首页 > 文章中心 > 欧姆定律实验总结

欧姆定律实验总结

欧姆定律实验总结

欧姆定律实验总结范文第1篇

摘 要:本文对人教版物理选修3-1教材中引入焦耳定律的方式提出了质疑,指出了其不利影响,同时提出了自己的方案并分析了这样引入的好处。

关键词:物理选修3-1;焦耳定律;欧姆定律;纯电阻电路

人民教育出版社普通高中课程标准实验教科书物理选修3-1课本对焦耳定律的引入过程如下:

电流通过白炽灯、电炉等电热元件做功时,电能全部转化为导体的内能,电流在这段电路中做的功W等于这段电路发出的热量Q,即

Q=W=UIt

由欧姆定律

U=IR

代入上式后可得热量Q的表达式

Q=I2Rt

即电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻及通电时间成正比,这个关系最初是焦耳用实验直接得到的,我们把它叫做焦耳定律。

这里用公式推导的方式得出了焦耳定律的公式和内容,笔者认为不太恰当,理由如下:

第一,焦耳定律是焦耳通过大量实验总结出来的规律,科学实验是自然规律最直接的反映,科学理论正确与否必须接受实验的检验,正如课本上所说焦耳定律是焦耳用实验直接得到的,焦耳定律本身就是一个实验规律,这是焦耳通过大量实验总结得到并经过无数次实验验证了的实验结论,我们不应该淡化科学实验在焦耳定律建立过程中所起的巨大作用,公式推导的方式掩盖了焦耳定律的真实面目。

第二,这里Q=W应用了能量转化与守恒定律来推导焦耳定律,而实际情况是焦耳本人是在得出焦耳定律后,又进行了长期的、大量的、精确的科学实验,在大量实验事实面前焦耳提出了能量转化和守恒定律.并且电流通过导体时所做的电功和导体发出的电热相等是焦耳得出能量转化与守恒定律的重要实验基础.由此看来,用能量转化和守恒定律来推导焦耳定律是不符合科学发展的实际历程的。

第三,上述推导过程用到了欧姆定律,欧姆定律的表达式应该为[I=UR],不应该用U=IR,另外,欧姆定律是只能在纯电阻电路中才适用的规律,用欧姆定律来推导焦耳定律会使学生认为焦耳定律也只适用于纯电阻电路,对电动机等非纯电阻元件求电热不适用的错误认识.学生一旦建立这样的错误认识再来纠正是比较困难的.

基于以上考虑,笔者认为引入焦耳定律的过程可以做一些调整.建议设计“电流通过电学元件时产生的电热与谁有关?”的探究实验(或者介绍焦耳所做的实验).通过探究实验得出Q=I2Rt,即焦耳定律.然后结合能量转化与守恒定律在纯电阻电路中电流做功全部转化为电热W=Q,即UIt=I2Rt,可以得到[I=UR]。由此可见欧姆定律是能量转化与守恒定律在纯电阻电路中的具体反映和内在要求.

这样设计的好处是还原了人们认识自然规律的实际历程,体现出了科学实验在科学理论建立过程中的巨大作用,使人们认识到焦耳定律是一条实验规律,物理学科是一门实验科学,能真实反映自然规律.通过探究实验的设计我们可以引导学生像科W家那样设计实验方案,探究、总结得出规律,使学生在实验中体会科学实验对自然科学的重要意义,也能使学生获得科学研究的方法.

我们又利用焦耳定律和能量守恒定律反过来得出了欧姆定律,说明欧姆定律、焦耳定律虽说是在实验中得出的,同时它们也是物理理论大厦的有机组成部分,可以反映出焦耳定律在物理理论体系中的地位和物理理论的完备性,在理论层面上证明焦耳定律可以纳入已有的物理理论当中,使实验结论和理论框架得到完美融合.更重要的是我们能够得到欧姆定律的适用条件――纯电阻电路,如果不是纯电阻电路,电流做功没有全部转化为电热则不能得出W=Q即UIt=I2Rt,欧姆定律也就不适用.另外我们还能体会到能量转化与守恒定律在自然界中的普适性,欧姆定律是能量转化与守恒定律在纯电阻电路中的必然要求.

