首页 > 文章中心 > 碳循环作用

碳循环作用

碳循环作用

碳循环作用范文第1篇

关键词:碳循环;冻融交替;土壤营养蓄积

中图分类号:S718.5文献标识码:A

众所周知,森林生态系统作为自然生态的主流模块,其系统内物质能量循环多依靠微生物对秋季落叶的分解发酵并将其内的有机物和无机物转化为土壤养分,以供林木生长发育。研究显示,秋季落叶分解发酵产物供给了林木90%以上的氮元素和磷元素及60%以上的矿物质。由此可知,生态圈及食物链的基层生化及能量循环其主体取决于落叶分解后的土壤营养蓄积[1],这对植物生态系统具有突出的科学意义。在高纬度地理区域,其突出环境特征便是季节性冻融作用,该作用可对植物腐殖物的有机矿化和矿物质活化产生影响。本次研究便由此入手,以实验室模拟冻融交替过程对枯落物分解及其内部碳含量的影响。

1材料与方法

1.1试验材料

本次研究选取蒙古栎、槭树和红松的应季落叶叶片,在试验开始前除去表面杂物。而后将落叶样品随机划分为两个组堆:将一个组堆的样品进行风干处置,而后检测其内C、N、P三种元素的含量[2];第2组堆至于-4℃条件下冷藏,以备作为冻融交替试验的原料。

1.2取材地简述

本次试验选取吉林省汪清县百草沟镇林业工作站(43°18′N,129°45′E),海拔806m。属大陆性中温带多风气候,冬长夏短,四季分明,垂直变化明显,年平均气温3.9℃,年平均降雨量为580mm,无霜期为110~141天,年日照时数为2 700h。

1.3试验方法

对冷藏样品施以室内自然模拟冻融交替试验,试验期间定期检测统计样品的CO2排放总量,待试验周期完全终结后,检测实验样品内的碳残留量。

1.3.1落叶呼吸碳释放的测定

将试验样品分别进行单品分解与混合分解处理,即蒙古栎落叶分解、槭树落叶分解、红松落叶分解和3种落叶混合分解,将浸泡沥干处置后的样品置入早已盛有装有氢氧化钠溶液小瓶的培养瓶内,以吸收叶片呼吸释放的CO2。而后模拟-15℃~15℃的冻融交替环境,将一半培养瓶作为交替组放置于该环境下。而后逢特定日期更换氢氧化钠溶液小瓶,将取出小瓶内的氢氧化钠溶液倾入烧杯内滴入过量的氯化钡溶液,再以稀盐酸反滴定该混悬液,最终确定CO2排放量。另一半作为恒温组置于15℃恒温箱中予相同处理。

1.3.2残留的碳含量测定

待为期35日的滴定试验结束后,将所有样品回收称重,并检测和分析其内的碳残留量,最终将所有实验数值进行统计学分析。

2实验结果分析

2.1冻融交替与有机质矿化速率的关系

试验证实,冻融交替环境下的样品碳排放速率明显低于15℃恒温样品,且其碳排放速率与试验时长呈反比。恒温组在试验中前期(1≤X<21,单位:日)碳排放速率降低明显,到试验后期(21≤X≤35,单位:日)该速率即日趋稳定;交替组在试验前期(1≤X≤14,单位:日)碳排放速率极不稳定,而在试验后期(21≤X≤35,单位:日)逐渐趋于平稳。

不同物种其在冻融交替环境下的碳排放速率有明显差异。红松和混合样品其碳排放速率均在第1天升高,第3天达峰值,之后逐渐下降。蒙古栎和槭树在第1天即下降,第3天达谷值,后逐渐上扬,至第7天达峰值,而后逐渐回落。恒温组无明显碳排放速率变化。

2.2冻融交替环境对落叶碳残留的干预结果

试验证实,4组处置样品内其碳残留含量差异明显,但混合组样品内的相互碳排放干预作用不明显,交替组样品碳残留含量优于恒温组。在所有样品中,红松碳残留量最优,为373.52mg/kg克(交替组)和359.88mg/kg(恒温组);蒙古栎碳残留量最少,为312.53mg/kg(交替)和309.91mg/kg(恒温),余组样品其碳残留量处于适中水平。

3结论

3.1试验样品碳矿化干预分析

试验结果表明,温度对林木和微生物活性的抑制和促进的作用在自然环境的合理生物生存范围内,随着气温的升高,有机质代谢的速率也会攀升,从而加速CO2排放。同理,气温降低则会明显遏制CO2的排放,也就是说,冻融作用可以有效遏制土壤腐殖物的碳流失。而这一切与林木及微生物的物种归属,微生物的死亡、苏醒、适应和滋生作用密切相关。

3.2冻融作用与生态碳循环的关系

试验结果证实,季节性冻融作用对碳排放的有效遏制,确切地促进了土壤内的有机碳及矿物质积累。理论上看似气候温暖促进植物生长,但相对温暖的南方地区,林木的营养蓄积反而不及北方地区[3],这除了因北方地区植物生长期光照时间长于南方之外,本次研究揭示了季节性冻融对碳排放的遏制作用,也为土壤养分蓄积、林木生长乃至生态碳循环积累提供了有利条件。

参考文献

[1]王新闯,齐光,于大炮等.吉林省森林生态系统的碳储量、碳密度及其分布[J].应用生态学报.2011,6(08):68-75.

