首页 > 文章中心 > 淤泥运输方案

淤泥运输方案

淤泥运输方案

淤泥运输方案范文第1篇

[关键词]跳汰选煤 煤泥回收 水仓淤泥

中图分类号:U697 文献标识码:A 文章编号:1009-914X(2017)15-0015-01

1 引言

水仓是矿井排水系统中不可缺少的一部分,它主要有两个作用:一是存水;二是沉淀。矿井水中含有以煤泥和砂石为主的杂质,进入水仓沉淀后,应定期把沉淀物清挖出去。否则会造成:①减少水仓的有效容积;②当积淤过多时,杂物会进入吸水井,然后被吸入水泵,使水泵的过流部件磨损加剧;③吸水井淤泥过多时会堵塞吸水泵龙头,造成排水困难或无法排水。因此,必须定期地清挖水仓来提高矿井排水系统安全性。而国内清挖水仓的煤泥一般采用四种方案处理:①由矿车运输排往矸石山。②由矿车将煤泥运至地面空地,晾干后混入煤中销售。③借鉴洗煤工艺中的煤泥水处理系统,在井下直接完成煤泥水处理,将成品煤泥运至煤场混入煤中销售。④利用洗煤厂煤泥水处理系统,在地面完成煤泥水处理,得到煤泥可单独销售也可混入煤中销售。方案一中煤泥直接排往矸石山会造成资源浪费;方案二运至地面晾干,会占用大片空地,不利于环境保护;方案三在井下建立煤泥水处理系统,会加大设备投入与生产成本,不利于成本管控。方案四利用洗煤厂煤泥水处理系统,不仅有效减少煤泥处理成本,而且提高了煤泥回收效率和水资源的再循环利用。本文着重介绍跃进煤矿利用洗煤厂煤泥水处理系统回收煤泥工艺及取得的成效。

2.工作原理及工艺流程

在水仓清淤过程中,遇到的糊状淤泥,清理比较困难。产生糊状淤泥的原因是淤泥中水的含量太大,如果能将淤泥中的水分离出来,对煤泥和水加以回收利用,不但能提高经济效益,而且有利于环保。经过研究,将水分从淤泥中分离出来可利用洗煤厂洗煤过程中处理煤泥水的工作原理来实现。这项工艺将水仓淤泥中的颗粒煤及杂质分为三类分别采用不同方式处理,一类为粒径大于3mm的颗粒煤及杂质;一类为粒径0.5mm-3mm的颗粒煤及杂质;另一类为粒径小于0.5mm的颗粒煤及杂质。运输至地面的水仓淤泥进入1#调节池,加入循环水稀释,粒径大于3mm的颗粒煤及杂质在重力作用下沉淀后,由挖机挖出晾干,然后同煤一起销售;粒径小于3mm的颗粒煤和杂质,经1#调节池稀释沉淀后,溢流至2#缓冲池,由缓冲池排污泵打入煤泥水桶,与洗煤过程中的煤泥水混合,再由旋流器组入料泵打入分级旋流器,由分级旋流器分离出含粒径小于0.5mm的颗粒煤和杂质的煤泥水与含粒径在0.5mm-3mm的颗粒煤和杂质的煤泥水。粒径小于0.5mm的颗粒煤和杂质的煤泥水经分级旋流器上部流出由管网输送至浓缩系统利用压滤机回收煤泥和水;粒径在0.5mm-3mm的煤泥水由分级旋流器下部依次流入弧形筛,离心机,脱水后由煤泥皮带转载至煤仓,煤泥水t由管网排入污水池,由污水池排污泵打入煤泥水桶进行下一循环。工艺流程图见图1。此系统在跃进煤矿投入工业性试运行,效果明显。

3.淤泥处理系统的综合性能和效益分析

(1)该系统充分利用了洗煤厂煤泥水处理系统,机械化程度高,降低了工人劳动强度。

在洗煤厂正常运行过程中,该系统充分利用洗煤厂自有设备及人工完成淤泥输送,泥水分级,干料运输等环节,改变了人工装载,人工推车的体力劳动,将工人从强体力劳动中解脱出来。同时,减少了设备投资,提高了用工效率。

(2)处理淤泥能力强,煤泥回收效果明显,提高了经济效益。

淤泥中大部分是煤,该系统对淤泥中不同粒径的颗粒煤,分别回收,提高了煤泥回收效率,增加了经济效益。该矿共有水仓4个,平均每年产生大约2500m?淤泥,仅回收煤泥一项,每年可增加收入25万余元。

(3)水仓淤泥及时处理有利于矿井安全生产,保护了环境。

及时清理水仓淤泥,可避免因积淤过多,大量淤泥进入吸水井,堵塞水泵,无法排水等现象,减轻矿水对矿井生产的威胁。矿水经过充分沉淀,可减轻对水泵过流部件的磨损,延长其使用寿命,提高排水系统的效率。本系统处理淤泥彻底,同时实现了水资源的循环再利用,减少了对环境的污染。

参考文献:

[1] 王培润,戴葆青,郭秀欣,等.矿井水仓清挖及处理新方法[J].煤矿机电,2004(6):54-58.

[2] 霍妍妍,李爱军,刘瑜,等.宝雨山煤矿井下水仓清淤系统设计[J].煤矿机械,2007(10):22-23.

