首页 > 文章中心 > 微纳米制造技术及应用

微纳米制造技术及应用

微纳米制造技术及应用

微纳米制造技术及应用范文第1篇

[关键词]制造业;增长方式;发展战略;思路

一、转变制造业增长方式的紧迫性

目前, 我国制造业已有较好基础,并已成为世界制造大国,工业增加值居世界第四位,约为美国的1/4、 日本的1/2, 与德国接近。产量居世界第—的有80多种产品。然而,我国制造的多是高消耗、低附加值产品,大量产品处于技术链和价值链的低端。在代表制造业发展方向和技术水平的装备制造业,我国的落后状况尤其明显,大多数装备生产企业没有核心技术和自主知识产权。同时,我国制造业劳动生产率水平偏低,许多部门的劳动生产率仅及美国、 日本和德国的1/10,甚至低于马来西亚和印度尼西亚。这一差距,尤其明显地表现在资本密集型和知识密集型产业上。在此条件—卜,我国制造业不能继续在技术链低端延伸,不能依靠高消耗获得更多低附加值产品,必须用科学发展观指导制造业运行, 转变制造业增长方式。

二、转变制造业增长方式必须发展现代制造技术

产品技术链,没有一个固化的定式,但总是由低端向高端发展。近年,它正伴随着现代制造技术的进步不断向高端延伸。目前,制造业技术链高端几乎被现代技术垄断,处于技术链高端的产品几乎都是由现代技术制造出来的。所以,要转变我国制造业增长方式,必须抓紧发展现代制造技术,通过现代技术促使制造业及其产品向技术链高端延伸,以便降低技术链低端产品的比重,相应提高技术链高端产品的比重。

在知识经济时代到来之际,微电子技术、光电子技术、生物技术、高分子化学工程技术、新型材料技术、原子能利用技术、航空航天技术和海洋开发工程技术等高新技术迅猛发展。以计算机广泛应用为基础的自动化技术和信息技术,与高新技术及传统制造方法结合起来,便产生了现代制造技术。

现代制造技术,保留和继承了传统制造技术的产品创新要求,如增加现有产品的功能,扩大现行产品的效用:增多现有产品的品种、款式和规格:缩小原产品的体积,减轻原产品的重量:简化产品结构,使产品零部件标准化、系列化、通用化:提高现有产品的功效,使之节能省耗等。但是,现代制造技术,在制造范畴的内涵与外延、制造工艺、制造系统和制造模式等方面,与传统制造技术均有重人差别。

在现代制造技术视野中,制造不是单纯把原料加工为成品的生产过程,它包括产品从构思设计到最终退出市场的整个生命周期,涉及产品的构思、构思方案筛选、确定产品概念、效益分析、设计制造和鉴定样品、市场试销、正式投产,以及产品的售前和售后服务等环节。

在现代制造技术视野中,制造不是单纯使用机械加工方法的生产过程,它除了机械加工方法外,还运用光电子加工方法、电子束加工方法、离子束加I:方法、硅微加工方法、电化学加工方法等,往往形成光、机、电一体化的工艺流程和加工系统。

三、发展现代制造技术的重点方向

现代制造技术正在朝着自动化、智能化、柔性化、集成化、精密化、微型化、清洁化、艺术化、个性化、高效化方向发展。为了转变制造业增长方式,促使制造业向技术链高端延伸,我国宜着重发展以下现代制造技术。

(一)以纳米技术为基础的微型系统制造技术

“纳米”是英文nan。meter的译名,是一种度量单位,是十亿分之一米,约相当于45个原子串起来那么长。 纳米技术,表现为在纳米尺度(0.1nm到100nm之间)内研究物质的相互作用和运动规律,以及把它应用于实际的技术。其基本含义是在纳米尺寸范围认识和改造自然,通过直接操作和安排原子、分子创造新的物质。纳米技术以混沌物理、量子力学、介观物理、分子生物学等现代科学为理论基础,以计算机技术、微电子和扫描隧道显微镜技术、核分析技术等现代技术为操作手段,是现代科学与现代技术相结合的产物。