碳循环作用范文第2篇

1、碳库

碳循环是一个极其复杂的地球化学循环过程,包括碳元素在各个储库的贮存和在不同储库之间的流通。就通量来说,碳循环中最重要的是CO2的循环,CH4与CO的循环是较次要的部分。所谓碳库,是指在碳循环过程中,地球各个系统所存储碳的部分,概括起来,地球上主要有四大碳库,即大气碳库、海洋碳库、陆地生态系统碳库和岩石圈碳库,如表1所示,其中,岩石圈碳库最大,但碳在其中的周转时间极长,约在百万年以上,因此,在碳循环研究中可以把岩石圈碳库近似看作静止不动;海洋碳库是除地质碳库外最大的碳库,但碳在深海中的周转时间也较长,平均为千年尺度;陆地生态系统碳库主要由植被和土壤两个分碳库组成,内部组成和各种反馈机制最为复杂,是与人类活动关系最为密切的碳库。而干旱半干旱区由于面积较大,因而在陆地生态系统碳库中占有一定的比重。

2、碳源与碳汇

在碳循环研究中,人们主要关心的是碳在大气圈、海洋和陆地生态系统(包括植物和土壤等)3个碳库之间进行的连续交换,即碳的流量问题或者说是碳源和碳汇的问题。所谓碳源和碳汇都是以大气圈为参照系,以向大气中输入碳或从大气中输出碳为标准来确定,即向大气圈释放碳的通量、过程或系统称之为碳源,从大气圈中清除碳的通量、系统、过程或机制称之为碳汇。最终决定一个体系是源还是汇的是碳的净收支。目前,由于大气圈与陆地生态系统之间碳的交换过程存在的未知问题最多,受人类活动的影响最大,是全球碳循环的研究重点。其中,仍然困扰科学界的一大碳循环难题是关于“碳失汇”的问题,即CO2收支不平衡,该问自1938年Callendar首先提出,但到了今天,该问题依然悬而未决。目前比较一致的观点认为,这个未知汇可能在北半球中纬度地带,这一碳汇约可占到全球碳失汇的1/3,但是这一机制还不清楚。到目前为止,人们认识到的在几年到几十年的短时期内,可能影响陆地碳储存的过程主要包括气候变化,植物生长,CO2的施肥效应,氮沉降施肥以及土地利用方式的变化5个方面。由于干旱半干旱区生态系统碳源汇的研究较少,对该区生态系统碳源汇进行研究不仅可以弥补中国在干旱半干旱区生态系统碳通量研究的不足,而且可以为中国在碳贸易中提供一些基础数据支持。

二、不同环境因素对干旱半干旱区碳循环的影响

植被—大气间的碳循环及其对环境要素变化的响应是目前全球变化研究中的热点问题,科学家们正尝试通过不同尺度的实验观测和模型模拟来研究陆地生态系统在不同时间与空间尺度上的碳收支及其对环境的响应。影响生态系统碳交换量的主要因素有光照,温度,水分以及土壤温湿度等。干旱半干旱区由于气候干旱,蒸发强,降雨稀少,光照强,各种环境条件恶劣,使得该区生态系统在各种环境因素影响下较为脆弱,因此有必要对干旱半干旱区各个环境因子影响下的生态系统碳循环进行深入分析。

1、光照与辐射

光照条件是生态系统中生物生长所需的重要因素,生物的各项生命活动与生产都与光照具有密切联系。由于光合有效辐射的影响,植物的光合作用具有明显的昼夜规律。通常植物光和能力随着光照增强而增加,但当光强达到饱和点后,光合强度就会受温度,水分等其他环境因子的控制。Chaves等[28]对干旱荒漠区的植物进行了研究,发碳库大气圈陆地生物圈岩石圈大洋C大小/Gt700~7201900~2000>7500000038400~40000表1地球各主要碳库注:1Gt=1×1015g。现植物在水分胁迫时易发生光合作用的光抑制,而Demmig等的研究又发现,光抑制的发生,会导致光合作用消耗的光能减少,使得光合组织吸收的光能大量过剩,而过剩的光能若不能及时有效地耗散,就会损伤光合器官,从而进一步影响光合作用。许皓等研究了光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响,结果表明,光合有效辐射是一个主要影响因素,与群落碳获取呈显著正相关关系。群落碳同化能力的季节变化是光合有效辐射和地下水位共同影响下光合作用物候学特征的体现。另外,在干旱区荒漠生态系统中,每个物种对光照的响应不同,因此具有不同的光饱和点与光补偿点,荒漠植物由于长期适应强烈光照,所以光饱和点要比一般植物高,C4植物要比C3植物高,但也有例外情况。