淤泥运输方案范文第2篇

关键词:河道处理 清淤工程

中图分类号:TV85文献标识码: A

前言

近几年随着城市建设的加快,乐清市柳市镇人民生活水平的提高,现状城市生活污水、垃圾收集系统不完善,生活垃圾、生活污水、建筑垃圾直接倒入河道现象非常普遍,另外由于土建项目水保措施不到位,扰动土在暴雨侵蚀下,随雨水带入河道,目前该河道淤积严重,柳市龙岐河支长1.4公里,河面平均宽度8至9米,流经柳市后后西村、心村、东风村。河两岸遍布着老房子,基础设施落后,近年来,由于居民垃圾落河、生活污水直排等原因,这条河严重受污染。河道治理工程任务艰巨,对该河进行清理已迫在眉睫。

一、工程特征分析

经过多次实地考察,对龙岐河支7河段实况作出详细准确分析。

1、工程地质

本工程未进行地质勘测,地质资料参考附近勘测资料,根据勘察资料,桥址区勘察深度范围内地基土自上而下可分为16个工程地质亚层,分别为:1粘土、 2-1淤泥、2-2淤泥、2-3淤泥质粘土、3-1粘土、3-2粘土、4-1粘土、4-2粘土、5-1粘土、5-2粘土、5-3粘土、6粉质粘土、7圆砾、8粘土、9圆砾、10粘土。

2、工程任务及规模

根据《防洪标准》(GB50201―94)、《乐清市柳市区域防洪规划》,工程等别为Ⅴ等,次要建筑物和临时建筑物级别为Ⅴ级。

龙岐河支7呈东西走向,东向为岙底村,西向为前州村。自西向东沿河有支流龙岐河支7-1、龙岐河支7-2,支河方向为盲河。主河道长度1.78km,支河长度为0.57km,清淤河底高程0.00m,河道纵坡为平坡。

沿线分布着大量的建筑物和农田。目前河道淤积严重,对该河进行清理已迫在眉睫。本工程通过河道清淤、垃圾清理,加强河网蓄水能力,改善河水水质。

根据设计图纸,现状该段河道设计清淤量约3.05万m³,河底高程未达到《乐清市柳市区域防洪规划》中要求的0.00m标准。

3、工程布置及主要建筑物

本工程河道长度1.78km,支河长度为0.57km,清淤河底高程0.00m,清淤边坡为1:3.5,清理表面黑浮泥30cm,清淤范围内沿线已建有河道护岸,清淤可能会对现状河道护岸稳定产生影响,本设计对有护岸河段,初步预留3.0m平台保护河道护岸,平台段暂定最小清淤高程为1.70m,施工时根据实际护岸底板高程和护岸稳定情况,做适当调整。

二、工程实战型方案

1、实施方案分析

1.1泥浆分类

泥浆的分类有河道清淤泥浆、建筑工程基础处理垃圾、桥梁工程及其它市政工程基础处理基坑开挖泥浆等。

1.2开挖方式

调查当前工程上常用的开挖方式,主要分为水力冲挖法、抓斗式挖泥法、绞吸式挖泥法。使用到的主要施工设备分别为水力冲挖机组、抓斗式挖泥船、绞吸式挖泥船。水力冲挖土法需要断水作业的施工条件,而抓斗式挖泥法、绞吸式挖泥法可带水作业。各方式的主要利弊比较见下表:

开挖方式相对比较表

1.3泥浆运输方式

陆路可采用专门的泥浆运输车,水路可采用泥浆运输船和管道泵送。各方案的利弊见下表:

1.4泥浆处置

乐清市当前未有指定的泥浆消纳场,泥浆主要通过船舶运往大门围垦区消纳。

1.5分析结果

结合龙岐河支7的各项条件与特点,经比较后选定以下施工方案:

施工地水利冲挖土内河船运泥浆中转站泥浆装船运输至大门围垦区卸船消纳。

2、结合选定的方案列出了该项工程的工程特性表

工程特性表

3、主要施工技术分析

3.1施工围堰

围堰采用松木桩编织袋填土结构,具体结构型式为:两排L=4m、Φ=120m松木桩,排距为1.0m,间距为2.0m;松木桩两排放置竹篱板,两竹篱板间由编织袋填土填筑,止水彩布防渗,堰顶高程为3.3m,堰宽1.0m。施工围堰放水前可对工程局部危险段进行松木桩支护。

3.2集浆池设置

本工程设置2座集浆池。分别设置在本工程主河道桩号AK0+750.52与AK1+776.49处,上、下游由围堰填筑,分别形成面积约为800,容积约为1200m³的集浆池用于泥浆沉淀。

3.3施工前的准备工作

(1)搞好政策处理工作,使施工如期进行。

(2)定线放样:在施工前根据有关图纸进行线放样。

(3)施工临时设施布置,施工队伍具体落实施工道路、供电、供水布置等有关事项。

3.4 主体工程施工―水力冲挖及船运

本工程的水力冲挖采用水力冲挖机组进行,冲挖初期直接用高压清水泵从内河中抽取水,接送高压水枪进行冲挖。高压水枪冲挖下来的泥浆被固定在浮桶上的泥浆泵抽出,抽出的泥水混合物排放至集浆池内,进行初步沉淀以提高泥浆浓度,再泵送至泥驳运输至七里港中转站。其后由船统一运至大门围垦区弃土。水路运输船应在装卸前后拍照,实行全程运单验收,在施工工地派发,在中转站进行核对,在消纳场进行验收,对运输单位按收量进行结算,对施工单位按派单量进行结算。

三、环境影响及水土保持综合评定

1、环境影响评价

本工程采取清理淤泥垃圾,对河道实施清理。本工程的实施过程,将对周围环境产生一定的影响。

2、对社会经济发展的影响

本工程实施后,提高了防洪能力,两岸得到保护,投资环境进一步改善,有利于促进当地的经济发展和社会进步。

3、对水环境的影响

随着本工程的实施,与清理前相比,提高了河道的蓄水能力及防洪能力。本工程实施后,水质将得到较大的改善,有利于水体的降解,溶解氧增加、COD减少。

工程区淤泥开挖量较大,时间较集中,容易在施工区形成水土流失,由于工程产生的弃土量较多,且在土方开挖、转运、临时堆置过程中容易造成水土流失,因此应针对不同的区域采取相应的防护措施,如挡墙、护坡、绿化等工程及植物措施,减少水土流失。

