J].哈尔滨工业大学出版社,2004,(56).

烟气在线监测范文第5篇

关键词:固定污染源 连续监测 安装位置浓度对比

2005年9月《污染源自动监控管理办法》的颁布,明确了排放连续监测(CEMS)在我国的法律地位,有效数据可作为监管依据,原来的HJ/T75-2001已不能完全满足现有的环境管理发展的需要。2007年颁布的HJ/T75-2007固定污染源烟气排放连续监测技术规范,以自动监测为环境管理服务,提供执法依据。强化政府管理功能和监督管理效力,简明扼要,便于管理实施。此标准是各级环保部门开展烟气排放连续监测(CEMS)工作的指导性规范。

固定污染源烟气排放连续监测(CEMS)主要由颗粒物监测子系统、气态污染物监测子系统、烟气排放参数测量子系统、数据采集传输与处理子系统组成。根据铁岭市排放连续监测现有状况,只有少数企业安装了气态污染物排放连续监测(以中电国际辽宁清河发电有限责任公司为代表)。

1 固定污染源烟气排放连续监测安装位置的要求

固定污染源烟气排放连续监测(CEMS)数据准确与否和排放连续安装的位置有很大关系。在烟道中烟气速度场和烟气浓度场的分布是不均匀的。一般情况下,速度场是中心处速度快,靠近管壁处的速度慢;而烟尘浓度场,在垂直烟道中,中心处烟尘粒子较小,浓度也较低,靠近管道壁处的烟尘粒子较粗,浓度也较高;而在水平管道中,上部烟尘颗粒较细,浓度也低,而在下部颗粒较大,浓度也偏高,特别是在烟气流速较低的烟道中更为明显。另外,烟道(从锅炉出口至烟囱入口)在走行中也有拐弯、风机、闸门等变径处,这些地方的气流因受干扰而产生涡流,严重影响速度场和浓度场的分布。因此,固定污染源烟气排放连续监测(CEMS)测定烟气污染物浓度时,测量结果是否准确、是否有代表性,在很大程度上取决于测试开孔位置选择的正确与否。

1.1 选择固定污染源烟气(CEMS)测试点的一般要求

1.1.1位于固定污染源排放控制设备的下游;不受环境光线和电磁辐射的影响;烟道振动幅度尽可能小。

1.1.2安装位置应避免烟气中水滴和水雾的干扰,不漏风。

1.1.3安装烟气排放连续监测(CEMS)的工作区域必须提供永久性的电源,以保障烟气排放连续监测的正常运行。

1.1.4采样或监测平台易于人员到达,有足够的空间,便于日常维护和比对监测。当采样平台设置在离地面高度≥5米的位置时,应有通往平台的Z字梯/旋梯/升降梯。

1.1.5为室外的烟气排放连续监测(CEMS)装置提供掩蔽所,以便在任何天气条件下不影响烟气排放连续监测(CEMS)的运行和不损害维修人员的健康,能够安全地进行维护。安装在高空位置的烟气排放连续监测(CEMS)要采取措施防止发生雷击事故,做好接地,以保证人身安全和仪器的运行安全。

2 选择固定污染源烟气(CEMS)测试点的具体要求

2.1应优先选择在垂直管道和烟道负压区域。

2.2测定位置应避开烟道弯头和断面急剧变化的部位。对于颗粒物CEMS,应设置在距弯头、阀门、变径管下游方向不小于4倍烟道直径,以及距上述部件上游方向不小于2倍烟道直径处;对于气态污染物CEMS,应设置在距弯头、阀门、变径管下游方向不小于2倍烟道直径处,以及距上述部件上游方向不小于0.5倍烟道直径处。对矩形烟道,其当量直径D=2AB/(A+B),式中A、B为边长。当安装位置不能满足上述要求时,应尽可能选择在气流稳定的断面,但安装位置前直管段的长度必须大于安装位置后直管段的长度。

2.3为了便于颗粒物和流速参比方法的校验和比对监测,烟气CEMS不宜安装在烟道内烟气流速小于5m/s的位置。

2.4每台固定污染源排放设备应安装一套烟气CEMS。

2.5若一个固定污染源排气先通过多个烟道后进入该固定污染源的总排气管时,应尽可能将烟气CEMS安装在该固定污染源的总排气管上,但要便于用参比方法校验颗粒物CEMS和烟气流速CMS。不得只在其中一个烟道上安装一套烟气CEMS,将测定值的倍数作为整个源的排放结果,但允许在每个烟道上安装相同的烟气CEMS,测定值汇总后作为该源的排放结果。

2.6火电厂湿法脱硫装置后未安装烟气GGH(气―气换热器)的烟道内,由于水份的干扰,颗粒物CEMS无法准确测定其浓度,颗粒物CEMS可安装在脱硫装置前的管段中。

2.7固定污染源烟气净化设备设置有旁路烟道时,应在旁路烟道内安装烟气流量连续计量装置。

2.8当烟气CEMS安装在矩形烟道时,若烟道截面的高度大于4米,则不宜在烟道顶层开设参比方法采样孔;若烟道截面的宽度大于4米,则应在烟道两侧开设参比方法采样孔,并设置多层采样平台。

2.9点测量CEMS的测量点位应符合下列条件之一:

2.9.1颗粒物CEMS的测量点位离烟道壁的距离不小于烟道直径的30%,气态污染物CEMS、氧气CMS以及流速CMS的测量点位离烟道壁距离不小于1米。

2.9.2位于或接近烟道断面的矩心区。

2.10线测量CEMS的测量点位应符合下列条件之一:

2.10.1颗粒物CEMS的测量点位所在区域离烟道壁的距离不小于烟道直径的30%,气态污染物CEMS、氧气CMS以及流速CMS的测量点位离烟道壁距离不小于1米;中心位于或接近烟道断面的矩心区。

2.10.2测量线长度大于或等于烟道断面直径或矩形烟道的边长。

3 测试中电国际辽宁清河发电有限责任公司烟气中二氧化硫排放连续监测与实际监测数值比对。

监测所用仪器TH880―Ⅴ型烟尘微电脑平行采样仪在监测前经计量检定合格。现场测试期间,生产设备正常且稳定,并通过调节固定污染源烟气净化设备而达到某一排放状况,该状况在测试期间保持稳定,流速、烟温稳定正常。对比值见下表。

4 结论

4.1 固定污染源烟气排放连续监测(CEMS)测定烟气污染物浓度时,要正确选择测试开孔位置,保证测量结果准确、具有代表性。

相关期刊更多

气动研究与实验

省级期刊 审核时间1个月内

沈阳空气动力研究所

燃气涡轮试验与研究

部级期刊 审核时间1-3个月

中国航空发动机集团有限公司

电气试验

省级期刊 审核时间1个月内

湖北中试电力科技有限公司