2、温度

温度的变化对生态系统生物生长发育的各个方面都有不同程度的影响,是生物生命活动不可缺少的因素,它在任何时间任何生态系统中都起作用,并且是对生物影响最明显的环境要素之一。但生态系统光合作用(形成光合作用总初级生产GPP)与呼吸作用(特别是土壤呼吸Rh)对温度的响应却不尽相同。目前,有许多学者对土壤呼吸与温度间相互关系进行了研究,并建立了许多方程,包括:线性方程、指数方程、Arrhenius方程、幂函数方程等。这些方程能在一定温度区间内很好的描述土壤呼吸变化,较好的揭示CO2通量的季节变异性,但当温度过高或偏低时,其模拟精度下降明显。另外,徐小峰等研究了气候变暖对主要碳循环过程和植被、土壤碳库和凋落物碳库的影响,并探讨了气候变暖条件下陆地生态系统的碳源/汇关系。李琪等对半干旱区土壤温度对克氏针茅草原生态系统碳通量的影响进行了初步探讨,结果表明土壤温度和水分是影响克氏针茅草原生态系统碳收支的重要因子。干旱半干旱区生态系统地表水分含量低,蒸发量大,随温度的升高或增温时间的延长,土壤呼吸速率增长减缓甚至停止,对温度变化的敏感程度降低,表现为温度较低时,土壤呼吸主要受温度变化控制,温度偏高时,土壤呼吸主要受土壤水分等因素影响。这种情况说明土壤呼吸是温度与其他多种因子共同作用的结果。综上可知,干旱半干旱区生态系统碳循环的相关过程(包括光合作用以及呼吸作用等)与温度(气温与水温等)之间的关系十分复杂,但目前关于该区这方面的研究较少,今后急需加强干旱半干旱区生态系统各种生理过程与温度间响应关系的研究力度,使其更好地为研究该区生态系统碳循环服务。

3、水分条件

光照与温度虽然都是影响生态系统植被生长的重要因素,但各个区域的光照条件与温度的年内变化模式较稳定,年际变化也不大,而水分在年内与年际间都是变化最剧烈的环境因子,从而成为限制生态系统植被生长最普遍的因素。其中,降雨总量、降雨强度以及降雨时间变率的改变将会影响许多陆地生态系统的碳循环过程及碳源汇功能和大小,反过来,这些陆地生态系统的碳循环过程及碳源汇功能和大小的改变又可能对气候系统产生强烈的反馈,加剧或者减缓气候的变化。相对于其他陆地生态系统而言,干旱半干旱区碳循环过程对降雨变化的响应更为敏感,它所表现的弱源或者弱汇特征在降雨的扰动下容易发生方向性的逆转,从而使得碳源汇功能表现出极大的不确定性。目前,国内外学者针对干旱半干旱地区碳循环过程对水分变化的响应进行了一定的研究,许多研究表明:偶然性的降水事件对干旱区碳循环机制及生态系统的结构与功能有重要控制作用。Sponseller的研究结果表明,降雨使Sonoran沙漠的土壤呼吸迅速增加30倍;刘殿君研究了极端干旱区增雨对泡泡刺群落土壤呼吸的影响,实验结果也证明了在干旱地区降雨会使土壤呼吸急剧增加。另外,土壤水分是影响陆地生态系统CO2通量的重要环境要素,对植被的生长、根系分布、微生物活性等与土壤呼吸密切相关的生物因子起控制作用。李琪等探讨了水分对半干旱区克氏针茅草原生态系统碳通量的影响,结果表明,土壤水分的增加会提高克氏针茅草原生态系统的固碳能力、初级生产力及呼吸作用;还有研究表明,干旱区土壤呼吸的季节波动强度和土壤水分显著负相关,低土壤含水量群落土壤呼吸速率的季节变化对土壤水分变化的响应与高土壤含水量群落相比更为敏感,但夏季土壤呼吸的最大值与土壤水分的极值并无固定联系,但也有研究观察到夏季干旱时节,土壤仍具有较高的呼吸速率,该现象说明除了土壤水分外,其他环境因素也在起一定的控制作用。

4、其他环境因素

目前,除了辐射、温度、降水等环境因子外,学者们还研究了其他一些环境因素对干旱半干旱区生态系统碳循环进行了研究,如张新厚等研究了半干旱区土地利用方式变化对生态系统碳储量的影响,结果表明不同土地利用方式碳储量不同,杨树防护林带最高,樟子松-山杏疏林草地次之,沙质草地碳储量最低;白雪爽等分析研究了半干旱沙区退耕还林对碳储量和分配格局的影响,结果表明:随着退耕年限的增加,生物量碳储量不断积累,且其增加的碳库主要分配在树干,退耕还林初期,土壤有机碳储量表现出下降趋势,随后逐渐恢复甚至高于农田土壤碳储量;吕爱锋等对火干扰下生态系统碳循环进行了详细的综述与分析;樊恒文等综述了近年来干旱区土地退化与荒漠化对土壤碳循环的影响,评价了干旱区土壤碳的固存和在缓解温室效应方面的潜在能力,并讨论了干旱荒漠化地区对全球碳平衡的贡献和在干旱区促进土壤碳固存的基本策略;另外,于占源等研究探讨了半干旱区沙质草地生态系统碳循环关键过程对水肥添加的响应。