纳米技术主要包括:纳米材料学(nanomaterials)、纳米动力学(nanodynamics)、纳内米电子学(nanoclectronics)、纳米生物学(nanobi010gy)和纳米药物学(nan。pharmics)。就制造技术角度来说,它主要含有纳米设计技术、纳米加工技术、纳米装配技术、纳米测量技术、纳米材料技术、纳米机械技术等。以纳米技术为基础,在纳米尺度上把机械技术与电子技术有机融合起来,便产生了微型系统制造技术。

自从硅微型压力传感器,作为第一个微型系统制造产品问世以来,相继研制成功微型齿轮、微型齿轮泵、微型气动涡轮及联接件、硅微型静电电机、微型加速度计等一系列这方面的产品。美国航空航天局运用微型系统制造技术,推出的一款微型卫星,其体积只相当于一枚25美分的硬币。

微型系统制造技术,对制造业的发展产生了巨大影响,已在航天航空、国防安全、医疗、生物等领域崭露头角,并在不断扩大应用范围。

(二)以电子束和离子束等加工为特色的超精密加工技术

超精密加工技术,一般表现为被加工对象的尺寸和形位精度达到零点几微米,表面粗糙度优于百分之几微米的加工技术。

这项技术包括超精密切削、超精密磨削、研磨和抛光、超精密微细加工等内容,主要用于超精密光学零件、超精密异形零件、超精密偶件和微机电产品等加工。

电广束、离子束、激光束等加工技术,通常出现在超精密微细加上领域,用来制造为集成电路配套的微小型传感器、执行器等新兴微机电产品, 以及硅光刻技术和其他微细加工技术的生产设备、检测设备等。20世纪80年代以来,超精密加工技术,在超精密加工机床等设备、超精密加工刀具与加工工艺、超精密加工测量和控制,以及超精密加工所需要的恒温、隔热、洁净之类环境控制等方面,取得了一系列突破性进展。超精密加工技术投资大、风险高,但增值额和回报率也高得惊人。近来,发达国家把它作为提升国力的尖端技术竞相发展,前景非常好。

(三)以节约资源和保护环境为前提的省耗绿色制造技术

微纳米制造技术及应用范文第2篇

关键词:纳米技术;军事领域;效应;影响

当物质的尺寸小到0.1~100纳米时,物质属性会发生很大变化。如铜块被加工成纳米尺度的粉末,而后再压成块状,其导热速度是自然铜块的数倍;很多物质被加工到纳米尺度后,其导电性和光吸收能力提高数倍等等。研究这些现象的技术被称为纳米技术[1]。先进的技术总是最先应用于军事领域,纳米技术也是如此。当这种技术刚刚兴起时,世界各主要军事大国便相继制定了繁多的军用纳米技术项目。他们认为,在未来的战争中,纳米技术将极大地改善战场侦察和战场指挥手段,并加速武器装备小型化、信息化和一体化进程,甚至改变未来战争的模式[2]。

1 纳米技术在军事领域应用所产生的积极作用

纳米技术在军事领域应用,将有效地提升指挥系统的性能、改进侦察技术手段、增强武器装备的作战效能和降低士兵伤亡率[3-4]。

1.1 提升指挥系统的性能

高性能的计算机是军队指挥系统中不可或缺的硬件设施。采用纳米技术制造的电子器件,具有更高效的信息接收、处理和发送能力,且其并行能力强。以此作为核心的计算机,在处理大量信息的同时能够保证指令安全、准确、迅捷地发送到作战人员计算机中。

1.2 改进侦察技术手段

纳米技术可用于制造微型卫星和纳米卫星。微型卫星、纳米卫星易发射,体积小、重量轻,生存能力强且研发费用低。多星组成卫星网,即可实现对地球表面的覆盖。它还可用于制造微型侦察设备获取战场信息。与普通武器相比,纳米技术制造的武器更具有穿透性和伪装性。另一方面纳米技术使得对目标的监控更快、更具有选择性[5]。