欧姆定律实验总结范文第2篇

关键词:物理定律;教学方法;多种多样

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

欧姆定律实验总结范文第3篇

一、教材分析《欧姆定律》一课,学生在初中阶段已经学过,高中必修本(下册)安排这节课的目的,主要是让学生通过课堂演示实验再次增加感性认识;体会物理学的基本研究方法(即通过实验来探索物理规律);学习分析实验数据,得出实验结论的两种常用方法——列表对比法和图象法;再次领会定义物理量的一种常用方法——比值法.这就决定了本节课的教学目的和教学要求.这节课不全是为了让学生知道实验结论及定律的内容,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中是如何控制实验条件和物理变量的,从而让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法.

本节课在全章中的作用和地位也是重要的,它一方面起到复习初中知识的作用,另一方面为学习闭合电路欧姆定律奠定基础.本节课分析实验数据的两种基本方法,也将在后续课程中多次应用.因此也可以说,本节课是后续课程的知识准备阶段.

通过本节课的学习,要让学生记住欧姆定律的内容及适用范围;理解电阻的概念及定义方法;学会分析实验数据的两种基本方法;掌握欧姆定律并灵活运用.

本节课的重点是成功进行演示实验和对实验数据进行分析.这是本节课的核心,是本节课成败的关键,是实现教学目标的基础.

本节课的难点是电阻的定义及其物理意义.尽管用比值法定义物理量在高一物理和高二电场一章中已经接触过,但学生由于缺乏较多的感性认识,对此还是比较生疏.从数学上的恒定比值到理解其物理意义并进而认识其代表一个新的物理量,还是存在着不小的思维台阶和思维难度.对于电阻的定义式和欧姆定律表达式,从数学角度看只不过略有变形,但它们却具有完全不同的物理意义.有些学生常将两种表达式相混,对公式中哪个是常量哪个是变量分辨不清,要注意提醒和纠正.

二、关于教法和学法根据本节课有演示实验的特点,本节课采用以演示实验为主的启发式综合教学法.教师边演示、边提问,让学生边观察、边思考,最大限度地调动学生积极参与教学活动.在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,教师可给予恰当的思维点拨,必要时可进行大面积课堂提问,让学生充分发表意见.这样既有利于化解难点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃.

通过本节课的学习,要使学生领会物理学的研究方法,领会怎样提出研究课题,怎样进行实验设计,怎样合理选用实验器材,怎样进行实际操作,怎样对实验数据进行分析及通过分析得出实验结论和总结出物理规律.同时要让学生知道,物理规律必须经过实验的检验,不能任意外推,从而养成严谨的科学态度和良好的思维习惯.

三、对教学过程的构想为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:1.在引入新课提出课题后,启发学生思考:物理学的基本研究方法是什么(不一定让学生回答)?这样既对学生进行了方法论教育,也为过渡到演示实验起承上启下作用.2.对演示实验所需器材及电路的设计可先启发学生思考回答.这样使他们既巩固了实验知识,也调动他们尽早投入积极参与.3.在进行演示实验时可请两位同学上台协助,同时让其余同学注意观察,也可调动全体学生都来参与,积极进行观察和思考.4.在用列表对比法对实验数据进行分析后,提出下面的问题让学生思考回答:为了更直观地显示物理规律,还可以用什么方法对实验数据进行分析?目的是更加突出方法教育,使学生对分析实验数据的两种最常用的基本方法有更清醒更深刻的认识.到此应该达到本节课的第一次高潮,通过提问和画图象使学生的学习情绪转向高涨.5.在得出电阻概念时,要引导学生从分析实验数据入手来理解电压与电流比值的物理意义.此时不要急于告诉学生结论,而应给予充分的时间,启发学生积极思考,并给予适当的思维点拨.此处节奏应放慢,可提请学生回答或展开讨论,让学生的主体作用得到充分发挥,使课堂气氛掀起第二次高潮,也使学生对电阻的概念是如何建立的有深刻的印象.6.在得出实验结论的基础上,进一步总结出欧姆定律,这实际上是认识上的又一次升华.要注意阐述实验结论的普遍性,在此基础上可让学生先行总结,以锻炼学生的语言表达能力.教师重申时语气要加重,不能轻描淡写.要随即强调欧姆定律是实验定律,必有一定的适用范围,不能任意外推.7.为检验教学目标是否达成,可自编若干概念题、辨析题进行反馈练习,达到巩固之目的.然后结合课本练习题,熟悉欧姆定律的应用,但占时不宜过长,以免冲淡前面主题.

四、授课过程中几点注意事项1.注意在实验演示前对仪表的量程、分度和读数规则进行介绍.