淤泥运输方案范文第3篇

关键词:变动回水区 全沙模型 泥沙淤积 冲淤平衡

1 引 言

长江三峡工程于1994年正式动工兴建。在此之前.对工程可行性进行过全面深入的论证。在论证工作中.直接影响可行性的一个关键问题,是变动回水区的泥沙淤积及其对该区航运的影响。由于这个原因,对变动回水区的泥沙淤积进行了大量的模型试验和一、二维数学模型计算工作。由于问题的复杂性和重要性.需要建立一个变动回水区的长泥沙模型.以期对整个变动回水区的泥沙淤积及其对航运的影响作出全面深入的研究。变动回水区内上、下游河段之间有着内在的联系。下游河段的淤积将影响其上游河段的水位.从而影响上游河段的淤积量;而上游河段的淤积又将影响进入其下游河段的泥沙数量,从而影响其下游河段的淤积量。当进行河道整治试验研究时.这种上、下游之间的相互影响将更为强烈。进行变动回水区全河段长模型试验.就可较好地研究并解决这个问题。长模型的进口可置于变动回水区之上,不受囤水影响.其来沙量与天然情况下相同。模型的出口可做到变动回水区以下.位于常年水位之中。在常年回水区中,由于水面比降小.对河床糙率不敏感,因而,可由数学模型提供准确的模型出口水位。

由于泥沙运动的复杂性,在整个变动回水区长泥沙模型中准确地复演泥沙运动及冲淤变化是很困难的。我国于70年代围绕着长江葛洲坝工程泥沙的研究,开展了大规模的泥沙模型试验工作,使泥沙模型得到了迅速发展和完善。并能在一个模型中,同时复演悬沙和底沙(包括卵石在内)的运动,从而掌握了进行全沙模型的试验技术。然而,葛洲坝的泥沙模型(包括全沙模蟹)仅限于复演较短的局部河段中的泥沙运动和冲淤变化。故对于进行整个变动回水区的长河段泥沙模型试验是否可行,必然有不少疑虑。进行长河段泥沙模型在技术上的主要困难是对模型的相似条件要求非常严格。只有各种相似条件能相应得到满足时,才有可能达到全河段各个部位的冲淤相似。因此,需要进一步提高泥沙模型试验和操作技术,以便更好地研究三峡工程变动回水区全河段的泥沙淤积情况及对该区航运的影响。

模型范围上起江津附近的青草背(航行里程①725km),下至涪陵附近的剪刀峡(航行里程550km),并包括嘉陵江18km(见图1)。自1985年按受三峡工程变动回水区全河段泥沙模型试验任务以来,完成了近800m长的模型制做、水流和泥沙冲淤验证、三峡大坝蓄水175m方案80年长系列淤积试验、水库运行100年后重庆洪水位抬高问题、蓄水180m方案80年长系列淤积试验以及175m水位方案中前期按156m水位运行30年等试验工作,为长江三峡工程的技术论证工作提供了可靠的科学依据。

①航行里程系指距离宜昌港的距离。

图1 三峡工程变动回水区河势

1、青草背 2、大中坝 3、大猫峡 4、渔洞溪 5、茄子溪 6、九龙滩 7、猪儿碛 8、重庆

9、寸滩10、铜锣峡11、明月峡 12、上洛碛13、下洛碛 14、长寿 15、黄草峡

16、金川碛 17、牛屎碛 18、剪刀峡

Fig. 1 Varying backwater zone of Three Gorges Project

2 模型设计和验证

长江水量大,沙量也大。河道迂回多弯,河床宽窄相间.坡陡流急,岸边石嘴、石梁众多,地形和流态均十分复杂。据寸滩水文站实测资料统计,泥沙年输移量约4.6亿t.泥沙粒径分布很广,从0.005mm以下直至200mm以上[1]。各种粒径的泥沙.其运动形式不同,淤积部位也不同。只有在一个模型中同时复演各种粒径泥沙的输移,才能更好地反映建库后河道各部位泥沙淤积的实际情况,因此,采用全沙模型相似理论[2]设计泥沙运动的相似比尺。在模型设计中,除水流处于阻力平方区和满足重力相似、阻力相似,悬沙满足沉降、扬动和挟沙能力相似,底沙(包括卵石)满足起动、沉降和输移量相似外,还着重研究了悬沙和底沙级配相似。

计算表明,当模型的平面比尺λL选用250和垂直比尺λH选用100时,并采用比γs=1.46t/m3的电木粉作为模型沙,各相似比尺要求能得到较好的满足(见表1)。

表1 模型比尺汇总表

注:冲淤时间比尺λt采用120;模型沙γs=1.46t/m3;悬沙d50=0.026mm;底沙d50=0.12mm;卵石d50=3mm。

Tab. 1 Summary of Similarity scales for model

悬沙和底沙级配相似是全沙模型试验的关键。为保证原型沙和模型沙级配相似,在设计模型沙级配时,采用了文献[3]中的统一沉降公式。将原型沙分为若干组,第i粒径组的直径为dp,i,相应沉降速度ωp,i,可由下列公式计算

其中,γs—泥沙比重;γ—水的比重;g—重力加速度;Rei—沉降雷诺数。由沉降相似要求可得到第i粒径组原型沙相对应的模型沙的沉速ωm,i,并由(1)、(2)和(3)式进一步计算得到模型沙粒径dm,i 。因此,模型沙的粒径比尺λd与原型沙的粒径有关。当原型沙的粒径范围为0.005~1.0mm时,粒径比尺的范围为1.06~2.15。

在制模中,对于关键的局部微地形亦进行了精细的塑造,保证了几何相似条件。原型河床糙率约为0.03~0.10.模型的糙率为0.022~0.074。模型河床采用梅花形排列的橡皮加糙。水面线验证试验表明,在寸滩流量为3150~21810m3/s范围内.水位误差一般在10cm以内(已换算成原型水位)个别站最大误差不超过20cm。为了验证边壁糙率,施放了寸滩站85700m3/s洪水流量,模型水位误差小于22cm。三峡建岸以后,河床将发生累积性泥沙淤积,动床糙率能否保证相似也是一个至关重要的问题。动床糙率一般由沙粒糙率和沙坡糙率所组成。R.J.Garde[4]在大量试验和原观的基础上,给出动床糙率系数Frs在0.1~1.0范围:

其中,H—水深;V—流速;d50—床沙中值粒径。在满足重力相似和采用满足相似要求的电木粉作为模型沙的条件下,由(4)式可得到λn=1.31~1.38,与阻力相似所要求的糙率比尺1.36基本一致,因此,动床的阻力相似是满足的。