1.3 增强武器装备的作战效能

1.3.1 提高武器装备的防护性能和攻击性能

纳米陶瓷耐冲击且具有很高的韧性,可用于制造军用车辆的发动机和对抗冲击性要求高的枪炮衬管;纳米微粒可以有效地吸收电磁波和红外波,可用于制造雷达波和红外波兼容的隐形材料,使武器装备的隐身性能更佳[6]。一些纳米微粒如镍纳米微粒可以制成催化剂,使弹药的燃烧效率提高数倍,提高了导弹等的飞行速度和贯穿能力;利用纳米技术可以对石油燃烧和炸药爆炸进行精确控制,可应用于小规模定量定向爆破[7]。

1.3.2 促进武器装备的小型化

随着纳米技术的发展,量子器件越来越多地取代大规模集成电路,复杂的电子系统完全可以集成在一块芯片上,成倍地缩小武器装备的重量和功耗[9],使目前需车载的电子战系统缩小到可由单兵携带使用。随着科技的进步,“麻雀”卫星、“米粒”炸弹、“小草”探测器等等,都将慢慢成为现实。

1.3.3 提升武器装备的智能化

利用纳米技术可以制造出微型的电脑和感应器,更好地感应、识别并做出反应。利用纳米技术制造的轮胎,能够随时进行表面感应并自动调整压力利于行军;利用纳米材料制造潜艇的蒙皮,可以灵敏地感受水流、水温、水压等细微的变化,还能根据水波的变化提前察觉来袭的鱼雷,使潜艇及时做规避机动[7]。

1.4 减少士兵伤亡

士兵的伤亡数量是一场战争成败的主要标准之一,降低有生力量伤亡率一直是各国军界追求的目标。纳米技术的运用,无疑会起到重要作用。一方面,随着纳米技术的大量运用,机器人越来越多地投入战斗,人类士兵参战少,伤亡率必然会降低。

另一方面,纳米材料的运用能够为战场上的士兵提供更好的保护。如:用碳纳米管制成的盔甲轻巧坚固,可以减少轰炸和轻武器攻击给士兵造成的伤害;一些纳米氧化物还有抑制红外辐射等数种功能,做成的制服对人体释放的中红外频段红外线有屏蔽作用,更有利于隐藏自身[8-9]。纳米复合抗菌材料具有耐水、耐酸碱、耐洗涤、光照不老化、广谱抗菌等特点,用于医用纺织品中,可以减少野战士兵的交叉感染和病菌传播,减少战斗人员伤亡率[10]。

2 纳米技术应用于军事领域对未来战争产生的深远影响[4]

纳米技术会在一定程度上改变未来战争的形态,对未来战争产生深远影响。

2.1 探测打击能力增强, 未来战争将更具突然性。纳米侦察设备将从多维空间对地展开全方位、多层次的侦察,其更先进的侦察技术和更多样的侦察手段,使侦察预警能力得到极大的提高。纳米超微颗粒的吸波性能,为兵器的隐身提供了技术支持[11-12];超微型和智能化的明显优势也增加了攻防兵器的隐蔽性。透明的战场加上高超的隐身术和隐蔽性,必将使战争更具突然性。

2.2 先进技术应用较多,打击目标为敌方指挥系统。未来战争中,打击目标更多地转向信息系统。直接打击敌方的指挥系统,使敌方部队在战场上群龙无首寸步难行。

2.3 未来战争进行迅速,消耗将大幅减少。一方面,纳米武器所用资源较少,成本相对低廉;另一方面,纳米战争透明度高,战争寻求以快制胜和以科技制胜,不会进行到类似二战的规模,消耗将大幅减少。

3 结束语

随着纳米技术的不断发展和完善,在军事领域必将出现更多更先进的应用,不可避免地影响着军事斗争准备和战争形态。我们期待着更好地掌握这门技术,为保家卫国贡献一份力量!

参考文献

[1]王远,廖瑞华.纳米电子技术在军事领域的应用[J].微纳电子技术,2003,40(11):13-17.

[2]周国泰.高技术与高技术武器装备[M].国防大学出版社,2005.

[3]赵向东.为纳米技术“穿军装”-纳米技术的军事应用及其影响[J].国防,2006,3:041.

[4]叶宁英,林浩山.神奇的纳米技术与军事革命[J].现代物理知识,2004,16(3):36-38.