三、中国干旱半干旱区碳通量研究现状

植被与大气间的碳交换通量的准确和长期观测是评价陆地生态系统碳源、汇功能的基础和前提。通量观测网络是获取生态系统与大气间CO2和水热通量数据的有效手段,可以为分析地圈-生物圈-大气圈的相互作用关系,评价陆地生态系统在全球碳循环中的作用提供数据服务。目前,陆地生态系统碳收支的主要研究方法有:样地调查与清单法(inventories),模拟实验研究法(inversemodeling),CO2通量观测网络(fluxnet)以及模式模拟(patternmodeling)4种,其中,涡动相关法已经成为直接测定大气与群落CO2交换通量的最可靠方法,也是世界上CO2、水热通量测定的标准方法,在各个地区不同生态系统中都得到了广泛的应用。目前,中国通量网络的观测对象主要涉及了森林、草原、农田、湿地等,而对中国干旱半干旱区碳通量的研究较少,使得中国干旱半干旱区生态系统碳循环的研究仍处于初级阶段。目前对干旱半干旱区碳通量的研究主要集中在净生产力,光合作用,植被碳储量,土壤碳储量、土壤呼吸作用以及生物土壤结皮的固碳能力等方面,而对干旱半干旱区碳通量的长期连续观测较少。刘冉等对古尔班通古特沙漠南缘原始盐生荒漠地表水热与二氧化碳通量的季节变化进行了研究,结果表明净辐射通量、潜热通量和二氧化碳通量都具有明显的季节变化趋势,而显热通量的季节变化不明显;柴仲平等对干旱区绿洲冬小麦生态系统CO2源/汇关系进行了长期的研究,结果表明在小麦的整个生育期,可以净固定CO2的量为122.60t/hm2。

四、展望

通过以上综述可以知,中国干旱半干旱区生态系统碳循环研究基本处于初步阶段,许多研究依然存在诸多薄弱环节,总体来讲,今后中国干旱半干旱区碳循环研究应在以下几个方向进一步加强:

(1)从不同时空尺度探讨干旱半干旱区生态系统碳循环过程与强度,加强碳源/汇季节变化动态和区域分异的对比定位观测,同时加强机制研究中的多因子综合评价,增加研究和预测结果的可靠性。对干旱半干旱区生态系统碳循环已有的研究结果表明,不同环境因子在不同群落以及植物不同生长阶段影响程度与影响方向也有所不同,因此,要想准确评估整个干旱半干旱区生态系统碳源/汇贡献就必须对不同时空不同群落类型进行详细野外试验研究,以扩充中国干旱半干旱区生态系统碳循环研究的数据基础。

(2)进一步加强对影响干旱半干旱区生态系统碳源/汇的物理、化学以及生物过程研究。目前关于干旱半干旱区生态系统的碳循环机制尤其是许多细节研究都相对薄弱,碳循环研究过程中存在许多不确定性,今后研究中应有所加强。包括:植物呼吸与凋落物呼吸的定量测定、土壤不同形态碳的垂直分布规律以及非生长季(冬春季)与生长季影响机制的异同等。

(3)从整体和系统的角度研究干旱半干旱区生态系统碳循环。在已有的干旱半干旱区碳循环研究中,对植物、土壤的研究多局限于生态系统各个部分自身时空动态变化以及对周围环境因素响应,且各部分研究相对独立,而对于碳元素在大气-陆地生态系统储存库间的定量迁移转化关系涉及较少,从而缺乏整个系统的综合研究。

碳循环作用范文第3篇

关键词:森林生态系统;碳储量;碳循环;作用

根据生态学原理,一个系统中的自然过程总是有利于系统的结构稳定和功能最大化,而非自然过程总是降低或破坏生态系统的稳定性,增加系统的不确定性,增加系统的不确定性。显然,大量开采化石燃料以及开采森林等活动都是非自然过程,这些活动导致了大气二氧化碳浓度的不断上升。虽然目前我们尚不能准确地预测其生态后果,但最终的结果必将危害人类自身。鉴于大气二氧化碳上升可能引起的严重生态后果,科学家对于全球碳循环进行了广泛的研究。具体内容包括地球各部分(大气、海洋和森林等)碳储量估算,森林生态系统与其他部分碳的交换量(流)的估算,以及人类干扰对各个库和流的影响。在陆地生态系统中,森林是最大的有机碳的贮库,它贮有1146Pg碳,占整个陆地碳库的56%。因此,了解森林生态系统在碳循环中的作用,对于研究陆气系统的碳循环乃至全球碳循环都是一个基础,具有重要的意义。

一、森林及地球各部分的碳储量

当前,对全球碳库及库与库之间的转移量以及转移速率等关键性数值的估计差异较大。大气层中的碳总量约为7.0×1017~7.5×1017g。由于大气层的二氧化碳浓度正处加速上升阶段,因而其碳储量的估计值显然与估算的时间有一定的关系。地壳碳储量最大,估计值相差也大,不过它们与其他库的交换很小,因此一般不会给碳流量的估算带来大的误差。海洋是仅次于地壳的大碳库,也是最大的一个汇。通常估计海洋中的碳储量时将其分为表层和深层2个亚库,前者与大气有较频繁和较稳定的碳交流。陆地生物群落包含的碳量约为5.5×1017~5.6×1017g。