在江津至剪刀峡近200km长江河道中,有大中坝、中堆、九龙滩、上洛碛、王家滩、金川碛和牛屎碛等著名宽浅滩,支流嘉陵江上还有石门和金沙碛两个宽浅段(参见图1)。在这10个宽浅段上,在一个水文年内,实测了3~9月的泥沙淤积量和9~10月的泥沙冲刷量。在模型中,模拟了实测水文年的来水来沙过程,并在模型相应10个宽浅河段,实测了3~9月的泥沙淤积量和9~10月的冲刷量。试验结果表明,模型淤积量和冲刷量与原型基本一致,误差一般在30%以内。原型河道宽浅汛期淤积、汛后冲刷,并在一个水文年内基本平衡的冲刷规律在模型中得到了较好的模拟,模型设计能反映原型河道的河床演变过程。

3 三峡工程各蓄水水位方案的泥沙淤积

三峡工程的重点论证方案为一级开发、一次建成、分期蓄水和连续移民的建设方案。在长模型中重点论证的有3种库水位运行方案(见表2)。各方案能否成立的关键,在于三峡水库按3种水位方案长期运行时变动回水区河段的泥沙淤积情况。

表2 长模型论证方案基本参数

注:(1)方案Ⅲ为方案Ⅰ初期运行方案,仅运行10年,其后按方案Ⅰ运行,但在试验中运行了30年。

(2)尾门水位由长江科学院一维数模计算提供。

Tab.2 Control parameters for at different selections

三峡水库蓄水后,变动回水区河道水位沿程抬高,流速普遍减小,河道的输沙能力随之降低。变动回水区河道的宽浅河段(往往是浅滩所在地)在蓄水前汛期是淤积的,汛后冲刷走沙,但蓄水后水库蓄水缩短了汛后冲刷时间,汛期淤积的泥沙在汛末不能全部冲走,变动回水区河段发生累积性淤积。泥沙淤积的数量与三峡水库水位运行方案和运行时间有关。各方案在变动回水区河段内泥沙淤积数量见表3。可见,三峡水岸按175m方案运行80年,变动回本区河段共淤积7.68亿m3;按180m方案运行80年共淤积9.76亿m3,增加2.08亿m3的淤积量。三峡水库按156m低水位运行时,30年共淤积4.36亿m3。各水位方案变动回水区河段的淤形态基率一致,差别在于淤积数量不同。各蓄水水位方案的变动回水区河段的泥沙冲淤规律如下:

(1)三峡水库不论按何种水位运行,变动回水区均发生累积性淤积,淤积速率随水库运

用年限的增长而减缓,并在淤积过程中河道向单一、规顺、微弯和高滩深槽发展,并最终达到新的平衡。从图2的重庆河段在三峡水库按175m水位方案运行80年后的主要淤积部位图可见,主槽淤积较少,而边滩及回水沱或副汊则淤积较多。

(2)变动回水区淤积数量的分布与河床平面形态密切相关,宽浅河段(包括分汊河段)淤积较多,而窄深峡谷段淤积少。如三峡水库按175m水位运行80年,铜锣峡、明月峡和黄草峡每公里的淤积量仅为邻近宽浅段的8%~30%,其原因是汛期的累积性淤积主要发生在宽浅河段上。

表3 各水位运行方案变动回水区淤积汇总

注:(1)方案Ⅰ和方案Ⅱ长江段为红花碛至黄草峡,方案Ⅲ为铜锣峡至牛屎碛;

(2)嘉陵江段为入汇口至滋器口;

(3)重庆河段为李家沱至铜锣峡。

Tab.3 Summary of deposition quantities on varying backwater zone at different elevation selections

图2 重庆河段淤积形态(175m方案,80年)

Fig.2 Sketch deposition pattern on Chongqing reach(HRE 175m,80 years)

(3)淤沙粒径沿程分布的总趋势是上游河段粒径粗.越向下游粒径越细。最粗的卵石主要淤积在变动区的上端。因此,变动回水区河段的水力分选作用明显。变动回水区上端淤积相对较少,而下端淤积较多,主槽淤积较少,而边滩淤积较多。以175m水位方案为例,在7.68亿m3的总淤积量中,30%淤积在主槽中,70%淤在边滩。

(4)随着泥沙的累积性淤积,变动回水区原卵石河床逐渐为泥沙覆盖,河床糙率随之降低,水面比降也随之减小。以175m水位方案为例,建库前寸滩流量30400m3/s时,重庆至长寿河段的水面平均比降为2.0×10-4,水库运用30年、50年和80年后,其水面计算比降分别为建库前的69.0%、61.5%和61.0%;水库运用80年后,重庆以上河段的河床糙率系数相当于建库前的85%,重庆以下河段为75%。

(5)细泥沙在变动回水区河段中的造床作用不可忽略。淤沙的粒径分析表明,各种颗粒的泥沙都参与了变动回水区的累积性淤积。以175m水位方案为例,在7.65亿m3的全部淤沙中,小于0.05mm的细沙为2.46亿m3,占总量的32.0%。在180m水位运行80年的试验中,细泥沙占更大的比例,在9.76亿m3的总淤积量中小于0.05mm的细沙为5.37亿m3,占55%。这说明,三峡水库运行水位越高,越不能忽视细泥沙的造床作用。

4 各水位方案对变动回水区河段航运的影响

三峡水库建成后,万吨级船队能否到达重庆九龙坡码头,也是三峡工程蓄水水位方案需要论证的问题之一。试验表明,三峡水库按175m水位方案运用80年后,在水库消落期3.5m水深的最小航宽不小于150m,航道曲率半径一般均大于1000m,水流流速也较建库前大幅度降低,一般均小于2.5m/s。特别是窄深河段,如铜锣峡、明月峡和黄草峡,建库前的急流状况大大缓解,寸滩流量30400m3/s时,流速均小于2.5m/s。九龙坡码头位于变动回水区中段,九龙坡以下河道形成了一条比较稳定的深水航道,基本上满足万吨船队对航道尺寸的要求。试验过程中也发现,个别浅滩段(如洛碛)在个别枯水年的水位消落后期,3.5m水深航道宽度最小仅80m,需疏浚扩宽。某些浅滩段如九龙坡、金沙碛、金川碛的主航道在水库运用过程中发生倒槽,新航槽中的一些礁石需事先清除,以策航行安全。按180m水位方案运行80年后,九龙坡以下航道3.5m水深的最小航宽均在300m以上,航道曲率半径均大于1100m,水流流速一般均小于2.5m/s,其航道条件较175m水位方案优越,完全满足万吨船队到达重庆九龙坡码头的要求。