2.注意正确规范地进行演示操作,数据不能虚假拼凑.

3.注意演示实验的可视度.可预先制作电路板,演示时注意位置要加高.有条件的地方可利用投影仪将电表表盘投影在墙上,使全体学生都能清晰地看见.

4.定义电阻及总结欧姆定律时,要注意层次清楚,避免节奏混乱.可把电阻的概念及定义在归纳实验结论时提出,而欧姆定律在归纳完实验结论后总结.这样学生就不易将二者混淆.

欧姆定律实验总结范文第4篇

例1 (2015年武汉四月调研)某实验小组用下列器材设计了如图1所示的欧姆表电路,通过调控电键S和调节电阻箱,可使欧姆表具有“×1”、“×10”两种倍率( ).

A.干电池:电动势E=1.5 V,内阻r=0.5Ω

B.电流表mA:满偏电流Ig=1mA,内阻Rg=150Ω

C.定值电阻R1=1200Ω

D.电阻箱R2:最大阻值999.99Ω

E.电阻箱R3:最大阻值999.99Ω

F.电阻箱R4:最大阻值9999Ω

G.电键一个,红、黑表笔各1支,导线若干

图1 图2(1)该实验小组按图1正确连接好电路.当电键S断开时,将红、黑表笔短接,调节电阻箱R2,使电流表达到满偏电流,此时闭合电路的总电阻叫做欧姆表的内阻R内,则R内=

Ω,欧姆表的倍率是

(选填“×1”、“×10”).

(2)闭合电键S: 第一步:调节电阻箱R2和R3,当R2=

Ω且R3=

Ω时,再将红、黑表笔短接,电流表再次达到满偏电流. 第二步:在红、黑表笔间接入电阻箱R4,调节R4,当电流表指针指向图2所示的位置时,对应的欧姆表的刻度值为

Ω.

这是一道2015年湖北省武汉市四月调研考试试题,主要考查了欧姆表的内部结构、换挡原理、中值电阻、闭合电路欧姆定律等知识点.是一道综合性强,命题立意较高,难度较大,能很好考查学生综合能力的好题.从考后试卷分析发现学生得分率比较低,很多学生束手无策,主要原因是学生对欧姆表内部电路结构和换挡原理没有弄清楚,不会灵活运用中值电阻.

解析 (1)由闭合电路欧姆定律可知:内阻R内=EIg=1.50.001Ω=1500Ω,故中值电阻应为1500Ω.根据多用电表的换挡原理,倍率越高中值电阻(内阻)越大,表盘上只有两种档位,根据电路结构可知欧姆表倍率应为“×10”.(2)为了得到“×1”倍率,应将S闭合,指针满偏时对应的电阻为150Ω,电流I1=1.5150A=0.01A,此时表头中电流应为0.001A;则与之并联电阻R3电流应为I2=0.01-0.001=0.009A,并联电阻R3=0.001×(150+1200)0.009Ω=150Ω,R2+r=1.5-1.350.01Ω=15Ω,故R2=15-0.5=14.5Ω.

如图所示电流为I=0.75mA,“×1”倍率满偏时对应的电阻为R内=150Ω,由闭合电路欧姆定律:

E=150×(1+150+1200150)×10-3,

E=(150+Rx)×(0.75+

0.75×(150+1200)150)×10-3

联立得电流为0.75mA时欧姆表的刻度值应为Rx=50Ω.

图3

二、理论分析

欧姆表是由电流表表头、直流电源、电位器和红、黑表笔串联而成,如图3所示,虚线框内是欧姆表的内部结构的原理图.

当红、黑表笔短接时,相当于被测电阻Rx=0,调节R的值,使电流表的指针达到满偏,此时有Ig=ER+Rg+r,所以电流表的满偏刻度处被定为电阻挡的零点.

当红、黑表笔断开时,相当于被测电阻Rx=∞,此时电流表的电流为零,所以电流表零刻度的位置是电阻挡刻度的“∞”位置.

当红、黑表笔间接入某一电阻Rx时,通过电流表的电流I=ER+Rg+r+Rx,将上两式相除得:IIg=R+Rg+rR+Rg+r+Rx,解得Rx=(R+Rg+r)(IIg-1),式中IIg这个数值具有重要意义,就是每一个IIg数值与表针的位置一一对应,也与每一个Rx一一对应.