在各个库中,陆地生物群落最容易受到人类活动的干扰,因此也是对大气二氧化碳浓度变化影响最大的分库。海洋碳储量虽大,但与大气处于相对稳定的碳交换状态,目前估计海洋与大气的交换是每年吸收约2.0×1015~3.0×1015g的碳。陆地生物群落在未受干扰状态,以吸收固定二氧化碳为主,一旦受破坏,则要向大气排放大量的二氧化碳。

森林是一种主要的植物群落类型,约占地球陆地面积的1/3(4.1×109hm2)。森林生物量约占整个陆地生态系统生物量的90%,生产量约占陆地生态系统的70%。森林生态系统在全球碳循环过程中起着重要的作用。

在自然状态下,森林进行光合同化二氧化碳,固定于生物量中,同时以根生物量和枯落物碎屑形式补充土壤的碳量。在同化二氧化碳的同时,存在林木呼吸和枯落物分解释放二氧化碳进入大气这一逆过程,同时固定于木质部分的二氧化碳也会在一定的时间后腐烂或被烧掉,以二氧化碳的形式归还大气。因此,从很长的时间尺度(1000~10000a)考察森林对大气二氧化碳浓度变化的作用,其影响是很小的,只能是一个不很大的汇。但在短时间程度(<300a)来考察,由于单位森林面积中的碳储量很大,林下土壤中的碳储量更大,因此森林变化(人类干扰)就有可能引起大气二氧化碳浓度大的波动。

二、森林生态系统的碳循环

森林生态系统是陆地中重要的碳汇和碳源,在这个系统中,森林的生物量、植物碎屑和森林土壤固定了碳素而成为碳汇,森林以及森林中微生物、动物、土壤等的呼吸、分解则释放碳素到大气中成为碳源。如果森林固定的碳大于释放的碳就成为碳汇,反之成为碳源。在全球碳循环的过程中,森林是一个大的碳汇,但随着森林破坏、退化的加剧以及一些干扰因素(如火灾)的影响,森林生态系统就可能成为碳源,这将更加剧全球的温室效应,导致生态环境的进一步恶化。通过国内外的一些研究表明,温带和北部寒带森林是碳汇,如北方森林每年净吸收碳量为0.4~0.6Pg碳,俄罗斯森林每年固碳0.36~0.45Pg碳。在温带,森林每年净吸收碳量为0.17~0.35Pg碳,美国东南部的森林生态系统每年固碳0.07Gt碳。而热带森林地区由于过度砍伐森林以及土地利用方式的改变已成为碳源,在1980年向大气净释放了1.0×105~2.6×105g碳。

在森林生态系统中,植物首先通过光合作用吸收二氧化碳生成有机质贮藏在体内(Gp),这是森林吸收碳素的过程。而后,通过植物自身的吸收作用要释放出一部分碳素(Ra)。另外,植物还会以枯枝落叶、根屑等形式把碳贮藏在土壤中,而土壤中的碳有一部分会被微生物和其他的异养生物通过分解和呼吸释放到大气中(Rh)。森林生态系统和大气之间的碳通量是森林生长过程中固定的碳和干扰过程中释放碳之间的差值。森林生态系统的净生产量(NEP)可用下面的公式表示:NEP=Gp-Ra-Rh,如果在自然生长状态下,按上面这个公式计算,一般森林生态系统的NEP为正,是个碳汇。然而,由于人类活动的干扰和破坏,尤其是对热带森林的乱伐或把其变成为农业用地等行为就会使森林生态系统的NEP为负,从而成为碳源,这应该引起人类的关注,采取有效措施防止森林变成碳源,从而缓和和扭转全球气温变暖的趋势。我国森林生态系统在陆气系统碳循环中表现为碳汇,其NEP值为0.48Pg碳。

三、森林生态系统在碳循环中的作用

从人类认识到温室气体尤其是二氧化碳浓度的升高会使全球气温变暖,从而带来一系列严重生态环境问题时,就展开了对碳素循环的研究。而森林生态系统作为吸收二氧化碳释放氧气的一个大碳汇,在碳循环中起着非常重要的作用。全球森林面积为41.61亿公顷,其中热带、温带、寒带分别占32.9%、24.9%和42.1%。全球陆地生态系统地上部的碳为562Gt,森林生态系统地上部的含碳量为483Gt,占了86%。全球陆地生态系统地下部含碳量为1272Gt,而森林地下部含碳约927Gt,占整个世界土壤含碳量的73%。森林生态系统在碳循环中的作用主要取决于以下几个方面:

(1)生物量。森林生态系统的生物量贮存着大量的碳素,如按植物生物量的含碳量为45%~50%计,那么整个森林生态系统的生物量将近一半是碳素含量。森林的生物量与其成长阶段的关系最为密切,一般森林据其年龄可分为幼龄林、中龄林、近熟林、成熟林/过熟林,其中碳的累积速度在中龄林生态系统中最大,而成熟林/过熟林,其中碳的累积速度在中龄林生态系统中最大,而成熟林/过熟林由于其生物量基本停止增长,其碳素的吸收与释放基本平衡。从森林的年龄结构来估算吸收碳素的潜力是决定森林生态系统碳汇功能的一个主要方面。目前,我国森林的结构以幼龄林、中龄林居多,因此我国森林生态系统中植物固定大气碳的潜力很大。据王效科等估算,我国森林生态系统潜在的植物总碳贮量为8.41Pg,现有的实际碳贮存总量只是潜在的植物总碳贮量的44.3%。因此,如果我国的森林生态系统得到切实有效地保护,那么它将是中国一个重要的碳汇。