[5]梁薇,张科.精确制导武器发展及其关键技术[J].火力与指挥控制,2009,33(12):5-7.

[6]刘丽.纳米材料红外吸收特性研究[D].首都师范大学,2004

[7]胡凯.纳米金属氧化物对AP复合推进剂的催化研究[J].飞航导弹,2012,8:023.

[8]周德俭.纳米技术在电子与军事领域中的应用[J].电子机械工程,2005,20(6):25-30.

[9]田春雷,李文钊,高俊国.装备防护中的纳米材料[J].包装工程,2008(9).

[10]段月琴,孙永昌,王玉红,等.纳米复合抗菌面料的研制及其抗菌性能[J].天津冶金,2005(1):44-45.

微纳米制造技术及应用范文第3篇

关键词:纳米技术;机械工程;应用;摩擦性能;纳米材料

中图分类号: TU6 文献标识码: A 文章编号:

本文对纳米技术在实际应用过程中所存在的各种技术问题进行了探讨。作为一项重大的科技突破――纳米技术的研发已经应用到了社会的各个领域之中,在机械工程中的运用更是成为其核心,表现在很多方面。本文从实例出发,展现纳米技术在机械工程领域的运用。

1纳米技术的概念

所谓的纳米技术就是借用单一的分子、原子制造物质的一种科学技术,纳米科学技术将很多现代的先进科学技术作为基础,并加以改进和升华,成为了现代科学和现代技术组合后的重要产物之一,其中,现代科学主要包括分子生物学、介观物理、量子力学和混沌物理,现代技术主要包括核分析技术、扫描隧道显微镜技术、微电子技术以及计算机技术,纳米技术一定会引发起一系列的全新的科学技术革命,并产生新的学科,比如纳米机械学、纳米材料学以及纳米电子学等等。

纳米技术也被称为毫微技术,是对结构尺寸在0.1 nm-100nm范围之内材料的应用和性质的研究,从始至今的相关研究来看,人们将纳米技术分为了二种概念,第一种纳米技术的概念就是指分子纳米技术,这一概念将组合分子的机器实用化了,因此,我们可以对所有这类的分子进行任意的组合,并且可以将任何种类分子结构进行制造,但是,这一种概念上的纳米技术仍然没有取得很大的进展;第二种概念将纳米技术看成了微加工技术的极限,后者主要是从生物角度提出的,纳米生物技术中所包含的重要内容已经延伸到了细胞生物计算机开发和DNA分子计算机领域中。

2微型纳米轴承

当前形势下,纳米技术不仅仅是一门单一的新型技术或者学科,它被广泛的应用到了各类学科之中,其中,在机械工程中进行纳米技术的应用,已经对机械工程学科技术的变革产生了不可估量的重要作用。纳米技术在机械方面的应用乃至是微观机械技术的产生已经成为了我们这个世纪进行研究的核心的技术,许多国家都在纳米技术方面展开了越来越多甚至越来越深的研究,在机械工程方面,纳米技术在机械工程中应用主要存在于微型轴承方面。传统的轴承体积比较大,其摩擦力也仅仅能够靠来进行减少,但是,仍然不能够将摩擦力进行避免,美国科学家对其行了研究,并且研制出来一种没有摩擦的微型纳米轴承,微型纳米轴承主要包括以下两个特点:

第一,微型,微型纳米轴承的直径仅仅为一根头发直径的万分之一,其应用到机电系统微型的轴承只有1nm,为微型机械的千分之一。

第二,摩擦力极小,如果轴承的体积很小,那么,套在一起,管子之间摩擦力就会将微型轴承弱点暴露出来,在其产生的摩擦力很大的时候,会导致微型轴承无法使用。通常纳米轴承与这种微型机械轴承相比较,摩擦力仅仅是其最小值千分之一。