175m方案和180m方案都存在较严重的码头边滩淤积问题,除佛耳岩港和长寿港外,几乎所有重庆港码头、厂矿专用码头以及地方码头的前沿均出现大片边滩,将严重影响码头作业。例如在175m水位方案中,九龙坡码头前沿出现了宽约50~100m边滩(滩面高程约170~175m),原九龙坡码头作业区被淤废需要新建。由于嘉陵江入汇口的主流左摆,重庆朝天门港区嘉陵江沿岸1#~4#码头出现大片三角形边滩(最大宽度达300m,高程约170m),原码头作业区基本被淤废亦需重建。

5 175m水位方案的重庆洪水位

三峡水库长期运用后,重庆市洪水位抬高值是由一维数学模型提供的。考虑到数值中变动回水区河段糙率不易确定,加之,河道淤积数量及淤积部位对洪水位影响较大,数模成果宜在长模型中进行验证。长模型在复演重庆1981年大洪水时(寸滩流量85700m3/s),水位最大误差为0.22m,模型沙又严格遵守了各项相似比尺要求,特别是级配相似。河床淤积后,动床阻力也能满足相似要求,因此,用长模型预报三峡水库长期运用后重庆市洪水位,具有较高的精度。

由于变动回水区的下端位于长寿,模型尾门放在长寿并按一维数模的计算水位控制,并在175m方案80年淤积地形基础上进行水库运用100年的淤积试验。在100年淤积地形上分别观测了洪水频率为1%、5%和20%(洪水流量分别为88700、75300和61400m3/s)的沿江水位,相应频率的重庆洪水位分别为200.85m、197.65m和194.04m。相应频率建库前重庆洪水位分别为194.30、190.18和185.90m,即分别抬高6.55、7.47和8.14m。考虑到长模型试验的精度,洪水位的误差为±0.5m。

数学模型计算的重庆1%频率洪水位为199.09m,比长模型试验的结果偏低1.76m,5%频率洪水位偏低1.51m,20%频率洪水位偏低1.43m。数学模型所采用的长寿以上河道的综合糙率系数比长模型实际值偏小约8%~10%。为检验糙率对水位计算值的影响,在数学模型上进行了糙率敏感性分析[5]。结果表明,增、减糙率10%对常年回水区的水位和淤积量影响很小,而对变动回水区的影响较大。当糙率值增大10%时,百年一遇的重庆洪水位为201.21m,与长模型的预报上限值201.39m很接近。

6 结 语

(1)建立三峡工程变动回水区长泥沙模型不仅是必要的,也是完全可能的。只要认真把握住全沙模型相似律的基本点,就可以较好地复演近200km河道中水流和泥沙的运动规律及河床的冲淤变化,从而为全面研究长河段泥沙问题提供新的手段。

(2)长江中各种粒径的泥沙均参与变动回水区的累积性淤积,在长河段上道行全沙试验能较好地反映河床淤积形态,从而能较好地明确泥沙淤积对变动回水区航运的影响。

(3)三峡工程不论何种水位运行方案,其变动回水区将发生累积性淤积,其淤积速率随着水库运用年限的增长而减缓,并最终达到新的平衡。在淤积发展的过程中,河道向单一、规顺、微弯、高滩、深槽演变。

(4)在变动回水区中淤积沿程分布的总趋势,是愈往上游淤积越少,但在靠近回水末端一段是粗沙卵石淤积区,淤积比较严重。在横向分布上,总的情况是边滩淤得多、主槽淤得少,但在发生倒槽河段原主槽将发生严重淤积。淤沙粒径的分布规律是上游粗、下游细,细颗粒主要淤在高滩上。

(5)随青河床的淤积,水位不断升高,但因淤沙覆盖原沙卵石河床的程度增大,河床糙率减小,水面比降也随之减小。蓄水位愈高,淤积量愈大,水位壅高愈多,水面比降亦愈小。

(6)蓄水位175m方案运用80年变动回水区河床接衡,运用100年基本平衡,长江九龙坡以下形成一条较好的航道,基本满足万吨级船队直达重庆九龙坡码头的要求,但现有沿江大部分码头将受到严重影响。对港口淤积造成碍航的问题应通过优化水库调度、港口改造、航道整治和疏浚等措施加以解决。

(7)蓄水位175m方案运用100年后发生百年一退洪水时,重庆水位约为200.85±0.5m,较建库前抬高约6~7m。

(8)在改善航道条件方面,180m方案优于175m方案,在长江九龙坡以下可形成一条良好航道,完全满足万吨级船队直达九龙坡码头的要求,且大大增加万吨级船队驶抵九龙坡的天数。但由于在180m方案中增加的淤积量都是小于0.04mm的细颗粒,使边滩淤高,对现有沿江码头的影响较175m方案更为严重,需要结合港口改造和整治来解决。

(9)在175m方案中前期按低水位156m运行,其前10年长江铜锣峡以下航道较建库前有一定改善。如果运用30年,则某些关键河段的航道条件已接近建库前的严重情况。因此,低水位运行阶段不宜太长。

参考文献

1窦国仁,万声淦,陆长石.长江江津至涪陵河段水沙条件和河床演变分析.南京:南京水利科学研究院,1989

2 窦国仁,全沙河工模型试验的研究. 科学道报,1981;(14)

3 窦国仁,紊流力学,北京:人民教育出版社,1987

4 Garde BJ,Raju KGR. Resistance relationship fro alluvial channel flow .J of the Proc of the Am Soc of Civ Eng .Hydraulic Division ,HY4 ,1966;(6)