(2)林产品。森林生态系统林产品的固碳量是个变化很大的因子。一般林产品根据其使用寿命可分为短期产品和长期产品。像燃料用木、纸浆用木等属于短期产品,而胶合板、建筑用木则属于长期产品。林产品使用寿命的长短在很大程度上也决定着森林生态系统的碳汇功能。使用寿命长的林产品可以延缓碳素释放,缓解全球大气碳浓度的增加,一般来说,耐用林产品的使用寿命可达100~200a,在这么长时间里,通过再造林完全可以实现碳素的良性循环。因此,应尽量加工耐用、使用寿命长的林产品。

(3)植物枯枝落叶和根系碎屑。这一部分含碳量在整个森林生态系统中占的比例虽少,但也是一个不容忽略的碳库,减缓它的沉淀和分解对于森林生态系统的固碳量也起到一定的作用。

(4)森林土壤。这是森林生态系统中最大的碳库。不同的森林其土壤含碳量具有很大的差别,在北部森林中森林土壤占有84%总碳量;温带森林土壤中的碳占到其总碳量的62.9%;在热带森林中,土壤中的含碳量占整个热带森林生态系统碳贮量的一半。全球森林土壤的含碳量为660~927Gt,是森林生态系统地上部的2~3倍。国内外很多学者都认识到森林土壤碳库的重要作用,纷纷对其展开研究。目前,研究土壤碳库及其碳循环和全球变化已成为土壤学的一个新的发展方向。

参考文献:

[1]方精云,任梦华.北极陆地生态系统的碳循环与全球温暖化[J].环境科学学报,1998,18(2):113-118.

[2]张传清.俄罗斯自然生态系统中的碳循环[J].环境科学,1997,18(3):86-87.

[3]周玉荣,于振良.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.

[4]王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.

[5]陈庆强,彭少麟.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-563.

碳循环作用范文第4篇

(一)循环经济与低碳经济的概念不同

在资源维护的角度上看,循环经济与低碳经济都是为了实现资源可持续发展而实行的经济发展方式,其实,循环经济与低碳经济的概念有着本质的区别,循环经济指的是将自然资源循环的利用、最大限度的使用来实现经济的发展的经济发展模式,能够使自然高效使用起来,让自然资源能够最大限度的运用起来,减少浪费自然资源的不合理浪费,对资源的循环利用来达到可持续发展。低碳经济指的是少使用自然资源,让自然资源的使用量在自然承载力之中,减少对自然资源的破坏,这一经济发展方式能够让国家的经济结构趋向于服务业发展,发扬新兴产业。由此可见,循环经济与低碳经济的概念有着本质的区别。

(二)循环经济与低碳经济提出的时代背景不同

循环经济与低碳经济提出的社会形态、时代特征、提出缘由等等方面存在差异。在20世纪六十年代时期,各个国家的工业经济发展迅速,但是自然资源浪费现象相当严重,为了能够让自然资源高效利用起来,保护本国资源安全,在国际工业竞争中占据有利地位,美国经济学家便提出了循环经济的发展方式,让国家兼顾经济效益与资源效益,对自然资源的高度保护,并且不放松工业经济的发展。在二十一世纪初期,大气排放的增加、工业的不合理经营等等行为出现了严重的“温室效应”,给世界环境带来严重的影响,根据这一世界严峻现象,英国提出了“低碳经济”的经济发展方式,倡导绿色生活,减少对大气的排放,由此可见,循环经济与低碳经济两者提出的时代背景也有所不同。

(三)循环经济与低碳经济的侧重点不同

循环经济的概念决定着循环经济是以再使用、再利用为侧重点,将同一资源进行不同的使用,让各个环节循环连接起来,减少自然资源的浪费,是以循环使用自然资源来达到保护自然资源目的的发展方式;低碳经济的概念则决定着低碳经济是以少使用、少排放为侧重点,工业的大量浪费让自然资源面临匮乏,工业的不合理经营造成大气的污染,让低碳经济的成为了当今重要的经济发展方式。

二、循环经济与低碳经济的相同之处

(一)循环经济与低碳经济的核心内容相同

循环经济与低碳经济都是在自然资源与自然环境受到严重威胁的形势下提出的,为了解决经济效益与社会效益之间的矛盾。工业发展过程中,难免会面对自然资源的破坏与否和经济利益维护与否的问题,企业家在这两方面进行取舍,但是,其实还有可以不让经济发展建立在破坏自然资源和污染自然环境基础上的经济发展方式,那就是低碳经济和循环经济,让资源可持续利用,让经济可持续发展,这就是两者的核心内容:可持续发展。