由上式可知,中值电阻R中=R+Rg+r=EIg唯一地决定了欧姆表的刻度,中值电阻越大,可以准确测量的范围越大,要改变欧姆表的测量范围,实现欧姆表的不同倍率,只需改变中值电阻即可,通过改变中值电阻的大小来实现准确测量范围的缩放.

要改变中值电阻有两种途径:一是电路中的最大电流Ig值不变而改变电源电动势,但这种方法改变的范围有限,而且生产上千伏的直流电源在技术上是非常困难,成本也很高.二是电源电动势不变而改变电路中的最大电流Ig值,通过在电流表表头上并联多个电阻,即把电流表表头改装成不同量程的电流表,再加一个选择开关即可实现不同的倍率.

三、实战演练

例2 某同学用以下器材接成如图4所示的电路,并将原微安表盘改画成如图5所示,成功地改装了一个简易的“R×1k”的欧姆表,使用中发现这个欧姆表用来测量阻值在10kΩ~20kΩ范围内的电阻时精确度令人满意,表盘上数字“15”为原微安表盘满偏电流一半处.所供器材如下:

A.Ig=100μA的微安表一个

B.电动势E=1.5V,电阻可忽略不计的电池

C.阻值调至14kΩ电阻箱R一个

D.红、黑测试表棒和导线若干

(1)原微安表的内阻Rg=

Ω.

图4 图5(2)在图4电路的基础上,不换微安表和电池,图5的刻度也不改变,仅增加1个元件,就能改装成“R×1”的欧姆表.要增加的元件是

(填器件名称),规格为

.(保留两位有效数字)

(3)画出改装成“R×1”的欧姆表后的电路图.

解析 (1)根据“使用中发现这个欧姆表用来测量阻值在10kΩ-20kΩ范围内的电阻时精确度令人满意”,说明在测阻值在10kΩ-20kΩ的电阻时欧姆表的指针在刻度盘的中间附近,由此可结合刻度盘确定此表的中值电阻,即表内总电阻约为R总=15kΩ,相当于欧姆表选择量程于×1k挡.当表笔短接时,电流满偏,根据欧姆定律有:Ig=ER+Rg,代入E、R、Ig的值,解得Rg=1kΩ.

(2)要把原表改装成“R×1”的欧姆表,就要减少欧姆表的内阻,在电动势不变的情况下,只有扩大表头量程,依题意,显然只有并联一个小电阻R′才能使表内总电阻等于中值电阻R并=15Ω.根据R并=R′(R+Rg)R′+R+Rg,代入R以及Rg的数值可计算可得R′≈15Ω.

图6

(3)画出改装成“R×1”的欧姆表后的电路图如图6所示.

点评 欧姆表由小倍率挡向大倍率挡转换时,需要增大欧姆表的总电阻,即要增加中值电阻,但改变中值电阻不是通过串联更大电阻来实现.因为如果串联更大电阻R0,根据Ig=ER+Rg+r+R0可知,通过欧姆调零后,要减少调零电阻R的阻值,使得整个电路的总电阻没有发生变化,实质上是串联电阻方式起不到改变量程的作用,只有通过改变电路结构,减小表头量程.欧姆表由大倍率挡向小倍率挡转换时,需要减小欧姆表的总电阻,所以只有通过变换并联电阻来实现的,相当于扩大表头量程,并联电阻后,内阻减小,欧姆表的量程也就变以小,并联的电阻越小,内电阻越小,欧姆表的量程也就越小.

变式练习 将满偏电流为50μA、内阻为800Ω~850Ω的小量程电流表G改装成两种倍率(如“×1”、“×10”)的欧姆表.现有两种备选电路,如图7和图8所示,则图

(选填“7”或“8”)为合理电路;另一种电路不合理的原因是

欧姆定律实验总结范文第5篇

第1节 对欧姆定律的理解和应用

重点考点

欧姆定律是通过“探究导体的电流跟哪些因素有关”的实验得出的实验结论.应注意以下考点:(1)公式()说明导体中的电流大小与导体两端的电压和导体的电阻两个因素有关,其中I、U、R必须对应于同一电路和同一时刻.(2)变形式()说明电阻R的大小可以由()计算得出,但与U、I无关.因为电阻是导体本身的一种性质,由自身的材料、长度和横截面积决定.由此提醒我们,物理公式中各量都有自身的物理含义,不能单独从数学角度理解.(3)串联电路具有分压作用,并联电路具有分流作用.