5长江科学院. 三峡工程水库泥沙淤积计算敏感性分析(长江三峡工程泥沙研究文集).水利电力部科学技术司,长江科学院,北京:中国科学技术出版社,1990:56-72

Investigation on sedimentation in varying

backwater zone of Three Gorges project

Abstract

淤泥运输方案范文第4篇

随着国民经济的发展,水利已成为国民经济建设重要组成部分,加大河道清淤疏浚力度,提高排灌、泄洪能力刻不容缓。

河道清淤疏浚设备仍以挖泥船为主,不同类型的挖泥船对施工环境、水深、气象等作业条件的适应性差异较大。对将要进行的疏浚区域,根据工程特点、气候条件、环境要求等因素优化方案尤为重要。水下真空清淤技术,即水力清淤和气力清淤,用高压水或高压风为动力,船体或浮箱做载体,在中小型工程清淤中可作为主要设备,大型工程清淤中可作为辅助机械。

2.工作原理

真空清淤的工作原理是根据水力学理论和空气动力学原理,通过从混合室进口处通入具有一定能量的压力水或高压风,使混合室内形成真空,在压力差的作用下,管内产生强大的真空吸力,物体从吸嘴处被吸入,进入混合室形成流动的混合体,并沿扬泥管从出口排出。

3.基本结构

3.1真空清淤工艺流程

真空清淤工艺系统的主要组成是:动力源(高压水泵或空压机)、动力管(高压水管或高压风管)、混合器、吸泥头、吸泥管、扬泥管、输泥管等。其工艺流程见图1。

真空清淤机构的设计,是以清淤工程需要,选择清淤器类型,根据确定的类型计算混合器尺寸,及各种管路直径,最后确定高压水泵或空压机的参数。

3.2真空清淤结构

3.2.1水力清淤的混合器结构

水力清淤混合器(射流泵),其结构如图2所示。一般实际应用水力清淤的混合器,其喉管截面与高压水喷嘴截面的比值约为4~10倍;吸泥管截面与喷嘴截面的比值约为15~20倍;喉管长度与直径相同,使混合后的泥浆具有较稳定的流动状态;扩散管一般做成锥形,以提高排出泥浆的位能和减少由动能转为位能时的能量损失。

吸入泥浆时所需要的高压水的流量,约与泥浆量相同。吸入的泥浆和高压水混合后的稀释泥浆,在管内的适宜流速,应不超过2~3m/s;喷嘴处的高压水流速,一般约为30~50m/s,喷嘴处的有效水压对扬泥所需要的水压之比值,一般为7.5。清淤机的工作效率约为水泵工作效率的10~20%。这些数据可作为粗略估算时参考。

3.2.2气力清淤的混合器结构

气力清淤比较有效,典型的空气混合器结构型式如图3所示。这种类型清淤机在泥浆管路中没有直径缩小断面,有利于泥浆通过,也可通过一定直径的卵石或块石。

压缩空气进入吸泥头混合室的小孔,与管壁的交角不宜大于45°。小孔的总面积,一般采用进气管净面积的1.5倍。排泥管不宜过长或急弯,以减少堵塞,弯曲处宜用加大的管径,并在弯管上方开一个可启闭的天窗,以便清除管内堵塞物。吸泥头的空气箱底部可设置一个活门,以便清除箱内堵塞的泥沙。用于吸泥沙时,排泥管可用胶管,吸含有卵石的泥沙时宜用钢管并取消下端吸泥口的钢筋网。而在管口内壁焊上一圈3×50mm的扁钢,以减少卵石在管中卡住的可能。在水深较大或含有卵石的场所,使用接力式吸泥装置效果更佳。

4.主要参数计算

4.1水力清淤水泵主要参数

高压水泵是供给水力清淤高压水的设备,在施工中常选用电动多级离心式水泵。水泵可选择单台也可选择多台。当单台水泵的工作压力不能满足要求时,可将几台水泵串联使用;水量不能满足要求时,可将几台水泵并联使用;水压水量都不能满足时,可在串联后再并联。串联或并联中的每台水泵在工作范围内的水量和工作水压(扬程)要相互接近,相差过大时不宜使用。

水泵串联时,在其Q—H曲线上任一点的杨程H,应为单台水泵Q—H曲线上相同Q点的杨程之和,即H=Ha+Hb+Hn。水泵相同时H=nHa。串联的各台水泵如规格不同,宜将水压较低的或水量

较大的水泵置于进水方向。

水泵并联时,水压与其中最低的一台相同,水量则小于各台水量之和,大于每台的单独供水量,并联时管路的连接,应尽可能使交角减小,交角一般应小于60°。

水泵的工作压力(扬程)

H = H1+H2+H3 m

式中:

H1——喷水嘴处需要的压力,H1=7.5 H2

H2——扬泥所需要的压力。(根据扬泥高度确定)

H3——管路中压力损失,H3=hf+hj

式中:

hf——管路中沿程压力损失;hj——管路中局部压力损失;λ——沿程水头损失系数;u——流速;

R——水力半径;L——计算长度;

ξ——局部水头损失系数。

Hf、hj值的计算请参照有关水力学公式。

式中:

H——空气混合器在水面以下的深度,m.

h——排泥管出口与水面的高差,m

Q——泥浆流量,m3/min

c1——校正系数,一般c1≈1.5~2.0

c2——系数,视空气混合室的相对深度而定。一般取值如下:14.3,13.9,13.6,13.1,12.4,11.5,10.6,9.6相对深度大时取大值。

e——由吸扬净水折算为吸扬泥浆所需的空气增大系数,

式中:

γ——水比重。t/m3.