3 纳米技术马达

新一代的纳米技术马达是由美国一家公司生产,这种微型马达的体积只有一般电磁马达体积的二十分之一,它的长度比火柴杆还短很多,但是竟然能够负载4千克的重量,它的寿命可以达到100多万次。这种马达主要是通过运用纳米技术制造智能材料来取代传统的铜线圈以及磁铁,所以它比传统的马达重量更轻、噪音更低,可以说是世界上最轻便、最静音的马达,同时成本也比传统的马达更加的低。当前这种微型马达在机械中运用的并不是很多,主要用于汽车的电动车窗,这项研究同时也已经在深圳进行研发和生产。

4纳米磁性液体在旋转轴中的应用

通常情况下,静态密封都是采用金属、塑料或者橡胶等材料制作而成的O型环,将其作为密封的元件。在旋转的条件下,动态密封一直没有对其问题进行解决,动态密封不能够在高真空、高速的条件下进行动态的密封。纳米技术在很大程度上都对磁性液体在旋转轴中的运行起到了促进作用。我国的南京大学也已经成功的进行了硅油、二脂基、烷基以及水基等多种类型磁性液体的制成,电子计算机硬盘处也已经普遍的采用了磁性液体防尘密封,此外,磁性液体也对新型剂的制造起到了一定的促进作用,由此可见,在机械工程中应用纳米技术的例子举不胜举。以上新兴技术的产生,我们能够很容易的看出纳米技术对机械工程的不断发展起到了深刻的影响。与此同时,与系统的机械工程相比较,由于纳米技术的各种优势才能够使得机械工程产生了显著的提升。

4.1纳米磁性液体在旋转轴中应用之尺寸效应

在纳米技术领域中,最为显著的效果之一是将旋转轴中的传统尺寸竿位进行了缩小,将其毫米单位转化成了纳米,而纳米也就相当于一米的十亿分之一,将纳米技术应用到机械工程中,可以将机械的体积大大降低,最终促使微型机械这种新型的机械的形成和产生.这种产生并不是传统的机械单纯的在尺度上产生的微小的变化,而是指可以进行成批制作的微传感器、微能源、微驱动器、集合微结构、信号、控制电路等等处置装置为一体的微型机电系统的产生,微型机电系统大部分都是将纳米技术成果进行了运用。因此,它们已经远远的超过了传统机械的范畴和概念,而是基于现代的科学技术之上,在崭新的技术线路和思维方式指导之下的重要产物,并且作为整个的纳米科技中重要的组成部分。

4.2纳米磁性液体在旋转轴中应用之材料应用多元化

纳米技术使原材料形成了更加微小的形态,其功能更加强大,不仅仅能够对传统材料进行一定的改良,同样能够使新材料源源不断的产出。磁性液体密封的技术更加证明了磁性液体能够被磁场控制这一特性,将纳米单位液体置于磁场之内,最终达到密封效果。与此同时。在运用材料中,我们能够将微量元素融入到基础的材料之中,以便能够达到更好的效果。

4.3纳米磁性液体在旋转轴中应用之材料摩擦性能

纳米技术摩擦性能已经成为了其最为显著的特性之一,在机械工程领域中,各种轴承都会产生摩擦,存在着摩擦性能。自从纳米材料出现了以后,各类机械的尺寸和结构都变小了,对于过小的零件,其摩擦力就变得尤其重要,如果其摩擦力相对来说比较大,那么就会造成零件的磨损。但是,纳米技术对这个问题进行了克服,现在已经出现的纳米材料几乎处于无摩擦状态。

5纳米技术在机械行业中的发展前景

(1)汽车工业以及机械的滑配原件,例如:滑轨、轴承上应用的纳米陶瓷镀膜能产生磨擦界面,这样可以大大地减低磨损并且能够提高负载。

(2) 塑胶流道的低粘应用,例如:拉丝模、套筒以及热胶道,这样可有效地减少积料碳化产生的概率。

(3)射出成型时发生的粘模、包封短射、镜面雾化以及拖痕均具有重要的改善,特别是在滑块和顶针上所展现出来的干式,这样更是任何金属都不能表现出来的优异性。

(4)橡胶、IC 封装胶和发泡塑料,因为其具有极高的粘着性,所以必须借助大量的脱模剂来协助脱模,但是纳米陶瓷的荷叶效应就可大大地减少脱模剂的使用和模具清理时间。

(5)纳米陶瓷的低沾粘、低摩擦特性能够使塑胶在模具内的流动性大大提升,尤其是高精度模具,例如:塑胶镜片、薄光板、汽车聚光灯罩等一些模具应用后对产品的使用均有显著的改善。