(二)循环经济与低碳经济的思想起源相同

工业发展在牺牲自然资源的基础上进行,不仅仅是是对当今自然资源的破坏,从更长远的角度来看,是在浪费自己的子孙后代的社会财产。人们对这种行为产生的后果而产生愧疚感,他们对这种行为进行反思,并想通过实际行动来进行弥补,所以,便提出了低碳经济与循环经济,希望了能够挽回对自然资源破坏的损失,并且造福于子孙后代。

(三)循环经济与低碳经济所需的社会条件相同

循环经济与低碳经济不是凭空实行的,在一定程度上它需要外部条件的支撑,循环经济与低碳经济作为绿色经济发展方式,一种环保的发展模式,当然,实行这两种经济发展方式就必须有科学技术的支撑,在工业方面提供先进的科学技术设备,减少因设备上的落后而造成的环境破坏。

三、结语

碳循环作用范文第5篇

一、碳循环是经济社会运行的重要基础

从物质及能量循环的角度来看,以碳循环为表现形式的物质转化过程是经济社会运行及发展的必然现象。

1、碳排放及消减是经济社会活动的必然结果。人类在生产及生活的各种活动中,如生命存续、燃料使用、作物栽培、产品制造等环节,都会发生碳的排放和消减。碳的排放和消减虽然无形,但却是生产、生活活动发生作用的重要渠道,是生产、生活活动的重要特征之一。因此,碳排放及消减是人类生产、生活活动中始终伴随的一种现象。

2、碳平衡是动态的平衡过程。从短期角度来看,产生于生产及生活活动过程中的碳排放,由于人类活动不具有绝对的数量规律性,因而碳排放与消减不会处于绝对平衡的状态;从中长期的角度来看,如果人类的生产及生活活动方式没有发生较大的变化,那么这种碳排放和消减将在平衡点上上下浮动,即处于一个动态的平衡过程之中。

3、“碳循环”是实现碳平衡的渠道。碳循环系统包括产生与消减两个过程,其一是以生产―消费循环为特征的经济社会过程,这个过程不断产生温室气体,有逐步拉大碳存量的趋势;其二是以森林吸收、碳捕捉等手段构成的碳消减过程,该过程对消减温室气体起正面作用,有逐步减小碳存量的趋势(见表1)。

经济社会系统中的碳存量如何变化,取决于碳排放与碳消减之间的相互作用,如果经济社会系统中的碳排放量超过碳循环中的吸收量,则碳存量不断扩大,导致温室效应不断加剧。当前,我正处于工业化、城镇化快速发展的历史时期,碳排放量较大,超过了自然及人工手段之下的碳吸收量,因此应通过产业手段及技术手段,消减碳排放量与加大碳消减量并重,逐步缩小两者之间的差距,推动碳排放均衡的形成。

二、碳经济是碳循环运转的制度性纽带

保持碳循环有序运转,是扭转碳排放与消减失衡、推动碳平衡形成的根本途径。由于碳循环中的排放与消减相互独立,缺乏天然的制衡机制,因此只有在排放与消减之间形成制度性纽带,才能促进碳循环的两个部分相互发生作用,进而保持均衡运转。在市场机制下,以价格手段为作用渠道的碳经济可以实现制度纽带这一功能。

1、“碳经济”突出了碳排放与消减中的成本和收益。从概念的属性来看,“碳经济”属于效益型概念,它表现了在温室气体的排放和消减过程中的成本与收益问题,因而“碳经济”必然注重于“碳”的排放和消减在经济运行中发挥的联系和纽带作用。相比之下,“低碳经济”更侧重于表现通过一定的手段消减碳存量以及最终实现碳排放较少的状态,其主要阐述的是提高应对气候变化、增强时候变化适应能力的手段和途径。

2、市场机制是碳循环有序运转的制度环境。在碳排放量与消减量失衡的情况下,只有通过市场手段才能将排放的一端与消减的一端有效联系起来,进而刺激碳排放量的缩减以及碳吸收量的增加;如果脱离了市场机制,则碳循环的两个部分在整体上缺乏系统性的信号与控制手段,不利于排放与消减的协调控制。

3、价格是碳循环运行的内在主线。通过价格手段来统一碳排放与碳消减,可以使碳存量在两个不同方向上的作用力有一个共同回归的方向,碳存量扩张了,则排放价格趋高,若碳存量有下降趋势,则排放价格趋低。因此,排放价格有自动保持均衡的内在动力,并将始终围绕着均衡排放价格,在价格调节的作用之下,促使碳存量保持一个动态均衡的状态。

三、发挥碳经济导向作用,构建低碳经济体系

对现有经济社会进行低碳化改造,打造低碳经济体系,是发展碳经济、实现碳平衡的必经阶段,也是当前工业化和城镇化快速发展阶段所必然面临的紧要任务。推动低碳经济体系的确立,须重点加强两大创新和四大支撑体系的建设。

1、制度创新。在政策措施、法律体系、市场机制等方面都要进行系统的规划与设计,引导经营活动以节能、减碳、低碳的方式开展,建立能够推动技术创新有效发展的社会氛围及制度环境,以符合社会发展规模的方式去引导节能、减碳、低碳企业或技术的进一步发展。