中考常见题型

中考一般会从两方面考查欧姆定律的应用,一是对欧姆定律及变形公式的理解和简单计算,一般不加生活背景,以纯知识性的题目出现在填空题或选择题中:二是应用欧姆定律进行简单的串并联的相关计算.

例1 (2014.南京)如图1所示,电源电压恒定,R1=20Ω,闭合开关S,断开开关S1,电流表示数是0.3 A;若再闭合开关S1,发现电流表示数变化了0.2 A.则电源电压为____V,R2的阻值为____ Ω.

思路分析:闭合s,断开S1时,电路为只有R1的简单电路,可知电源电压U=U1=I1R1=0.3 Ax20 Ω=6 V;若再闭合S1时,两电阻并联,则U2=U=6 V,因为R1支路两端的电压没有变化,所以通过该支路的电流仍为0.3 A,电流表示数的变化量即为通过R2支路的电流,则I2=().

答案:6 30

小结:本题考查了并联电路的特点和欧姆定律的灵活运用,关键是能判断出闭合开关S1时电流表示数的变化即为通过R2支路的电流.每年的中招都有一个2分的这样的纯计算题目,以考查同学们对基础知识的理解和掌握程度.

例2(2013.鄂州)如图2甲所示的电路,电源电压保持不变.闭合开关S,调节滑动变阻器,两电压表的示数随电路中电流变化的图象如图、2乙所示.根据图象的信息可知____.(填“α”或“b”)足电压表V2示数变化的图象,电源电压为____V,电阻R1____的阻值为____ Ω.

思路分析:国先分析电路的连接情况和电表的作用:电阻R1和滑动变阻器R2串联,电压表V1测的是R1两端的电压,电压表V2测的是滑动变阻器(左侧)两端的电压.因为R1是定值电阻,通过它的电流与电压成正比,所以它对应的图象应是α,那么图象b应是电压表V2的变化图象,观察图象可知:当电流都是0.3 A(找出任一个电流相等的点,两图线对应的电压之和就是电源电压)时,U1=U2=3 V,根据串联电路中电压的关系可知,电源电压为6V,由于R1是定值电阻,所以在图象α上任找一点,代入欧姆定律可知()

答案:b 6 10

小结:欧姆定律提示了电流、电压、电阻三者之间的数量关系和比例关系,三个比例关系分别为:(1)电阻一定时,导体中的电流与导体两端的电压成正比,即()(2)电流一定时,导体两端的电压和它的电阻成正比,即().该规律又可描述为:串联分压,电压的分配和电阻成正比,即电阻大的分压多.(3)电压一定时,导体中的电流和导体的电阻成反比,即(),该规律又可描述为:并联分流,电流的分配和电阻成反比,即电阻大的分流小.图象可以很直观地呈现这种关系,学会从图象中找出特殊点足解决欧姆定律问题的一大技巧,

第2节 动态电路中物理量的变化

重点考点

由于滑动变阻器滑片的移动或开关所处状态的不同,使电路中电流和电压发生改变,这样的电路称之为动态电路.这类题目涉及电路的分析、电表位置的确定、欧姆定律的计算、串并联电路中电流和电压分配的规律等众多知识,因此同学们在分析过程中容易顾此失彼,下面我们通过例题梳理一下解决这类问题的一般思路,

中考常见题型

题日常联系生活实际,以尾气监控、超重监控、温度监控、风速监控、身高测量等为背景,考查该部分知识的掌握情况,存中考题中常以选择题的方式呈现,注意:如果题目中没有特别说明,可认为电源电压和定值电阻的阻值是不变的.

例3(2014.济宁)小梦为济宁市2014年5月份的体育测试设计了一个电子身高测量仪.图3所示的四个电路中,Ro是定值电阻,R是滑动变阻器,电源电压不变,滑片会随身高上下平移.能够实现身高越高,电压表或电流表示数越大的电路是().

思路分析:图A中两个电阻R。和R串联,电流表测量的是整个电路中的电流,当身高越高时,滑动变阻器接入电路中的阻值越大,电路中的电流越小,电流表的示数越小,图B中身高越高时,滑动变阻器连人电路中的阻值越大,电压表测量的是滑动变阻器两端的电压,根据串联电路分压的规律知道,R越大电压表的示数越大,符合题意.图B与图C中滑动变阻器的接法不同,图C中身高越高,滑动变阻器连入电路中的阻值越小,同理知道电压表的示数越小.图D是并联电路,电流表测的是支路电流,根据并联电路各支路互不影响的特点知道,不论人的身高如何变化,电流表的示数都不会发生变化,选B.