结论

在本文中,笔者首先阐述了纳米技术的概念,然后从微型纳米轴承、纳米技术马达及纳米磁性液体在旋转轴中的应用这三个方面对纳米技术在机械工程中的应用进行了探讨,在进行纳米磁性液体在旋转轴中的应用探析时,笔者主要从纳米磁性液体在旋转轴中应用之尺寸效应、纳米磁性液体在旋转轴中应用之材料应用多元化以及纳米磁性液体在旋转轴中应用之材料摩擦性能这三个方面来讲行阐述的,最后简单介绍了一下纳米技术在机械行业中的发展前景。

参考文献:

[1] 姜婷.国外纳米材料监管法规概览[J]. 标准科学. 2010(10)

[2] 尹继先,黎永强,温云鸽.先进的纳米技术与现代的纺织品[J]. 检验检疫科学. 2006(05)

[3] 陈飞.浅谈纳米材料的应用[J]. 中小企业管理与科技(下旬刊). 2009(03)

微纳米制造技术及应用范文第4篇

1959年,著名物理学家、诺贝尔奖获得者理查德・费曼预言,人类可以用小的机器制造更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想.纳米技术是指在0.1~100纳米的尺度里,研究电子、原子和分子内的运动规律和特性的一项崭新技术.科学家们在研究物质构成的过程中,发现在纳米尺度下隔离出来的几个、几十个可数原子或分子,显著地表现出许多新的特性,而利用这些特性制造具有特定功能设备的技术,就称为纳米技术.

纳米技术的应用

陶瓷领域:利用纳米技术使陶瓷具有像金属一样的高硬度、高韧性、低温超塑性、易加工等优点.有效克服陶瓷的易碎及难以加工的缺点.

微电子学领域:纳米电子学按照全新的理念来构造电子系统,并开发物质潜在的储存和处理信息的能力,实现信息采集和处理能力的革命性突破.计算机在普遍采用纳米材料后,可以缩小成为“掌上电脑”,使得计算机存储空间及运算速度大大提高.

光电领域:纳米技术的发展,使微电子和光电子的结合更加紧密,在光电信息传输、存贮、处理、运算和显示等方面,使光电器件的性能大大提高.将纳米技术用于现有雷达信息处理上,可使其能力提高10倍至几百倍,甚至可以将超高分辨率纳米孔径雷达放到卫星上进行高精度的对地侦察.

化工领域:将纳米TiO2粉体按一定比例加入到化妆品中,则可以有效地遮蔽紫外线.将金属纳米粒子掺杂到化纤制品或纸张中,可以大大降低静电作用.纳米微粒还可用作导电涂料,用作印刷油墨,制作固体剂等.

医疗领域:纳米级粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织;在人工器官外面涂上纳米粒子可预防移植后的排异反应;使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA诊断出各种疾病.

纳米技术应用还远远不止提到的这些.纳米材料是纳米技术的一个重要组成部分,纳米材料也体现一个国家在纳米技术的科研水平.碳纳米管就是最热门的纳米材料.

1991年,碳纳米管被人类发现,它具有优良的力学性能、导电性能、导热性能.它的质量是相同体积钢的六分之一,强度却是钢的10倍.设想我们在地球与月球之间要架设一台直达电梯,如果使用钢作为连接材料,本身的重力就会使得它断裂.碳纳米管的导电性能可以趋向于零电阻,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会得到很大的改善.正因为他的优良特性,诺贝尔化学奖得主斯莫利教授认为,碳纳米管将是未来纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等.

纳米很小,那么如何来研究它呢?研究纳米的最重要的工具就是扫描隧道显微镜(stm),它的基本结构有:隧道针尖、三维扫描控制器、减震系统、电子学控制系统、在线扫描控制和离线数据处理软件.扫描隧道显微镜在低温下(4k)可以利用探针尖端精确操纵原子,因此它既是重要的测量工具又是加工工具.人们利用它可以让原子按照意愿排列组合.