2、技术创新。在应对气候变化领域内,我在关键性技术上不具有优势,因而在大力推动技术进步的同时,应注重引进先进家的核心技术,尤其是在技术的选择上应综合考虑技术成熟度、经济性、能源安全和温室气体排放等因素。

3、法规体系。法规体系是政策措施的体现,也是社会行为准则的规范;法规体系的建立,并不是一步到位的过程,而是通过循序渐进的方式不断前进,最终实现母法抓大、子法抓小的法律法规体系。

4、税收制度。税收是一项重要的经济激励手段,在经济体系中尚未对碳进行评价时,税收是体现碳经济的重要手段;碳经济的原则已内在地包含了税收“征收多少”的问题。在应对气候日趋重要的背景下,应尽快制定相关的税收制度,以让市场进行更加合理的调节。

5、科技研发。技术创新是在碳经济时代走入低碳经济社会的重要手段,科技研发的选择与运用必须要符合低碳经济发展的需求,政府应综合考量既有成果与当今技术发展趋势,将低碳技术研发转化为支持低碳经济发展的重要推动力。

6、交易平台。交易平台虽然不会对减碳起到实质性的效果,但可明显提升碳的经济效率,进而让碳排放这个资源达到最大化的经济效率;交易平台是制度创新中的一项重要环节,在既定碳排放量的情况下,可以实现最大幅度的经济增长。

四、当前应加强开展的基础性工作

构建低碳经济体系,不仅需要继续强化碳排放减量以及碳汇收益的利益导向,推动碳排放与碳消减之间在利益关系上产生关联,系统性地控制碳存量,还需要发挥政府在解决市场失灵上的积极作用,通过加大投入、制定政策导向等方式,促进低碳经济发展,为碳经济的形成打下坚实基础。

1、强化碳排放减量的利益导向。加强目前的能源结构调整、能效提高、产业结构升级等工作力度,通过金融、税收优惠、财政补贴、排放限额等正面、负面激励措施的作用,引导企业通过技术手段或其他手段,不断降低生产过程中的碳排放量,树立碳排放的成本观念。推行产品生产过程中的碳排放等级认证制度,通过向碳排放强度低或者节能产品加大补贴力度等方式,以减缓碳排放的强度。

2、推动自愿减排基础上的碳排放交易。碳循环的有效运行需要建立在非自愿减排的基础上,只有非自愿减排才能产生碳排放的购买方,才能阻止碳排放负外部效应的无节制扩大。为保障我的发展需要,我目前在采取自愿减排的前提下,为促进碳排放的适度、适量,推动基于自愿减排基础上的碳排放交易,也是必须的,通过这种运作形式,不仅可以积累非自愿减排情形下的碳循环实施、碳排放交易经验,也可以适度控制碳排放总量,并将有益于企业投入这一领域的技术创新和研发,促进技术进步。

3、推动生态服务有偿化。加快各地区的碳排放与碳消减的数量统计和分析工作,使生态受益地区在享受生态效益的同时,分割享受生态效益所产生的部分经济效益,对生态保护区进行经济补偿,促进生态服务由无偿化向有偿化转变。通过家统筹等方式,加快地区间基于碳排放与碳消减的差异所带来的经济利益再分配步伐,促进地区间经济发展平衡、社会发展公平。

4、促进低碳技术进步。明确低碳技术重点突破领域,特别是在共性技术领域,应加大政府投入力度,加快技术进步步伐,降低低碳技术产业化及应用成本,推动低碳经济发展。当前,这些领域包括:节能和提高能效技术,可再生能源和新能源技术,主要行业CO2和甲烷等温室气体的排放控制与处置利用技术,生物与工程固碳技术,煤炭、石油和天然气清洁高效开发和利用技术,先进煤电、核电等重大能源装备制造技术,CO2捕集利用与封存技术,农业和土地利用方式控制温室气体排放技术等。

5、建设低碳技术示范基地。只有走产业化道路,在形成较大规模低碳产业的基础上,才能形成产业基础上的技术创新体系,推动低碳产业和低碳技术进一步持续发展,形成良性循环。借鉴上海开展低碳实践区等经验,有条件的地区可以根据自身产业发展基础和科技、教育等相关要素禀赋条件,制定优惠的投资税收金融价格政策,吸引社会资本、外资参与开展低碳技术示范基地建设,从中摸索出推动低碳产业发展、促进低碳技术进步的市场化道路,为低碳产业的全面发展积累宝贵经验。

6、将碳减排量纳入社会考核体系。对于地方政府,应明确将碳减排量纳入政府考核目标之中,强化政府在调控碳排放上的管理责任,督促政府加强在促进低碳经济发展、加强节能减排等方面的工作力度;对于企业主体,要督促企业制定减排计划,鼓励企业积极投入低碳技术的开发、设备制造和低碳能源的生产,并将企业自愿减排量纳入社会公益范畴。对碳减排成效大、技术进步显著的企业,应给予公共物品购买、项目建设、以奖代补等多种方式的激励。

【参考文献】

[1] 郑爽:全球碳市场动态[J].气候变化研究进展,2006(6).

[2] 务院新闻办公室:中应对气候变化的政策与行动(白皮书)[Z].2008.