γ2——泥浆比重。t/m3

γ3——泥浆与空气的混合体的比重(一般为0.4~0.6),t/m3

需要的压缩空气压力(空气表压力):

式中:

q——进入混合室的压缩空气量,m3/min;

u——空气在管内的流速,一般取600~1200 m/min。

需要的压缩空气总量:

q总——(1.2~1.3)n.q.k,m3/min;

n——清淤机台数;

k——清淤机同时工作系数,

当n取1,1~3,4~6,7~10,10~20,25以上时;k 取1,0.9,0.8,0.7,0.6,0.5。

一般应用气力清淤时,当吸泥管直径为:Ф100,Ф150,Ф250,Ф300mm时,每台吸泥器对应的空气压缩机容量分别为 6,9,20,23m3/min,可将前列算式计算所得值,以此值参照校对。

5.工程实例

5.1长江三峡工程

长江三峡工程左岸下游航道隔流堤水下清淤工程,工程量为400余万m3,月平均强度45万m3左右,水下地形复杂,暗礁丛生,槽缝密布,深水作业量大,最大水深24m,15~24m范围的深水清淤工程量约50万m3。

根据多种施工方案比较和论证确定如下方案。对于水深在15m以内的一般清雅蒂鲁霍工程

印度尼西亚雅蒂鲁霍水库大坝修复工程水下清淤,工程量约1500m3,清淤面积约4500m2,淤积深度约0.5m,水深30~40m,清除弃料要求输送到200m以外,清淤工作不能影响水轮机发电机组正常运行发电。

针对该工程清淤量小、深水作业、淤积层薄的特点,首选方案为气力真空吸泥法(挖泥船因水深、量小、且费用昂贵不宜选用)。其主要设备及参数是:自制浮船2艘,船体面积分别为9m×3.2m和2.5m×3m,两套清淤系统,吸泥器管直径分别为Ф159mm和Ф75mm。其中小的清淤系统负责进水塔周围5m区域,其它区域由大的清淤系统完成,小的清淤系统的输送管通入大的清淤系统的主输泥管。输泥管每隔10m设一浮体,以保证输泥管均匀地浮在水面上。空压机选用供气量为12m3/min一台,工作压力为0.9MPa。

浮船用缆绳锚固定位,整个清淤过程均由超声波测深仪和水下电视监控,用以指导定位或及时调整清淤管高度,同时进行录像,据此作为工程验收和移交的依据。

参考资料:

[1]港口工程施工手册.北京:人民交通出版社,1994

[2]水利学.北京:水利电力出版社,1978

淤泥运输方案范文第5篇

关键词:混凝土,岩石工程,大亚湾石化工业区

 

大亚湾石化工业区建设场地是陆域挖山,海域填海,从而形成的建设场地。在挖山填海过程中,受自然条件、海洋条件、地质条件和工程特点不同的影响,遇到各种岩土工程问题,采取了不同的处理措施和施工方案。

一、挖山、填海方法的选择

挖山、填海工程量大,受自然条件和地质条件,特别是波浪和海流条件的影响,施工难度大,施工质量难以控制。在施工之前,必须对施工方案进行充分的分析和论证,选择科学合理的施工方法,在保证质量的前提下,降低工程造价,加快施工进度,既要保证经济效益,又要创造时间效益。

由于地形地貌、水深、波浪、潮流、岩土性质、取排水方案以及厂区布置的不同,各地块的填海方案也不同,计划采用三种:干填法施工、吹填法施工和干湿结合法施工。

1.1干填法施工

干填法施工是采用开挖、运输等机械设备,并配以碾压、整平机械,开挖附件山体的岩土材料回填到海域,由陆地向海域推进回填的一种施工方法。科技论文。干填法施工可以事先修筑围堤,也可不修筑围堤,回填结束时在回填区的外缘修筑护岸。我们采用先修筑围堤的施工方法。

干填法施工要求具有一定的自然地理条件。回填海域临近为可供开挖山体,或附近存在可供开挖的土石料;回填区的海域海流和涌浪不能太大,保证回填物质不被海水冲走,不但会给回填造成损失,还会造成附近海域的污染和淤积。如果风浪较大则需要修筑围堤。

干填法施工有许多优点。开挖与回填同步进行,作业面宽,施工速度快;回填施工后的场地通过强夯或分层碾压处理,地基处理费用低。处理后的场地作为荷重较轻的建(构)筑物和厂内道路的地基。

1.2吹填法施工

吹填法施工是采用挖泥船、吹砂船和输泥管等设备将泥砂和水一起抽吹到回填区域,然后泥砂沉淀,泥水分离,形成陆地。吹填法施工与港池或航道的疏浚相结合,可以起到一举两得的作用。吹填法施工一般应在表面有一定厚度的堆填土,形成表层硬壳层,便于后期施工。

吹填法施工的优点是不需要在陆地开挖土石料,回填料是李勇附近海域的砂源或泥源。不需要大型的开挖、爆破、运输等设备,回填成本低。可以综合李勇航道或港池疏浚的泥砂,可以达到综合利用的目的,如果泥砂方量不足,可在附近海域寻找砂源。

吹填法的不足之处是吹填之前需要修筑围堤或护堤,防止泥砂流失。吹填后形成陆地不能直接作为建设场地,必须进行地基处理,地基处理费用一般较高。

1.3干湿结合法施工

干湿结合法施工是根据自然条件和工程需要,将干填法施工和吹填法施工结合起来,先进行吹填法回填,然后进行软弱地基处理,再进行干填法回填至涉及标高。

干湿结合法施工的优点是能够充分利用自然资源,从而达到降低工程造价的目的。疏浚港池和航道的泥砂可以用来回填厂区,开挖山体的弃土同样也可以回填厂区,通过资源的合理配置,达到回填方案的最优。软土地基的处理多采用排水固结,而堆载预压是最常用的固结方法,通过合理的工序安排,堆填物质可以首先用作地基处理的堆载材料,之后再作为回填材料试用,将上部堆填和下部的软基处理有机结合起来。

一般情况下,在原海底有较厚淤泥层存在的大型滨海工程多采用干湿结合法施工。由于海底存在厚层淤泥,即使不吹淤回填,下部淤泥也需要处理,而水下进行软土地基处理非常困难,费用很高。吹淤回填后,原来需要进行的软土基地处理的场地变成了陆地,降低了处理的难度,减少了处理的费用,其代价只是增加了处理层的厚度。

干湿结合法施工中,应采用系统工程学的理论和方法,将整个修筑围堤、港池航道疏浚、吹淤回填、软基处理、开挖山体、开挖料分选和分类使用、运输堆填等的各个环节、各个不符作为一个整体,统一筹划,统一安排,达到回填场地的同一目标。干填法回填和吹填法回填方量的比例要根据陆地开挖方量和海域泥砂可采方量进行计算论证确定。