微纳米制造技术及应用范文第5篇

关键词:食品科学,纳米技术,纳米材料,应用

一、引言

二十世纪末纳米技术开始兴起,随着人们的重视程度不断提高和研究的进一步深入,纳米技术在医药上的许多研究成果正逐步地应用于食品行业,并且开发、生产了许多新型的食品和一些具有良好功效和特殊功能的保健食品,纳米技术在食品方面的取得了卓越的成绩。

二、纳米技术概述

所谓纳米,它是一种几何尺寸的度量单位,l纳米为百万分之一毫米,也就是十亿分之一米的长度。由于纳米材料的微观粒子非常的小,进而表现出特殊的力学、热学、物理和化学特性,并且具备特殊的功能。[1]总体而言,纳米材料具有优异的晶粒尺寸小、表面效应、量子尺寸效应、体积效应等,这些特性使得纳米技术广泛应用于食品工艺。[2]从二十世纪九十年代初开始,纳米电子学、纳米材料学、纳米生物学、纳米化学、纳米药物学以及纳米生物技术的到了快速发展,同时有关的新名词、新概念也不断涌现。人们对纳米技术的理解较为模糊,一直以来人民对其研究也处于起步阶段,还有待于我们进一步深入研究。纳米技术的主要目标是,根据纳米结构所具有的特性和功能,结合人们的需求,对材料进行加工,并制造具有特定功能的产品,给人们带来全新的技术革命。此外,在设计过程中在原子、分子的水平上运用纳米技术进行材料设计,进而制造出具有全新性质和各种功能的材料,从而满足人们日益增长的生活需求。

三、食品科学中纳米技术的应用

随着纳米技术的快速发展,纳米食品生产取得了可喜的成绩。到目前为止,纳米食品产品已经超过三百种,一大部分食品已经实现了商业化。据相关统计预测,到2013年我国纳米食品市场将达到250亿美元。[3]由此可见,纳米技术在食品上的应用有较为广阔的前景。纳米技术在食品上的应用和研究主要包括:纳米包装材料、纳米食品加工以及纳米检测技术等诸多方面,具体应用如下:

(一)微乳化技术和纳米胶囊制备技术

微乳液其实就是通过将两种互不相溶的液体形成的吉布斯自由能最小、状体均匀并且稳定,各向同性、粒径大小为l-100纳米、外观透明或半透明的分散体系,而制备该微乳液的技术也称为微乳化技术。自从上个世纪末以来,人们加大对微乳理论和应用的研究,并将微乳化技术已应用于纳米颗粒、微胶囊和纳米胶囊的制备。采用纳米技术,将微胶囊制备成具有粒径大小在10-1000纳米尺寸的新型材料。由于纳米胶囊颗粒微小,形成胶体溶液,易于分散和悬浮在水中,并形成清澈透明的液体,从而使所载的药物或食品功能因子改变分布状态而浓集于特定的靶组织,进而有利于提高疗效的目的,增加药品生产效率。[4]此外,由于分子自组装技术特殊的界面分子识别功能,纳米胶囊的制备技术已应用到香料阻燃剂、医药、石油产品以及食品调味品等领域,并且其应用范围将会进一步扩大。调查显示,目前制备纳米胶囊的方法主要有微乳聚合法、乳液中的界面沉积法、乳液中的界面聚合法、复相乳液溶剂挥发法等。

(二)纳米技术在食品包装与保险技术中的应用

在食品包装行业,纳米技术的应用最为普遍,并且该技术能给人们带来极大的利益。因为,在包装材料过程中,只需加入一定的纳米微粒就能够有效地增加包装材料的抗菌性能与密封效果,从而更好地为食品包装提高质量安全保障。同时,在冰箱制造行业也能看到纳米技术的应用情况,通过纳米技术能够有效地生产出一些抗菌性的冰箱,从而满足人们日常生活需求。[5]此外,由于纳米材料的尺寸微小(纳米级别),并体现出特殊的功能,在食品包装过程中加入一定的纳米微粒有利于改变对现有包装材料的性能,从而进一步保证食品的安全。甚至已有不少人研究纳米技术在玻璃和陶瓷容器等领域的应用,通过加入纳米颗粒,可以有效地增加了脆性材料的韧性与强度,还可以有效地吸收紫外线防止塑料包装由于时间过长而出现老化、变质等现象,进而增加食品包装的使用寿命,促进食品包装行业的发展。