小结:分析这类问题依据的物理知识是:(1)无论串并联电路,部分电阻增大,总电阻随之增大,而电源电压不变,总电流与总电阻成反比.(2)分配关系:串联分压(电阻大的分压多),并联分流(电阻大的分流少).(3)在并联电路中,各支路上的用电器互不影响,滑动变阻器只影响所在支路电流的变化,从而引起干路电流的变化.解决这类问题的一般思维程序是:(1)识别电路的连接方式并确定电表位置.(2)判断部分电阻的变化.(3)判断总电阻及总电流的变化.(4)根据串并联电路的分压或分流特点进行局部判断.

例4如图4所示电路,电源电压不变,开关S处于闭合状态.当开关S.由闭合到断开时,电流表示数将____.电压表示数将 ________ .(均填“变大”“不变”或“变小”)

思路分析:当开关S.闭合时,电灯L被短路,电路如图5所示,电压表测的是电阻R两端的电压(同时也是电源电压),电流表测的是通过电阻R的电流.当开关S1断开时,电灯L和电阻R串联,电路如图6所示,此时电压表测电阻R两端的电压,它是总电压的一部分,所以电压表的示数变小;电流表测的是总电流,但跟S,闭合相比,这个电路的总电阻变大,总电压不变,故电流表的示数变小.

答案:变小 变小

小结:本题引起电表示数变化的原因是开关处于不同状态,解决本题的突破口是弄清楚当开关处于不同状态时,电路的连接情况和电表的位置.

第3节 欧姆定律的探究及电阻的测量

重点考点

电学实验探究题的考查比较常规,有以下几方面:(1)选取器材及连接电路:根据题目要求,分析或计算出电表的量程和滑动变阻器的规格,连接电路时开关应断开,滑动变阻器要“一上一下”接入,且滑片要放在阻值最大的位置.电表的量程和正负接线柱要正确.(2)滑动变阻器的作用:保护电路,改变电路中的电流或用电器两端的电压,实现多次测量.(3)分析实验数据得出结论.怎样分析数据才能得出结论是近年来考试的侧重点,要注意结论成立的条件和物理量的顺序.(4)多次测量的目的有两个,如定值电阻的阻值不变,多次测量是为了求平均值减小误差:灯丝电阻是变化的,多次测量是为了观察在不同电压下,电阻随温度变化的规律.难点是单表测电阻和创新型实验的探究与设计.

中考常见题型 中考常以“探究电流与电压或电阻的关系”“测小灯泡的电阻”和“测定值电阻的阻值”这三类题型,以实验探究的方式考查同学们的动手能力和解决实际问题的能力,在常规的考查基础上,近几年又融人器材的选取、电路故障的处理、单表测电阻及如何分析数据才能得出结论等探究内容的考查.

例5用“伏安法”测电阻,小华实验时的电路如图7所示.

(1)正确连接电路后,闭合开关前滑片P应置于滑动变阻器的________(填“左”或“右”)端.

(2)测量时,当电压表的示数为2.4V时,电流表的示数如图7乙所示,则,_____A,根据实验数据可得R2=____Ω.小华在电路中使用滑动变阻器的目的除了保护电路外,还有____.

(3)如果身边只有一只电流表或电压表,利用一已知阻值为Ro的定值电阻、开关、导线、电源等器材也可以测出未知电阻Rx请仿照表1中示例,设计出测量Rx阻值的其他方法.

思路分析:闭合开关前,滑动变阻器的阻值应调到最大.由于测量的是定值电阻的阻值,所以,应该多次测量求平均值减小误差,这正是使用滑动变阻器的另一个目的.测电阻的原理是R=(),即用电压表测出未知电阻两端的电压,用电流表测出通过未知电阻的电流,就能计算出未知电阻的阻值.当只有电流表时,我们应设法“借到”电压,怎样让未知电阻两端的电压和已知电阻两端的电压相等呢?只有组成并联电路,示例也证实了这一点.同样道理,当只有电压表时,我们可以组成串联电路,这样可以借助通过已知电阻的电流来计算未知电阻,

相关期刊更多

核聚变与等离子体物理

北大期刊 审核时间1-3个月

核工业西南物理研究院

轻工机械

统计源期刊 审核时间1-3个月

中国轻工业杭州机电设计研究院

电机技术

省级期刊 审核时间1个月内

上海市电气(集团)总公司