二、围堤或护岸的修筑

在干填法施工中我们选择预先修筑围堤。修筑围堤是在水中修筑一道基本封闭或半封闭的堤坝,目的是把回填区和周围海域分开,保证回填物质不被海水带走。

围堤有临时性的,也有永久性的。永久性的围堤一般是回填后陆域的边界,也称为护岸。永久性护岸是将来岸墙的组成部分,修筑时就要考虑其长期稳定性。如果永久性岸墙位置有较厚的淤泥层存在,应采取一定的清淤措施。清淤的方法可以采用爆破挤淤、重力挤淤、挖除淤泥等方法。

临时性围堤修筑时,一方面要考虑施工期间的稳定性,另一方面要考虑围堤修筑材料对将来建筑物基础施工的影响。如果在临时围堤的位置可能采用桩基础,则应避免采用大的块石修筑。

修筑围堤的材料可根据材料来源、工程需要和海流即涌浪条件因地制宜选用,主要材料有块石、开山土石、粘土、袋状砂、袋状土等。围堤高度应根据回填标高、潮位确定,围堤断面应满足稳定要求。封闭式围堤应留泄水口。

三、 开挖堆填层的夯(压)实处理

开挖、堆填是开山填海工程中的主要工作。开挖和堆填同步进行,是一项系统工程,需要合理设计,精心策划,统筹安排。开挖和回填应在回填区的地基处理和基础设计方案统筹考虑,开山开出的大块石主要用于修筑防波堤、岸墙、护堤(岸)等,除去大块石后的碎石和土料主要用于场地回填。

回填区若采用桩基,则需要严格控制回填块石的块径,大于30cm的大块石应严禁回填,否则会给后期的桩基施工带来不必要的麻烦。特别是修筑围堰时,应充分考虑建筑物的基础和后期扩建建筑物基础施工可能会遇到的问题。

填土的处理一般采用分层碾压和强夯处理。分层碾压虽然方法简单经济,但施工质量难以控制,并且影响回填工期。因此在工程实践中,对于大面积的厚层填土,采用强夯处理是一种行之有效的方法。根据填土处理厚度和处理后承载力与变形要求的不同,可以采用不同的夯击能。对于厚度很大的填土层,也可以根据设计要求进行分层强夯。

四、 海底淤泥层的清除处理

4.1清淤工程

根据工程的需要,在某些情况下应把海底的淤泥清除后才能回填,这种清除淤泥的海上工程一般称之为清淤工程。

清淤施工设备一般采用抓斗式挖泥船或耙吸式抽泥船,挖除的淤泥用船运往航道部门指定的淤泥地点。这种清淤方法一般适用于需要全部清除淤泥,淤泥的厚度不太大的情况。

4.2重力挤淤

采用干填法施工时,对下部存在力学强度很低的淤泥层,利用回填土重力的作用,使淤泥层发生破坏和流动,随着回填施工的向前推进,淤泥逐渐被向前排挤,填土层下部的淤泥厚度变小或清除,从而达到清淤的效果。

重力挤淤一般适用于不要求全部清除淤泥的情况。排挤淤泥的厚度与下部淤泥的流动性和上部填土层的一次堆填厚度有关。回填层一次堆填厚度太大,排挤淤泥的深度越大,为了达到预订的挤淤效果,可根据淤泥层的剪切强度指标设计出堆填层前缘的堆填层高度。随着堆填和挤淤的向前推进,堆填区前缘的淤泥厚度会逐渐变大,从而影响挤淤效果。当挤出淤泥达到一定厚度时,可以采用陆地挖除淤泥的办法将淤泥挖走。

4.3爆破挤淤

在海上修筑岸墙或围堤,如果下部存在软弱泥层,则会影响岸墙和围堤的稳定性。为了保证岸墙和围堤的稳定性。为了保证岸墙和围堤的长期稳定,需要将抛填的块石抛至软弱淤泥层之下一定深度,一般可采用爆破挤淤的办法进行施工。爆破挤淤首先是在岸墙或围堤的设计位置抛填块石、碎石,然后在堤坝的一侧放置炸药,进行水下爆破,将淤泥挤出形成沟槽,堤坝的块石在重力的作用下,向沟槽滑移,顶部再堆填块石到预订高度则形成岸堤或围堤,最大深度可达到20m以上。

五、开挖边坡的评价和治理

开山填海工程的开挖去一般会形成开挖边坡,有些情况下会形成高度很大的高边坡。边坡的稳定性对场地建筑物的安全会产生影响。科技论文。永久性的高边坡必须进行边坡稳定性评价和边坡治理,临时性的开挖边坡也应保证在安全坡度之内。

边坡的稳定性评价必须在边坡勘察的基础上进行。岩质边坡应考虑岩石性质、风化程度、结构面发育强度、结构面产状以及地下水的影响等因素确定稳定的边坡坡度。土质边坡应根据土体的物理力学性质、厚度、地下水的影响等因素通过计算和评价确定稳定的边坡坡度。科技论文。

六、 结束语

石化工业区场地平整过程中经常遇到开山填海工程,开山填海量大,受外部影响因素多,施工难度大,不同的自然条件下会出现不同的岩土工程问题。常见的岩土工程问题有:填海造陆方法的选择、围堤和护岸的修筑、软基处理、填层的密实处理、开挖堆填层的夯(压)实处理、海底淤泥层的清除处理、开挖边坡的评价和处理等。要解决开山填海中出现的岩土工程问题,必须重视地质勘测工作,对各项检测数据进行科学的分析力求设计到位,减轻施工过程中的压力,尽量做到设计前情况明了,设计方案有明确的针对性,避免在施工中出现设计外的岩土问题,保障项目方对工程质量、安全、工期和效益目标的实现。

相关期刊更多

混凝土与水泥制品

北大期刊 审核时间1-3个月

苏州混凝土水泥制品研究院

水利建设与管理

部级期刊 审核时间1个月内

中华人民共和国水利部

环境

省级期刊 审核时间1个月内

中国科学技术协会 广东省环境保护厅