(三)纳米技术在超细微粒和纳米粒子制备中的应用

在当今的高新技术研究领域中,超细微粒尤其是纳米粒子已经成为人们研究的热门方向,并是当今急需加大研究投入的领域。经过超细化处理后的物质,粒子之间的接触面积增大,比表面积也大大增加,界面能显著提高,表面能会发生巨大变化,从而显现出独特的物理与化学性能。通常情况下,制备超细粒子的方法为超细碾磨法,例如市场上比较普遍的具有强抗氧化性的超细绿茶粉与具有强结合水能力的超细面粉等。研究表明,粒子越小越有助于人体的吸收消化,约1000纳米的超细绿茶粉呈现出较好的营养消化和吸收率,其营养价值大大超出普通的绿茶粉。[6]再比如近年来迅速发展起来的新技术--超临界流体制备超细微粒技术,也属于纳米技术制备超细粒子的范畴,该技术可以较准确地控制结晶过程,对粒子尺寸进行精确的控制,从而生产出的超细微粒粒径小且粒度分布均匀,该技术在医疗药物制造行业较为普遍,具有非常广阔的应用前景。

(四)纳米技术在食品检测中的应用

由于计算机技术的飞速发展,使得纳米传感器技术发展也较为迅猛,并且已经成功在食品安全监测广泛应用。[6]纳米生物传感器技术,是采用选择性结合靶分子的生物探针,对食品进行安全监测的技术。这是因为纳米材料本身就是非常敏感,对于不均匀的化学和生物物质反应非常的灵敏,将纳米技术与计算机技术、生物学、电子材料等相结合起来,可以制备新型的传感器件,从而达到提高食品安全检测的可靠性和准确性。此外人们还通过纳米生物传感器技术,实现了对食品安全的灵敏、有效、快速检测。比如在传统的检测领域,特别是在监测微量细菌时,需要扩增或富集样本中的目标菌。我们就可以利用纳米技术与表面等离子体共振、石英晶体微天平等研制而成的纳米生物传感器,这种方法不仅能够大大减少检测所需的时间,而且还可以提高检测的准确度,提高了食品安全检测的效率。

四、结语

由于我国纳米技术研究起步较晚,在许多方面还存在不足之处,但是近年来随着国内专家学着对纳米技术的研究力度不断加大,同时国家在政策等方面给予了大力支持,纳米技术已经取得了一定的成绩,特别是纳米技术在食品工业中的广泛应用。我相信在不久的将来,纳米技术将会引发一场新的食品科学的革命,为我国食品工业带来巨大的经济社会效益和广阔的发展空间,同时也会在一定程度上加速人们生活方式和饮食结构的变化,引领人们进入全新的食品行业,保障食品安全,提高人民生活水平。

参考文献:

[1] 陈荔红. 纳米食品包装材料的研究与应用现状[J]. 福建轻纺, 2008,(10).

[2] 杨敏,马永全,于新. 纳米技术在食品工业中的应用与研究进展[J]. 广东农业科学, 2010,(04).

[3] 曾晓雄. 纳米技术在食品工业中的应用研究进展[J]. 湖南农业大学学报(自然科学版), 2007,(01).

[4] 边晓琳,刘扬,冯莉,张艳芬,肖红梅. 纳米包装材料对冷藏金针菇品质的影响[J]. 江苏农业科学, 2010,(06).

[5] 吕朝辉. 纳米材料在食品安全分析中的应用研究[J]. 科技传播, 2010,(10).

相关期刊更多

微纳电子技术

北大期刊 审核时间1-3个月

中国电子科技集团公司

传感技术学报

北大期刊 审核时间1-3个月

中华人民共和国教育部

纳米技术与精密工程

CSCD期刊 审核时间1-3个月

Ministry of Education of the People’s Republic of China